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Abstract. This is a survey of some recent developments in the study of the fundamental
group G(A) of the complement of the complex hyperplane arrangement A.

The direct sum of the lower central series quotients of G(A) is a graded Lie algebra.
The ranks of the lower central series quotients are numerical invariants of G(A). For
the class of hypersolvable arrangements which includes the class of fiber-type, generic
and braid arrangements, it is possible to make an explicit calculation.

The Chen groups of G(A) are the lower central series quotients of its maximal

metabelian quotient. The Chen groups distinguish non isomorphic G(A) which are

not distinguished by the lower central series.
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1. Introduction

The fundamental group π1(X) of a topological space X is an important topo-
logical invariant of X; i.e., if two spaces are homeomorphic, their fundamental
groups are isomorphic. This gives the possibility of proving that two spaces
are not homeomorphic by proving that their fundamental group are not isomor-
phic. In this paper, we will only consider the particular case of the complements
of some algebraic complex hypersurfaces and more precisely of hyperplane ar-
rangements. The fundamental group of the complement of algebraic curves were
studied by Zariski almost 70 years ago and Zariski and Van Kampen described
a general procedure for calculating these groups. A presentation of the funda-
mental group of the complement of a complex hyperplane arrangement A was
given by Randell [14], Salvetti [15] and Arvola [1] or using information encoded
in the braid monodromy of the arrangement. Although topological invariants
of the complement M(A) are closely connected to the combinatorics of the ar-
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rangement, it is not a priori enough to determine the fundamental group G(A)
and, as such, it is not easy to handle. According to a classical construction of W.
Magnus, the associated graded Lie algebra gr

(
G(A)

)
defined by the lower central

series of G(A) reflects many properties of G(A). The ranks of the abelian groups
grk

(
G(A)

)
, called LCS ranks, are important numerical invariants of G(A). As

shown by Kohno [9] (based on foundational work by Sullivan and Morgan), the
associated graded Lie algebra gr

(
G(A)

)
and the holonomy Lie algebra H(A)

which is determined by the intersection lattice L(A) are rationally isomorphic.
However, for the class of hypersolvable arrangements defined by Jambu and Pa-
padima [6], we have an isomorphism gr

(
G(A)

) ∼= H(A). Therefore, for this
class of hypersolvable arrangements, an explicit formula for the LCS ranks is
known. However, both the direct product and the semi-direct product of free
groups, may be realized as the fundamental groups of the complements of (dif-
ferent) arrangements and their LCS ranks are equal. These groups cannot be
distinguished by means of their associated Lie algebra.

K.T. Chen [2] introduced a more manageable approximation to the LCS
ranks. The Chen groups of a group are the lower central series quotients of its
maximal metabelian quotient. The direct sum of the Chen groups is a graded
Lie algebra. Papadima and Suciu [13] proved that the rational Chen Lie Algebra
is combinatorially determined.

In this paper, after a short introduction to arrangements of hyperplanes, we
recall the Magnus theory relating groups theory and Lie algebras theory,. Then
we proceed by showing different examples. First, we consider the most simple
ones, the free groups and direct product of free groups and we get the Witt
formula, and its topological meaning which gives a relation between the fun-
damental group, the cohomology algebra and the holonomy Lie algebra of the
complement in C of a finite set. The second example is the famous braid groups.
In the following sections, we introduce some generalizations in terms of hyper-
plane arrangements, fiber-type and hypersolvable ones. Finally, we introduce the
Chen groups and following Cohen and Suciu [3] we give some examples showing
that Chen groups allow to distinguish non isomorphic groups which cannot be
distinguish by means of lower central series.

2. Hyperplane Arrangements

A (complex) hyperplane arrangement is a finite set, A, of codimension 1 affine
subspaces in a finite-dimensional complex space, V = Cl. We refer the reader
to [12] as a general reference on arrangements.

An important example is the braid arrangement of diagonal hyperplanes in
Cl. Loops in the complement can be viewed as (pure) braids on l strings, and
the fundamental group can be identified with the pure braid group Pl.

The arrangement A is called central if
∩

H∈A H 6= ∅.
The main combinatorial object associated to A is its intersection lattice,
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L(A) = {∅ 6=
∩

H∈A H | B ⊂ A}. This is a ranked poset, consisting of all non-
empty intersections of A, ordered by reverse inclusion, and with rank function
given by codimension. We denote Li(A) the set of codimension i elements of
L(A). Then L0(A) = {0} = {V }. When A is central, then the poset L(A) is a
geometric lattice.

Let A = {H1, . . . ,Hn} be a central arrangement. A defining polynomial for
A may be written as QA = f1 · · · fn where fi are distinct linear forms, with
Hi = kerfi. Choose coordinates (z1, . . . , zl) in Cl so that Hn = {zl = 0}. The
corresponding decone of A is the affine arrangement dA in Cl−1, with defining
polynomial QdA = QA(z1, . . . , zl−1, 1). Reversing the procedure yields the cone
cA of A.

Example 2.1. Let us consider Q(A) = x1x2(x1−1)(x2−1)(x2−2) and Q(cA) =
x0x1x2(x1 − x0)(x2 − x0)(x1 − 2x0).

A c(A)
(A1, V1) and (A2, V2) be two hyperplane arrangements and let V = V1 ⊕ V2.

We define the product arrangement A1 ×A2 by

A1 ×A2 = {H ⊕ V2 | H ∈ A1} ∪ {V1 ⊕ H | H ∈ A2}

As an example, let us take the previous one. Let Q(A1) = x(x − 1), Q(A2) =
x(x − 1)(x − 2), then A = A1 × A2, Q(A) = xy(x − 1)(y − 1)(y − 2) and
Q(cA) = xyz(x − z)(y − z)(y − 2z).

Let M(A) = V −
∪

H∈A H be the complement. This is an open, l-dimensional
complex manifold, whose topological invariants are intimately connected to the
combinatorics of the arrangement. However the information encoded in the
intersection lattice is not a priori enough for finding a finite presentation of the
fundamental group of the complement of an arrangement.

Let us point out that M(cA) ≈ M(A) × C∗ where C∗ denotes the nonzero
complex numbers and ≈ denotes homeomorphism.

Let

M1 = V1 −
∪

H∈A1

H, M2 = V2 −
∪

H∈A2

H and M = V −
∪

H∈A1×A2

H.
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Then π1(M) ' π1(M1) × π1(M2).
Let A = {H1, . . . ,Hn} be an arrangement of hyperplanes in V . Let R be

an arbitrary commutative ring. Let E =
⊕n

k=1 Ep denote the graded exterior
algebra over R generated by 1 and symbols e1, . . . , en. The R-module Ep is
free and has a distinguished basis consisting of monomials eS = ei1 · · · eip where
S = {i1, . . . , ip} is running through all the subsets of [n] = {1, 2, . . . , n} of
cardinality p and i1 < i2 < · · · < ip. Define ∂ : Ep −→ Ep−1 by

∂(e1, . . . , en) =
p∑

k=1

(−1)k−1ei1 · · · êik
· · · eip

For every S ⊂ [n], put ∩S =
∩

i∈S Hi, and call S dependent if ∩S 6= ∅ and the
set of linear polynomials {fi | i ∈ S} is linearly dependent. Let I = I(A) be the
ideal of E generated by

{∂eS | S ⊂ [n] is dependent}

Then I is a homogeneous ideal.

Definition 2.2. The Orlik-Solomon algebra A(A) is the graded algebra E/I.

The image of ei in A(A) is denoted ai. The generators ai correspond to
logarithmic 1-forms dfi/fi where fi : Cl −→ C is a linear form with kernel Hi.
Let µ : L(A) × L(A) → Z denote the Möbius function on L(A). The Poincaré
polynomial of A(A) is PA(t) =

∑
k≥0 rank(Ak)tk. Then

PA(t) =
∑

X∈L(A)

µ(X)(−t)r(X)

where r is the rank function of L(A) and µ(X) denotes µ(X, 0).
Define the rational 1-forms ηi = 1

2πi
dfi

fi
on V . Then the integral cohomology

ring H∗(M(A), Z) is generated by 1 and the classes of ηi for 1 ≤ i ≤ n.

Theorem 2.3. Let R = Z. Then A(A) ∼= H∗(M(A); Z) and the Poincaré poly-
nomial of H∗(M(A); Z

)
is equal to PA(t).

Remark 2.4. Let A = A1 ×A2, then PA(t) = PA1(t).PA2(t).

Definition 2.5. The holonomy Lie algebra of M(A) (over Z) is defined as

HM = L(Xk; 1 ≤ k ≤ n)/I

where L(Xk; 1 ≤ k ≤ n) is the free Lie algebra on the set {X1, . . . , Xn} and
I is the ideal generated by the elements [Xi,

∑
j∈J Xj ] for all i ∈ J such that

codim
∩

j∈J Hj = 2 and codim(
∩

j∈J) ∩ Hk = 3 for all k /∈ J .
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This theory is intimately connected with the theory of knots and links in
3-spaces with its varied applications to biology, chemistry, and physics. A more
direct link to physics is provided by the deep connections between arrangement
theory and hypergeometric functions. There are implications in the study of
Knizhnik-Zamolodchikov equations in conformal field theory.

Hyperplane arrangements are used in numerous areas, including robotics,
graphics, molecular biology, computer vision,....

3. The Magnus Theory

There is a very strong analogy between the theory of groups and the theory
of Lie algebras. The most well-known is the one between Lie groups and Lie
algebras; every finite dimensional (complex) Lie algebra is the Lie algebra of
some (complex) Lie group.

Another connection is due to Magnus and developed by Lazard and we will
consider it in the following.

Let G be an arbitrary group. How “far” is it from an abelian group?
Let Gab be the abelianization of G, that is Gab = G/[G,G] where [G,G] is

the subgroup of commutators.
If G is abelian, then [G, G] = 0 and Gab = G.
If G is perfect, then [G,G] = G and Gab = 0.

Therefore, replacing G by its abelianization is too strict.
Let us consider the Lower Central Series of G which is denoted by (ΓnG)n≥1

where:

(i) Γ1G = G

(ii) Γn+1G = [G, ΓnG]

Properties:

(i) Γn+1G is a subgroup of ΓnG.
(ii) ΓnG/Γn+1G is an abelian group which is finitely generated if G is finitely

generated.
(iii) [ΓmG, ΓnG] ⊂ Γm+nG.

Define
grnG = ΓnG/Γn+1G

which is an abelian group for any n ≥ 1 and

grG =
⊕
n≥1

grnG

There is a natural structure of Lie algebra on grG over Z where the Lie bracket
[x, y] is induced from the group commutator (x, y) = xyx−1y−1.
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Let denote φn(G) = rank(grnG). They are important numerical invariants
of G. Although they may be very difficult to determine, many properties of the
group G are reflected into properties of its associated Lie algebra grG.

Then a natural question is, given the group G, to determine the Lie algebra
grG and to compute φn(G) for every n.

4. Some Examples

4.1. Free Groups

Let G = Fl be a free group of rank l. Magnus showed that

gr(Fl) = Ll

where Ll is the free Lie algebra on l generators, whose ranks were computed by
Witt.

Let R be a commutative ring with unit and let R<A> be the free associative
algebra over the set A of l elements. The product [x, y] = xy−yx turns R<A>
into a Lie algebra. The Lie subalgebra LA(R) generated by A is called the free
Lie algebra over A. Notice that R < A > is the universal enveloping algebra of
LA(R).

When R = Z, we denote LA(R) by LA. So, Ll is the free Lie algebra on l
generators over Z.

Theorem 4.1. [1] Let Fl be the free group of rank l. Then

φk(Fl) = rank(Ll)k =
1
k

∑
d|k

µ(d)lk/d

where (Ll)k is the homogeneous component of rank k of the free Lie algebra Ll

and µ is the classical Möbius function.

In fact, we will consider the following equalities coming from the proof of the
Witt theorem, which is called Witt formula or LCS formula:∏

k≥1

(1 − tk)−φk(Fl) =
∑
n≥1

lntn = (1 − lt)−1.

Let us now consider a direct product of free groups G = Fi1 × Fi2 × . . . × Fin .
Then, we get the following LCS formula for the direct product of free groups:∏
k≥1

(1 − tk)−φk(G) =
∏
k≥1

(1 − tk)−φk(Fil) . . .
∏
k≥1

(1 − tk)−φk(Fin) =
n∏

j=1

(1 − ijt)−1
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4.2. Topological and Geometric Meaning of the Witt Formula

Let M = C − {a1, . . . , al}.
The fundamental group π1(M) is the free group Fl of rank l.
The Differential Equation dY = ωY where ω =

∑l
k=1 Akωk, ωk = dt

t−ak
,

and Ak ∈ End(Cm), is completely integrable, (dω = 0 and ω ∧ ω = 0). Then let
be the monodromy representation:

ρ : π1(M) −→ Gl(m; C)

which is defined by Chen iterated integrals:

ρ(γ) = I +
∫

γ

ω +
∫

γ

ωω + · · ·

In order to get a universal expression, let C〈〈X1, · · · , Xl〉〉 be the I-adic com-
pletion of C〈X1, · · · , Xl〉 where I is the augmentation ideal.

Define the homomorphism:

θ : π1(M) −→ C〈〈X1, · · · , Xl 〉〉

γ 7−→ 1 +
∑
k≥1

1≤i1,··· ,ik≤l

∫
γ

ωi1 · · ·ωikXi1 · · ·Xik

Then ρ is obtained by substituting Ak to Xk.

Finally, C〈X1, · · · , Xl〉 = U(Ll)(C) is the universal enveloping algebra of the
free Lie algebra Ll(C).

Ll(C) is called the Holonomy Lie algebra of M and is denoted HM (C).
C〈X1, · · · , Xl〉 is the enveloping algebra of HM (C) and

∑
n≥0 lntn is its

Poincaré series.
The integral cohomology ring

H∗(M(A), Z) = H0(M(A); Z)
⊕

H1(M(A); Z) = Z
⊕

Zl

and its Poincaré polynomial is PM (t) = 1 + lt. Notice that M(A) ∼=
∨

l S
1 is a

wedge of l circles.

The 3th term of the LCS formula is
(
PM (−t)

)−1

.

Remark 4.2. Let Aj = C − {ai1 , . . . , aij} and A = A1 × · · · × An. Let M(A) =
Cn −

∪
H∈A H. Then G(A) ∼=

∏n
j=1 Fij and using the LCS formula, we obtain

the LCS ranks φk(G(A)).

4.3. Braid Groups

The Braid group with l strands denoted Bl admits the following presentation:
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(i) generators: σ1, · · · , σl−1

(ii) relations: σiσj = σjσi for | i − j |> 1 and
σi+1σiσi+1 = σiσi+1σi for 1 ≤ i ≤ l − 2

Braids can be viewed as isotopy classes of collection of n connected curves in
3-dimensional space.

1 2 3 4 5

γ =
(

1 2 3 4 5
4 1 5 3 2

)
∈ B5

1 i−1 i i+1 i+2 n

σi

1 i−1 i i+1 i+2 n

σ−1
i

i i+1 j j+1 i i+1 j j+1

σiσj = σjσi

i i+1 i+2 i i+1 i+2

σi+1σiσi+1 = σiσi+1σi

Let π : Bl −→Sl be the natural homomorphism where Sl is the symmetric group
on l and define Pl = kerπ as the pure braid group. The symmetric group Sl has
the following presentation:

(i) generators: s1, · · · , sl−1

(ii) relations: sisj = sjsi for | i − j |> 1 and
si+1sisi+1 = sisi+1si for 1 ≤ i ≤ l − 2
s2

i = 1 for any i

and π(σi) = si is the transposition (i, i + 1).
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The group Pl can be realized as the fundamental group of the complement
Ml of the diagonal hyperplanes Hij of Cl defined by zi = zj for 1 ≤ i < j ≤ l,

Ml = Cl −
∪

1≤i<j≤l

Hij , Pl
∼= π1(Ml).

Moreover C−{p−1 points} ↪→ Mp −→ Mp−1 is a linear fibration where Mp −→
Mp−1 is the restriction of the map Cp −→ Cp−1 which forgets the last coordinate.

Consequences:

(i) Ml is a K(π, 1)-space
(ii) π1(Ml) ∼= Fl−1 oFl−2 o · · ·oF2 oF1 (iterated semi-direct product of free

groups)
(iii) H∗(Ml) ∼=

⊗l−1
k=1 H1(

∨
k S1)

(iv) PMl
(t) =

∏l−1
k=1(1 + kt)

(v) Let dY = ωY be the differential equation where ω =
∑

1≤i<j≤l Aijω
ij ,

Aij ∈ gl(m, C) and ωij = dlog(zi − zj).

Lemma 4.3. dY = ωY is completely integrable if and only if [Aij , Aik + Ajk] =
0, for i, j, k distinct and [Ai1j1 , Ai2j2 ] = 0, for i1, j1, i2, j2 distinct.

Then as in the case of the free groups, we define the monodromy representa-
tion and we get the holonomy Lie algebra of Ml as HMl

= L(Xij ; 1 ≤ i < j ≤
l)/J where L(Xij ; 1 ≤ i < j ≤ l) is the free Lie algebra on the generators Xij

and J is the ideal generated by the infinitesimal braid relations:

[Xij , Xik + Xjk] = 0, i, j, k distinct

[Xi1j1 , Xi2j2 ] = 0, i1, j1, i2, j2 distinct

Theorem 4.4. [Kohno] gr(Pl)
⊗

Q ∼= HMl
(Q)∏

k≥1

(1 − tk)−φk(Ml) =
∑
p≥0

χ(p)tp =
∏

1≤k≤l−1

(1 − kt)−1

where φk(Ml) = rank grk(Ml) and
∑

χ(p)tp is the Poincaré series of the uni-
versal enveloping algebra of the rational holonomy Lie algebra HMl

(Q).

Remarks:

(i) Both the semi-direct product Pl and the direct product Πl = Fl−1 × · · · ×
F2×F1, may be realized as the fundamental groups of the complements of
(different) arrangements of hyperplanes. Neither homology nor the lower
central series can distinguish between Πl and Pl.
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(ii) T. Kohno [10] showed that the first equality in the theorem 3 remains true
for any arrangement of hyperplanes, therefore in the following, the LCS
formula will be the equality between the first and the third term.

4.4. Fiber-type Arrangements

This is a natural generalization of the braid arrangements.

Definition 4.5. [5] A is a fiber-type arrangement if there exists a sequence of
sub-arrangements:

A1 ⊂ A2 ⊂ · · · ⊂ Al = A

such that |A1 |= 1, rank(Ai) = i and M(Ai+1) −→ M(Ai) is a locally trivial
fibration with fiber C − {|Ai+1 −Ai | points}.

Let {di+1 =|Ai+1 −Ai |, 0 ≤ i < l − 1} where A0 = ∅, be denoted the set of
the exponents of A and PM (t) =

∏
i(1 + dit) for all exponents di.

Notice that the ideal defining the Orlik-Solomon algebra is generated by
quadratic relations.

Theorem 4.6. [5]

(i) The fiber-type arrangements satisfy the LCS formula:

∏
k≥1

(1 − tk)φk(M) =
l∏

i=1

(1 − dit)

(ii) The fiber-type arrangements are K(π, 1) and π1(Mdl
) ∼= Fdl

oFdl−1 o · · ·o
Fd2 o Fd1 .

Remark 4.7. A fiber-type arrangement is also defined as supersolvable [8] if its
intersection lattice is supersolvable, in the sense of Stanley. As a consequence,
the exponents are combinatorially determined.

Notice that Πl and Pl may be realized as the fundamental groups of different
fiber-type arrangements with same exponents {1, 2, . . . , l − 1}.

Example 4.8. The braid arrangement associated to the braid group B4 is fiber-
type with exponents (1, 2, 3).
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Notice that c(A1 × A2) given as example of product arrangement is also
fiber-type with exponents (1, 2, 3).

4.5. Hypersolvable Arrangements

The class of hypersolvable arrangements [6] [7] contains both fiber-type and
generic arrangements and many others.

An arrangement is called generic if and only if it is a cone over a general
position arrangement.

Notice that all the fiber-type arrangements are K(π, 1) which means that the
complement is K(π, 1) and the generic arrangements are never K(π, 1).
Let A = {H1, . . . ,Hn} be a central arrangement in the complex vector space V .
We also denote A = {α1, . . . , αn} ⊂ P(V ∗) its set of defining equations, viewed
as points in the dual projective space. Let B ⊂ A be a proper, non-empty sub-
arrangement, and set B = A − B. We say that (A,B) is a solvable extension if
the following conditions are satisfied.

(i) No points a ∈ B sits on a projective line determined by α, β ∈ B.
(ii) For every a, b ∈ B, there exists a point α ∈ B on the line passing through a

and b. (In the presence of condition (I), this point is uniquely determined,
and will be denoted by f(a, b).

(iii) For every distinct points a, b, c ∈ B, the three points f(a, b), f(a, c) and
f(b, c) are either equal or collinear.

Note that only two possibilities may occur: either rank(A) = rank(B) + 1
(fibered case), or rank(A) = rank(B) (singular case).

Definition 4.9. [6, 7] The arrangement A is called hypersolvable if it has a hy-
persolvable composition series, i.e., an ascending chain of sub-arrangements,
A1 ⊂ · · · ⊂ Ai ⊂ Ai+1 ⊂ · · · ⊂ Al = A, where rank A1 = 1, and each extension
(Ai+1,Ai) is solvable.
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The quadratic Orlik-Solomon algebra is defined by

A
∗
(A) =

∧
∗(e1, . . . , en)/J

where J is the homogeneous ideal generated by

(RA) ei1 ∧ ei2 − ei1 ∧ ei3 + ei2 ∧ ei3

with codim(Hi1 ∩ Hi2 ∩ Hi3) = 2.
The quadratic Poincaré polynomial PM (t) is the Poincaré polynomial of

A
∗
(A).

Theorem 4.10. [6, 7] Let A be a hypersolvable arrangement, with composition
series A1 ⊂ · · · ⊂ Al = A. Then

(i) PM (t) =
∏l

i=1(1 + dit) where di =|Ai −Ai+1 |.
(ii) A is fiber-type if and only if l = rank(A) if and only if PM (t) = PM (t).
(iii) gr∗

(
G(A)

) ∼= HM

(iv)
∏

k≥1(1 − tk)φk(M) = PM (−t) (called the generalized LCS formula).
(v) π1(M(A)) is an iterated almost-direct product of free groups, π1(Mdl

) ∼=
Fdl−1 o Fdl−2 o · · · o Fd2 o Fd1

Remark 4.11. The fundamental group of a hypersolvable arrangement is combi-
natorial although it is known that it is not true for an arbitrary arrangement.

Example 4.12. This arrangement factors, PM (t) = (1 + t)(1 + 3t)2, is neither
fiber-type nor generic but is hypersolvable with PM (t) = (1 + t)3(1 + 4t).

5. Chen Groups

The Chen groups of a group G are the lower central series quotients of G modulo
its second commutator subgroup G′′. Recall that G(i+1) = [G(i), G(i)], then
G′ = [G,G] and G′′ = [Γ1G, Γ1G].
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The group G/G′′ is metabelian and finitely-generated if G is finitely-
generated. It fits into the exact sequence:

0 −→ G′/G′′ −→ G/G′′ −→ G/G′ −→ 0

The k-th Chen group of G is, by definition, grk(G/G′′). Let θk(G) = φk(G/G′′)
be its rank. The projection G−→G/G′′ induces surjections grkG−→grk(G/G′′).
Thus φk ≥ θk for all k and φk = θk for k ≤ 3.

Assume G/G′ ∼= Zn. The Chen groups of G can be determined from the
Alexander invariant B := G′/G′′ (viewed as a module over Z[G/G′])
Then grk(G/G′′) = grk−2B, for k ≥ 2 and we have∑

k≥0

θk+2t
k = Hilb(grB)

where grB =
⊕

k≥0grkB (viewed as a module over grZ[G/G′])and Hilb(grB)
is the Hilbert series of the graded module grB. A presentation for grB can be
obtained from a presentation for B via the well-known Gröbner basis algorithm
for finding the tangent cone to a variety.

Theorem 5.1. [11, 2] Let G = Fl. Then

θk(Fl) = (k − 1).
(

l + k − 2
k

)
, k ≥ 2

Theorem 5.2. [3]

(i) Let G = π1(M1 × M2), π1(M1) = G1, π1(M2) = G2, then

θk(G) = θk(G1) + θk(G2)

(ii) Let G = Fd1 × · · · × Fdl
be a direct product of free groups, then the Chen

groups of G are free abelian and

θ1(G) =
l∑

i=1

di,

θk(G) = (k − 1)
l∑

i=1

(
k + di − 2

k

)
for k ≥ 2.

In particular, let Πl = Fl−1 × · · · × F1 then

θ1(Πl) =
(

l
2

)
,

θk(Πl) = (k − 1)
(

k + l − 2
k + 1

)
for k ≥ 2
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(iii) The Chen groups of the pure braid group Pl are free abelian. The rank θk

are given by

θ1 =
(

l
2

)
, θ2 =

(
l
3

)
and

θk = (k − 1).
(

l + 1
4

)
for k ≥ 3

Theorem 5.3. For l ≥ 4, the groups Pk/P ′′
k and Πk/Π′′

k are not isomorphic. For
l ≥ 4, the groups Pl and Πl are not isomorphic.

Remark 5.4. P2
∼= F1 and P3

∼= F2 × F1.
Example 5.5. Let be the two arrangements A and B defined by:

Q(A) = xyz(x − y)(x − z)(x − 2z)(x − 3z)(y − z)(x − y − z)

and

Q(B) = xyz(x − y)(x − z)(x − 2z)(x − 3z)(y − z)(x − y − 2z)

A B
They are fiber-type with the same exponents (1, 4, 4). The sequences are:

{x = 0} ⊂ {x = 0, z = 0, x − z = 0, x − 2z = 0, x − 3z = 0} ⊂ A

{x = 0} ⊂ {x = 0, z = 0, x − z = 0, x − 2z = 0, x − 3z = 0} ⊂ B

Therefore homology groups and lower central series quotients are isomorphic.
However,

θ1

(
G(A)

)
= θ1

(
G(B)

)
= 9

θ2

(
G(A)

)
= θ2

(
G(B)

)
= 12

θ3

(
G(A)

)
= θ3

(
G(B)

)
= 40

and for k ≥ 4

θk

(
G(A)

)
=

1
2
(k − 1)(k2 + 3k + 24)
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θk

(
G(B)

)
=

1
2
(k − 1)(k2 + 3k + 22)

then
G(A) 6∼= G(B)

Notice that the groups G(A) and G(B) cannot be distinguished by means of the
LCS formula.

Theorem 5.6. [13] For any complex arrangement A,

gr
(
G(A)/G′′(A)

)
⊗ Q ∼= (HM/H′′

M ) ⊗ Q

In particular, the rational holonomy Lie algebra of the arrangement is com-
binatorially determined by the level 2 of the intersection lattice, L2(A). Hence,
the Chen ranks are combinatorially determined.

There is a conjecture (Suciu) [16] which makes this combinatorial dependence
explicit.

This is related to the cohomology of the Orlik-Solomon algebra which figures
in the Aomoto-Gelfand theory of generalized hypergeometric functions, and in
solutions of the Knizhnik-Zamolodchikov equations of conformal field theory.
Let consider the cohomology H∗(A(A), dω

)
, where dω is the degree one map-

ping defined by left multiplication by a fixed element ω ∈ A1(A). The co-
homology H∗(A(A), dω

)
is isomorphic to the cohomology of the complement

M(A) with coefficients in a local system determined by ω, when ω satisfies some
non-resonance conditions dependent only on M(A). Then Falk [4] showed that
H1

(
A(A), dω

)
6= 0 precisely when ω belongs to an affine variety called the res-

onance variety R1(A) of the arrangement A. He showed that R1(A) is a linear
subspace of Cn which is a union of subspaces of dimension at least 2, as follows.

A partition P = (p1 | · · · | pq) of A is called neighborly if

pj ∩ I ≥| I | −1 ⇒ I ⊂ pj for all I ∈ L2(A)

To a neighborly partition corresponds an irreducible subvariety of R1(A)

LP = ∆n ∩
∩

{I∈L2(A)|I 6⊂pj , any j}

{λ |
∑
i∈I

λi = 0}

where ∆n = {λ ∈ Cn | A) arise from neighborly partition of a sub-arrangement
of A.

Then R1(A) =
∪

Li and for any r ≥ 0 let hr =|{Li | dimLi = r}| be the
number of components of R1(A) of dimension r.
hr can be computed directly from the lattice L(A) by computing neighborly
partitions of sub-arrangements of A and finding dimLP.

This is the conjecture (Suciu) [16]:

θk

(
G(A)

)
=

∑
r≥2

hrθk(Fr), for k ≥ 4
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