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Abstract. A permutomino of size n is a polyomino determined by particular pairs
(π1, π2) of permutations of n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. Here we study
various classes of convex permutominoes. We determine some combinatorial properties
and, in particular, the characterization for the permutations defining convex, directed-
convex, and parallelogram permutominoes.

Using standard combinatorial techniques we provide a recursive decomposition for

permutations associated with convex permutominoes, and we derive a closed formula

for the number of these permutations of size n.
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1. Convex Polyominoes

In the plane Z × Z a cell is a unit square, and a polyomino is a finite connected
union of cells having no cut point. Polyominoes are defined up to translations
(see Figure 1 (a)). A column (row) of a polyomino is the intersection between
the polyomino and an infinite strip of cells lying on a vertical (horizontal) line.

Polyominoes were introduced by Golomb [19], and then they have been stud-
ied in several mathematical problems, such as tilings [2, 18], or games [17]
among many others. The enumeration problem for general polyominoes is dif-
ficult to solve and still open. The number an of polyominoes with n cells is
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known up to n = 56 [21] and asymptotically, these numbers satisfy the rela-
tion limn (an)1/n = µ, 3.96 < µ < 4.64, where the lower bound is a recent
improvement of [1].

In order to simplify enumeration problems of polyominoes, several subclasses
were defined by combining the two simple notions of convexity and directed
growth. A polyomino is said to be column convex (resp. row convex) if every its
column (resp. row) is connected (see Figure 1 (b)). A polyomino is said to be
convex, if it is both row and column convex (see Figure 1 (c)). The area of a
polyomino is just the number of cells it contains, while its semi-perimeter is half
the number of edges of cells in its boundary. Thus, for any convex polyomino the
semi-perimeter is the sum of the numbers of its rows and columns. Moreover,
any convex polyomino is contained in a rectangle in the square lattice which has
the same semi-perimeter, called minimal bounding rectangle.

(a) (c)(b)

Figure 1: (a) a polyomino; (b) a column convex polyomino which is not row
convex; (c) a convex polyomino.

A significant result in the enumeration of convex polyominoes was obtained
by Delest and Viennot in [11], where the authors proved that the number ℓn of
convex polyominoes with semi-perimeter equal to n + 2 is:

ℓn+2 = (2n + 11)4n − 4(2n + 1)

(
2n

n

)
, n ≥ 2; ℓ0 = 1, ℓ1 = 2. (1)

This is sequence A005436 in [22], the first few terms being:

1, 2, 7, 28, 120, 528, 2344, 10416, . . . .

During the last two decades convex polyominoes, and several combinatorial
objects obtained as a generalizations of this class, have been studied by various
points of view. For the main results concerning the enumeration and other
combinatorial properties of convex polyominoes we refer to [4, 5, 6, 8].

There are two other classes of convex polyominoes which will be useful in the
paper, the directed convex and the parallelogram polyominoes. A polyomino is
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said to be directed when each of its cells can be reached from a distinguished
cell, called the root, by a path which is contained in the polyomino and uses
only north and east unit steps.

A polyomino is directed convex if it is both directed and convex (see Fig-
ure 2 (a)). It is known that the number of directed convex polyominoes of
semi-perimeter n + 2 is equal to the nth central binomial coefficient, i.e.

bn =

(
2n

n

)
, (2)

sequence A000984 in [22], the first terms being:

1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . .

(b)(a)

Figure 2: (a) A directed convex polyomino; (b) a parallelogram polyomino.

Finally, parallelogram polyominoes are a special subset of the directed convex
ones, defined by two lattice paths that use north and east unit steps, and intersect
only at their origin and extremity. These paths are called the upper and the
lower path (see Figure 2 (b)). It is known [23] that the number of parallelogram
polyominoes having semi-perimeter n + 1 is the n-th Catalan number (sequence
A000108 in [22]),

cn =
1

n + 1

(
2n

n

)
. (3)

Figure 3: The seven convex polyominoes having semi-perimeter equal to four;
the first five from the left are parallelogram ones, the sixth one is directed convex,
but not parallelogram.

2. Convex Permutominoes
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Let P be a polyomino, having n rows and columns, n ≥ 1; we assume without
loss of generality that the south-west corner of its minimal bounding rectangle is
placed in (1, 1). Let A =

(
A1, . . . , A2(r+1)

)
be the list of its vertices (i.e., corners

of its boundary) ordered in a clockwise sense starting from the lowest leftmost
vertex.

We say that P is a permutomino if P1 = (A1, A3, . . . , A2r+1) and P2 =
(A2, A4, . . . , A2r+2) represent two permutations of Sn+1, where, as usual, Sn is
the symmetric group of size n. Obviously, if P is a permutomino, then r = n,
and n + 1 is called the size of the permutomino. The two permutations defined
by P1 and P2 are indicated by π1(P ) and π2(P ), respectively (see Figure 4).

From the definition any permutomino P of size n has the property that, for
each abscissa (resp. ordinate) between 1 and n there is exactly one vertical
(resp. horizontal) side in the boundary of P with that coordinate. It is simple
to observe that this property is also a sufficient condition for a polyomino to be
a permutomino.

1π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )2

Figure 4: A permutomino of size 7 and its defining permutations.

Permutominoes were introduced by F. Incitti in [20] while studying the prob-

lem of determining the R̃-polynomials (related with the Kazhdan-Lusztig R-
polynomials) associated with a pair (π1, π2) of permutations. Concerning the
class of polyominoes without holes, our definition (though different) turns out
to be equivalent to Incitti’s one, which is more general but uses some algebraic
notions not necessary in this paper.

Let us recall the main enumerative results concerning convex permutominoes.
In [16], using bijective techniques, it was proved that the number of parallelogram
permutominoes of size n+1 is equal to cn and that the number of directed convex
permutominoes of size n+1 is equal to 1

2 bn, where, throughout all the paper, cn

and bn will denote, respectively, the Catalan numbers and the central binomial
coefficients. Finally, in [15] it was proved, using the ECO method, that the
number of convex permutominoes of size n + 1 is:

Cn+1 = 2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1. (4)
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The first terms of the sequence are 1, 4, 18, 84, 394, 1836, 8468, . . . (sequence
A126020) in [22]). The generating function for convex permutominoes is

C(x) =
2 x2 (1 − 3 x)

(1 − 4 x)
2 − x2

(1 − 4 x)
3/2

. (5)

The same formula has been obtained independently by Boldi et al. in [3]. The
main results concerning the enumeration of classes of convex permutominoes are
listed in the table below, where the first terms of the sequences are given starting
from n = 2 (i.e. the one cell permutomino defined by π1(1) = (1, 2), π2 = (2, 1)),
and are taken from [15, 16]:

Class First terms Closed form/rec. relation

convex 1, 4, 18, 84, 394, . . . Cn+1 = 2 (n + 3) 4n−2 − n
2

(
2n
n

)

directed
convex

1, 3, 10, 35, 126, . . . Dn+1 = 1
2 bn

parallelogram 1, 2, 5, 14, 42, 132, . . . Pn+1 = cn

symmetric
(w.r.t. x = y)

1, 2, 4, 10, 22, 54, . . .

Symn+1 = (n + 3)2n−2 − n
( n−1
⌊n−1

2
⌋

)

− (n − 1)
( n−2
⌊n−2

2
⌋

)

centered 1, 4, 16, 64, 256, . . . Qn = 4n−2

bi-centered 1, 4, 14, 48, 164, . . . Bn = 4Bn−1 − 2Bn−2, n ≥ 3

stacks 1, 2, 4, 8, 16, 32, . . . Stn = 2n−2

Notation. Before ending this section, just a few words of explanation concern-
ing some notations used in the work. If L is a generic class of permutominoes,
then the set of permutominoes of L of dimension n will be denoted by Ln, its car-
dinality by Ln, and its generating function L(x) =

∑
n≥0 Lnxn. Moreover, the
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set of permutations associated with Ln will be denoted by L̃n = { π1(P ) : P ∈
Ln }, its cardinality by L̃n, and its generating function by L̃(x) =

∑
n≥0 L̃nxn.

3. Permutations Associated with Convex Permutominoes

Given a permutomino P , its two defining permutations are denoted by π1 and
π2 (see Figure 4). Clearly, any permutomino of size n uniquely determines two
permutations π1 and π2 of Sn, with

i) π1(i) 6= π2(i), 1 ≤ i ≤ n,

ii) π1(1) < π2(1), and π1(n) > π2(n),

but conversely, not all the pairs of permutations (π1, π2) of n satisfying i) and
ii) define a permutomino (see, for instance, the two cases given in Figure 5).

(a)

2π  = ( 5, 1, 6, 7, 3, 2, 4 )

π  = ( 2, 4, 1, 6, 7, 3, 5 )11π  = ( 2, 1, 3, 4, 5, 7, 6 )

π  = ( 3, 2, 1, 5, 7, 6, 4 )2

(b)

Figure 5: Two permutations π1 and π2 of Sn, satisfying i) and ii), do not neces-
sarily define a permutomino, since two problems may occur: (a) two disconnected
sets of cells; (b) the boundary crosses itself.

In [16] the authors give a simple constructive proof that every permutation
of Sn is “associated” with at least one column-convex permutomino.

Proposition 3.1. If π ∈ Sn, n ≥ 2, then there is at least one column-convex
permutomino P such that π = π1(P ) or π = π2(P ).

For instance, Figure 6 (a) depicts a column convex permutomino defined by
the permutation π1 in Figure 5 (b).
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π  = ( 4, 6, 2, 7, 3, 5, 1 )
1

π  = ( 7, 3, 2, 6, 5, 4, 1 )

π  = ( 3, 2, 1, 7, 6, 5, 4 )1

2

π  = ( 2, 4, 1, 6, 7, 3, 5 )

(b)(a)
2

Figure 6: (a) a column convex permutomino defined by the permutation π1 in
Figure 5 (b); (b) the symmetric permutomino defined by the involution π1 =
(3, 2, 1, 7, 6, 5, 4).

If we consider convex permutominoes the statement of Proposition 3.1 does
not hold. So in this paper we consider the class Cn of convex permutominoes
of size n, and study the problem of giving a characterization for the set of
permutations defining convex permutominoes,

{ (π1(P ), π2(P )) : P ∈ Cn } .

Moreover, let us consider the following subsets of Sn:

C̃n = { π1(P ) : P ∈ Cn }, C̃′
n = { π2(P ) : P ∈ Cn }.

It is easy to prove the following properties:

1.
∣∣∣C̃n

∣∣∣ =
∣∣∣C̃′

n

∣∣∣,

2. π ∈ C̃n if and only if πR ∈ C̃′
n, where πR denotes the reflection of π, i.e.

πR = (πn, . . . , π1), where πR = (πn, . . . , π1).

Given a permutation π ∈ Sn, we say that π is π1-associated (briefly associated)
with a permutomino P , if π = π1(P ). With no loss of generality, we will study

the combinatorial properties of the permutations of C̃n, and we will give a simple
way to recognize if a permutation π is in C̃n or not. Moreover we will study the
cardinality of this set. In particular we will exploit the relations between the
cardinalities of the sets Cn and C̃n.
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Let us start with some examples. For small values of n we have that:

C̃2 = {12},
C̃3 = {123, 132, 213},
C̃4 = {1234, 1243, 1324, 1342, 1423, 1432, 2143,

2314, 2134, 2413, 3124, 3142, 3214}.

For any π ∈ C̃n, let us consider also

[π] = {P ∈ Cn : π1(P ) = π},

i.e. the set of convex permutominoes associated with π. For instance, there are 4
convex permutominoes associated with π = (2, 1, 3, 4, 5), as depicted in Figure 7.

We will give a simple way of computing [π], for any given π ∈ C̃n. Moreover,
since

Cn =
⋃

π∈eCn

[π]

we will prove that the cardinality of C̃n+1 is

C̃n+1 = 2 (n + 2) 4n−2 − n

4

(
3 − 4n

1 − 2n

) (
2n

n

)
, n ≥ 1, (6)

defining the sequence 1, 3, 13, 62, 301, 1450, . . ., not in [22].

Figure 7: The four convex permutominoes associated with (2, 1, 3, 4, 5).

3.1 A Matrix Representation of Convex Permutominoes

Before going on with the study of convex permutominoes, we would like to point
out a simple property of their boundary, related to reentrant and salient points.
So let us briefly recall the definition of these objects.

Let P be a polyomino; starting from the leftmost point having minimal or-
dinate, and moving in a clockwise sense, the boundary of P can be encoded as
a word in a four letter alphabet, {N, E, S, W}, where N (resp., E, S, W ) repre-
sents a north (resp., east, south, west) unit step. Any occurrence of a sequence
NE, ES, SW , or WN in the word encoding P defines a salient point of P , while
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any occurrence of a sequence EN , SE, WS, or NW defines a reentrant point of
P (see for instance, Figure 8).

In [10] and successively in [7], in a more general context, it was proved that
in any polyomino the difference between the number of salient and reentrant
points is equal to 4.

A

NNENESSENNNESSEESWSWSWSWNWNW

Figure 8: The coding of the boundary of a polyomino, starting from A and
moving in a clockwise sense; its salient (resp. reentrant) points are indicated by
black (resp. white) squares.

In a convex permutomino of size n ≥ 2 the length of the word coding the
boundary is 4(n−1), and we have n+2 salient points and n−2 reentrant points;
moreover we observe that a reentrant point cannot lie on the minimal bounding
rectangle. This leads to the following remarkable property:

Proposition 3.2. The set of reentrant points of a convex permutomino of size
n ≥ 2 defines a permutation matrix of dimension n − 2.

0 0 0 0 γ
0 0 0 β 0

0 0 δ 0 0

α 0 0 0 0
0 α 0 0 0

δ

γ

β

α

Figure 9: The reentrant points of a convex permutomino uniquely define a per-
mutation matrix in the symbols α, β, γ and δ.

For simplicity of notation, we agree to group the reentrant points of a convex
permutomino in four classes; in practice we choose to represent the reentrant
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point determined by a sequence EN (resp. SE, WS, NW ) with the symbol α
(resp. β, γ, δ).

Using this notation we can state the following simple characterization for
convex permutominoes:

Proposition 3.3. A convex permutomino of size n ≥ 2 is uniquely represented
by the permutation matrix defined by its reentrant points, which has dimension
n − 2, and uses the symbols α, β, γ, δ, and such that for all points A, B, C, D,
of type α, β, γ and δ, respectively, we have:

1. xA < xB , xD < xC , yA > yD, yB > yC;

2. ¬(xA > xC ∧ yA < yC) and ¬(xB < xD ∧ yB < yD),

3. the ordinates of the α and of γ points are strictly increasing, from left to
right; the ordinates of the β and of δ points are strictly decreasing, from
left to right.

where x and y denote the abscissa and the ordinate of the considered point.

C

(n,1)

(n,n)

(1,1) D

B

A

β

δ
δ

δ γ

γ

γ

β

β

α
α

α

x=y

x+y=n+1

Figure 10: A sketched representation of the α, β, γ and δ paths in a convex
permutomino.

Just to give a more informal explanation, let us consider the following special
points on a convex permutomino of size n:

A = (1, π1(1)), B = (π−1
1 (n), n), C = (n, π1(n)), D = (π−1

1 (1), 1).

The path that goes from A to B (resp. from B to C, from C to D, and from
D to A) in a clockwise sense is made only of α (resp. β, γ, δ) points, thus it
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is called the α-path (resp. β-path, γ-path, δ-path) of the permutomino. The
situation is sketched in Figure 10.

The characterization given in Proposition 3.3 implies the following two prop-
erties:

(z1) the α points are never below the diagonal x = y, and the γ points are
never above the diagonal x = y.

(z2) the β points are never below the diagonal x + y = n + 1, and the δ points
are never above the diagonal x + y = n + 1.

3.2 Characterization and Combinatorial Properties of C̃n

Let us consider the problem of establishing if, given permutation π ∈ Sn, there
is at least one convex permutomino P of size n such that π1(P ) = π.

So, let π be a permutation of Sn, we define µ as the maximal upper unimodal
sublist of π (µ retains the indexing of π).

Specifically, if µ is denoted by (µ(i1), . . . , n, . . . , µ(im)) , then we have the fol-
lowing:

1. µ(i1) = µ(1) = π(1);

2. if n /∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that

i. ik < i < ik+1 implies π(i) < µ(ik), and

ii. π(ik+1) > µ(ik);

3. if n ∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that

i. ik < i < ik+1 implies π(i) < π(ik+1), and

ii. π(ik+1) < µ(ik).

Summarizing we have:

µ(i1) = µ(1) = π(1) < µ(i2) < . . . < n > . . . µ(im) = µ(n) = π(n).

Moreover, let σ denote (σ(j1), . . . , σ(jr)) where:

1. σ(j1) = σ(1) = π(1), σ(jr) = σ(n) = π(n), and

2. if 1 < jk < jr, then σ(jk) = π(jk) if and only if π(jk) /∈ {µ(i1), . . . , µ(im)}.

Example 3.4. Consider the convex permutomino of size 16 represented in Fig-
ure 11. We have

π1 = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4),

and we can determine the decomposition of π into the two subsequences µ and σ:



894 Filippo Disanto, Andrea Frosini, Renzo Pinzani and Simone Rinaldi

π
  = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4)

  = (9, 8, 6, 11, 14, 16, 1, 15, 13, 12, 10, 7, 5, 2, 4, 3)

π
1

β

δ

δ

γ
γ

β
β

β

β

β

ββ
α

α

α

2

Figure 11: A convex permutomino P and the permutations (π1(P ), π2(P )).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
µ 8 - - 9 11 14 - 16 15 13 12 10 7 - 5 4
σ 8 6 1 - - - 2 - - - - - - 3 - 4

For brevity sake, when there is no possibility of misunderstanding, we use to
represent the two sequences omitting the empty spaces, as

µ = (8, 9, 11, 14, 16, 15, 13, 12, 10, 7, 5, 4), σ = (8, 6, 1, 2, 3, 4).

While µ is upper unimodal by construction, here σ turns out to be lower uni-
modal. In fact from the characterization given in Proposition 3.3 we have that

Proposition 3.5. If π is associated with a convex permutomino then its subse-
quence σ is lower unimodal.

The conclusion of Proposition 3.5 is a necessary condition for a permuta-
tion π to be associated with a convex permutomino, but it is not sufficient.
For instance, if we consider the permutation π = (5, 9, 8, 7, 6, 3, 1, 2, 4), then
µ = (5, 9, 8, 7, 6, 4), and σ = (5, 3, 2, 1, 4) is lower unimodal, but as shown in Fig-
ure 12 (a) there is no convex permutomino associated with π. In fact any convex
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permutomino associated with such a permutation has a β point below the diag-
onal x + y = 10 and, correspondingly, a δ point above this diagonal. Thus the
β and the δ paths cross themselves. In order to give a necessary and sufficient

β

δ

D

C

B

A

’θ

θ

(b)(a)

Figure 12: (a) there is no convex permutomino associated with π =
(5, 9, 8, 7, 6, 3, 1, 2, 4), since σ is lower unimodal but the β path passes below
the diagonal x + y = 10. The β point below the diagonal and the cor-
responding δ point above the diagonal are encircled. (b) The permutation
π = (5, 9, 8, 7, 6, 3, 1, 2, 4) is the direct difference π = (1, 5, 4, 3, 2)⊖ (3, 1, 2, 4).

condition for a permutation π to be in C̃n, let us recall the following definition.
Given two permutations θ = (θ1, . . . , θm) ∈ Sm and θ′ = (θ′1, . . . , θ

′
m′) ∈ Sm′ ,

their direct difference θ ⊖ θ′ is a permutation of Sm+m′ defined as

(θ1 + m′, . . . , θm + m′, θ′1, . . . , θ
′
m′).

For instance, if θ = (1, 5, 4, 3, 2), θ′ = (3, 2, 1, 4), then θ⊖θ′ = (5, 9, 8, 7, 6, 3, 1, 2, 4)
(a pictorial description is given in Figure 12 (b)).

Finally the following characterization holds.

Theorem 3.6. Let π be a permutation of length n ≥ 1. Then π ∈ C̃n if and only
if:

1. σ is lower unimodal, and

2. there are no two permutations, θ ∈ Sm, and θ′ ∈ Sm′ , such that m + m′ =
n, and π = θ ⊖ θ′.
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Proof. Before starting, we need to observe that in a convex permutomino all the
α and γ points belong to the permutation π1, thus by (z1) they can also lie
on the diagonal x = y; on the contrary, the β and δ points belong to π2, then
by (z2) all the β (resp. δ) points must remain strictly above (resp. below) the
diagonal x + y = n + 1.

(=⇒) By Proposition 3.5 we have that σ is lower unimodal. So we have to prove
that π may not be decomposed into the direct difference of two permutations,
π = θ ⊖ θ′.

If π(1) < π(n) the property is straightforward. So let us consider the case
π(1) > π(n), and assume that π = θ ⊖ θ′ for some permutations θ and θ′. We
will prove that if the vertices of polygon P define the permutation π, then the
boundary of P crosses itself, hence P is not a permutomino.

So let us assume that P is a convex permutomino associated with π = θ⊖ θ′.
We start by observing that the β and the δ paths of P may not be empty. In
fact, if the β path is empty, then π(n) = n > π(1), against the hypothesis.
Similarly, if the δ path is empty, then π(1) = 1 < π(n). Essentially for the same
reason, both θ and θ′ must have more than one element.

F

’G θ’

G

F

θ

’

Figure 13: If π = θ⊖ θ′ then the path encoding the boundary of P crosses itself.

As we observed, the points of θ (resp. θ′) in the β path of P , are placed
strictly above the diagonal x + y = n + 1. Let F (resp. F ′) be the rightmost
(resp. leftmost) of these points. Similarly, there must be at least one point of θ
(resp. θ′) in the δ path of P , placed strictly below the diagonal x + y = n + 1.
Let G (resp. G′) be the rightmost (resp. leftmost) of these points. The situation
is schematically sketched in Figure 13.

Since F and F ′ are consecutive points in the β path of P , they must be
connected by means of a path that goes down and then right, and, similarly,
since G′ and G are two consecutive points in the δ path, they must be connected
by means of a path that goes up and then left. These two paths necessarily
cross in at least two points, and their intersections must be on the diagonal
x + y = n + 1.
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(⇐=) Clearly condition 2. implies that π(1) < n and π(n) > 1, which are

necessary conditions for π ∈ C̃n. We start building up a polygon P such that
π1(P ) = P , and then prove that P is a permutomino. As usual, let us consider
the points

A = (1, π(1)), B = (π−1(n), n), C = (n, π(n)), D = (π−1(1), 1).

The α path of P goes from A to B, and it is constructed connecting the points
of µ increasing sequence; more formally, if µ(il) and µ(il+1) are two consecutive
points of µ, with µ(il) < µ(il+1) ≤ n, we connect them by means of a path

1µ(il+1)−µ(il) 0il+1−il ,

(where 1 denotes the vertical, and 0 the horizontal unit step). Similarly we con-
struct the β path, from B to C, connecting the points of µ decreasing sequence,
the δ path from A to D, connecting the points of σ decreasing sequence, and
then the γ path from D to C, connecting the points of σ increasing sequence.
Since the subsequence σ is lower unimodal the obtained polygon is convex (see
Figure 14).

B

δ
γ

βα

B

A

D

C C

D

A

Figure 14: Given the permutation π = (3, 1, 6, 8, 2, 4, 7, 5) satisfying conditions
1. and 2., we construct the α, β, γ, and δ paths.

Now we must prove that the four paths we have defined may not cross them-
selves. First we show that the α path and the γ path may not cross. In fact,
if this happened, there would be a point (r, π(r)) in the path γ, and two points
(i, π(i)) and (j, π(j)) in the path α, such that i < r < j, and π(i) < π(r) > π(j)
(see Figure 15 (a)). In this case, according to the definition, π(r) should belong
to µ, and then (r, π(r)) should be in the path α, and not in γ.

Finally we prove that the paths β and δ may not cross. In fact, if they
crossed, their intersection should necessarily be on the diagonal x + y = n + 1;
if (r, s) is the intersection point having minimum abscissa, then the reader can
easily check, by considering the various possibilities, that the points (i, π(i)) of
π satisfy:

i ≤ r if and only if π(i) ≥ s
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α

γ

δ

β

(b)

(r,s)

i

j

r

(a)

θ

θ

’

Figure 15: (a) The α path and the γ path may not cross; (b) The β path and
the δ path may not cross.

(see Figure 15 (b)). Therefore, setting

θ = {(i, π(i) − s + 1) : i ≤ r}

we have that θ is a permutation of Sr, and letting

θ′ = { (i, π(i) : i > r }

we see that π = θ ⊖ θ′, against the hypothesis.

There is an interesting refinement of the previous general theorem, which
applies to a particular subset of the permutations of Sn.

Corollary 3.7. Let π ∈ Sn, such that π(1) < π(n). Then π ∈ C̃n if and only if σ
is lower unimodal.

3.3 The Relation between the Number of Permutations and the Number

Convex Permutominoes

The characterization given in Theorem 3.6 suggests a possible way to obtain the
enumeration of C̃n. However in this paper we will obtain it by means of a recur-
sive decomposition of this class, which relies on some interesting combinatorial
properties of its elements.

Let π ∈ C̃n, and µ and σ defined as above. Let F(π) (briefly F) denote the
set of fixed points of π lying in the increasing subsequence of the sequence µ and
which are different from 1 and n. We call the points in F the free fixed points
of π.

For instance, concerning the permutation π = (2, 1, 3, 4, 7, 6, 5) we have µ =
(2, 3, 4, 7, 6, 5), σ = (2, 1, 5), and F(π) = {3, 4}; here 6 is a fixed point of π but
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it is not on the increasing sequence of µ, then it is not free. By definition, the
number of free fixed points of a permutation of C̃n is a number between 0 (for
instance, see the permutation associated with the permutomino in Figure 11),
and n − 2 (as the identity (1, . . . , n)).

Theorem 3.8. Let π ∈ C̃n, and let F(π) be the set of free fixed points of π. Then
we have:

| [ π ] | = 2|F(π)|.

Proof. Since π ∈ C̃n there exists a permutomino P associated with π. If we look
at the permutation matrix defined by the reentrant points of P , we see that all
the free fixed points of π can only be of type α or γ, while the type of all the
other points of π is established. It is easy to check that in any way we set the
typology of these fixed points in α or γ we reach, starting from the matrix of P ,
a permutation matrix which defines a permutomino associated with π, and in
this way we obtain all the permutominoes associated with the permutation π.

Applying Theorem 3.8 we have that the number of convex permutominoes as-
sociated with π = (2, 1, 3, 4, 7, 6, 5) is 22 = 4, as shown in Figure 16. Moreover,
Theorem leads to an interesting property.

α
γ

γ
γ

α
α

γ

α

Figure 16: The four convex permutominoes associated with the permutation
π = (2, 1, 3, 4, 7, 6, 5). The two free fixed points are encircled.

Proposition 3.9. Let π ∈ C̃n, with π(1) > π(n). Then there is only one convex
permutomino associated with π, i.e. | [ π ] | = 1.

Proof. If π(1) > π(n) then all the points in the increasing part of µ are strictly
above the diagonal x = y, then π cannot have free fixed points. The thesis is
then straightforward.

Let us now introduce the sets C̃n,k of permutations having exactly k free fixed

points, with 0 ≤ k ≤ n− 2. The relations between the cardinalities C̃n,k of C̃n,k,
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C̃n of C̃n, and Cn of Cn are clear:

C̃n =
n−2∑

k=0

C̃n,k Cn =
n−2∑

k=0

2k C̃n,k. (7)

3.4 Some Auxiliary Classes of Convex Permutominoes

Our aim is to determine a decomposition of the permutations of C̃n,k in terms of
permutations of smaller dimensions. In order to present this decomposition, let
us introduce some combinatorial classes which will help us in our investigation:

1. Pn is the set of parallelogram permutominoes;

2. Dn is the set of directed convex permutominoes;

3. P̃n = {π1(P ) : P ∈ Pn} is the set of permutations associated with paral-
lelogram permutominoes;

4. D̃n = {π1(P ) : P ∈ Dn} is the set of permutations associated with directed
convex permutominoes.

(a) (b)

Figure 17: (a) A parallelogram permutomino associated with π =
(1, 3, 2, 4, 5, 6, 8, 7, 9); (b) a directed convex permutomino associated with π =
(1, 3, 2, 4, 8, 9, 7, 5, 6).

3.4.1 Parallelogram Permutominoes and Permutations

A parallelogram permutomino is simply a convex permutomino where the β and
the δ paths are empty, thus a permutation π associated with a parallelogram
permutomino has a simple characterization:
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Proposition 3.10. A permutation π belongs to P̃n if and only if π(1) = 1, π(n) =
n, and µ and σ are both increasing.

For instance, referring to the permutomino in Figure 17 (a) we have that
µ = (1, 3, 4, 5, 6, 8, 9), and σ = (1, 2, 7, 9). The first cases are:

P̃2 = {12};
P̃3 = {123};
P̃4 = {1234, 1324};
P̃5 = {12345, 12435, 13245, 13425, 13245};

The following remarkable property is a direct consequence of Proposition 3.10.

Proposition 3.11. If P is a parallelogram permutomino, then all the convex
permutominoes associated with π1(P ) are parallelogram ones.

We start by proving that the permutations associated with parallelogram
permutominoes are a well-known class of permutations, and they are enumerated
by the Catalan numbers. To do this we need recall some definitions.

Let n, m be two positive integers with m ≤ n, and let π = (π(1), . . . , π(n)) ∈
Sn and ν = (ν(1), . . . , ν(m)) ∈ Sm. We say that π contains the pattern ν if
there exist indices i1 < i2 < . . . < im such that (π(i1), π(i2), . . . , π(im)) is in the
same relative order as (ν(1), . . . , ν(m)). If π does not contain ν we say that π is
ν-avoiding [23]. For instance, if ν = (1, 2, 3) then π = (5, 2, 4, 3, 1, 6) contains ν,
while π = (6, 3, 2, 5, 4, 1) is ν-avoiding.

Let us denote by Sn(ν) the set of ν-avoiding permutations in Sn. It is known
that for each pattern ν ∈ S3 we have that |Sn(ν)| = cn, the nth Catalan num-
ber [23].

Theorem 3.12. A permutation π belongs to P̃n if and only if π(1) = 1, π(n) = n,
and π avoids the pattern ν = (3, 2, 1).

Proof. (=⇒) If π belongs to P̃n we have, from Proposition 3.10, that π(1) = 1,
π(n) = n and µ and σ are both increasing. In particular π trivially avoids the
pattern (3, 2, 1).

(⇐=) Since π(n) = n then, by definition, µ is increasing. Now suppose that
σ is not increasing, then there exists an index i and an index j > i, such that
π(i) > π(j) with π(i) and π(j) in σ. Since π(1) = 1 we have that i > 1 and so,
remember π(i) is not in µ, there exists an index k < i with π(k) > π(i). If we
take (π(k), π(i), π(j)) we have the pattern (3, 2, 1). So also σ must be increasing.
From Proposition 3.10 we have the thesis.
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As a neat consequence of this property we have that, for any n ≥ 2,

∣∣∣ P̃n

∣∣∣ = cn−2. (8)

Let us denote, as usual, by P̃n,k the set of permutations of P̃n having exactly k

free fixed points. We observe that in a permutation of P̃n the free fixed points
are all its fixed points except 1 and n. Clearly,

∣∣∣P̃n

∣∣∣ =

n−2∑

k=0

∣∣∣P̃n,k

∣∣∣ , (9)

while, from Theorem 3.8 and Proposition 3.11 we have that

|Pn| =

n−2∑

k=0

2k
∣∣∣P̃n,k

∣∣∣ . (10)

The first terms of the sequence are reported in the table below.

n/k 0 1 2 3 4 5 . . .
2 1
3 0 1
4 1 0 1
5 2 2 0 1
6 6 4 3 0 1
7 18 13 6 4 0 1
8 57 40 21 8 5 0 1
...

...
...

...
...

...
...

. . .

Obviously, the row sums give the Catalan numbers. In [13] the authors stud-
ied the distribution of fixed points in the permutations of Sn(321) and established
a bijection between the permutations of Sn(321) having k fixed points, and the
Dyck paths of length 2n having k hills. In this way they proved that the number
of permutations of Sn(321) having no fixed points is given by the Fine numbers
fn (sequence A000957 in [22], see [14])

1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, . . .

satisfying the relation

cn = 2fn + fn−1,

and having as generating function

F (x) =
2

1 + 2x +
√

1 − 4x
.
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As a neat consequence they proved that the generating function of the permuta-
tions of Sn(321) having k ≥ 1 fixed points is given by the (k+1)th convolution of
F (x), and precisely it is xk F k+1(x). Passing to parallelogram permutominoes,
and using Theorem 3.12, we have that

Proposition 3.13. The generating function of the class P̃n,0 is

P̃0(x) =
2x2

1 + 2x +
√

1 − 4x
,

while, for all k > 0, the generating function of the class P̃n,k is

P̃0(x)k+1

xk
= xk+2F k+1(x).

We would like to point out that the result stated in the previous proposition
can be reformulated into an interesting combinatorial property of the permu-
tations of P̃n,k, which will be successively generalized to the other classes of
permutations.

To do this we introduce the binary operation ⊘ of diagonal sum (very similar
to the well known direct sum). Given two permutations π ∈ Sn, and π′ ∈ Sn′ ,
such that π(n) = n and π′(1) = 1, π ⊘ π′ ∈ Sn+n′−1 is defined as

π ⊘ π′ = (π(1), . . . , π(n − 1), n, π′(2) + (n − 1), . . . , π′(n′) + (n − 1) ).

For instance, we have (2, 4, 1, 3, 5)⊘ (1, 3, 4, 2) = (2, 4, 1, 3, 5, 7, 8, 6).

(a) (b)

(1,3,2,4)

(1,3,2,4)

(1,2)

(1,2)

Figure 18: (a) A parallelogram permutomino associated with π =
(1, 3, 2, 4, 5, 6, 8, 7, 9); (b) the decomposition of π in the diagonal sum of the
permutations (1, 3, 2, 4)⊘ (1, 2) ⊘ (1, 2) ⊘ (1, 3, 2, 4).

Proposition 3.14. A permutation π ∈ P̃n,k, k > 0, if and only if π can be uniquely
decomposed into the diagonal sum of k + 1 permutations, π = η1 ⊘ . . . ⊘ ηk+1,

where ηj ∈ P̃nj,0, and n1 + . . . + nk+1 = n + k.
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Proposition 3.14 says that each permutation of P̃n having exactly k > 0 free
fixed points is obtained as the diagonal sum of k + 1 permutations associated
with parallelogram permutominoes, but having no free fixed points. For instance,
looking at Figure 18 we have that

π = (1, 3, 2, 4, 5, 6, 8, 7, 9) ∈ P̃9,4 = (1, 3, 2, 4)⊘ (1, 2) ⊘ (1, 2) ⊘ (1, 3, 2, 4).

Finally, in view of (10) and Proposition 3.13 we can re-obtain the generating
function of parallelogram permutominoes according to the size:

∑

n≥2

|Pn| xn =
∑

k≥0

2k xk+2 F k+1(x) =
P̃0(x)

1 − 2xF (x)
=

1 − x −
√

1 − 4x

2
. (11)

4. Directed Convex Permutominoes and Permutations

A directed convex permutomino is simply a convex permutomino where the δ
path is empty. Hence every permutation π associated with a directed convex
permutominoes is characterized by the following property:

Proposition 4.1. A permutation π belongs to D̃n if and only if π(1) = 1 and σ
is increasing.

For instance, referring to the directed convex permutomino in Figure 19 (a)
we have that µ = (1, 2, 4, 5, 6, 9, 8, 7), and σ = (1, 3, 7). The first cases are:

(a)

(1,4,3,2)

(1,3,2,4)

(1,2)

(1,2)

(b)

Figure 19: (a) A directed convex permutomino associated with π =
(1, 2, 4, 3, 5, 6, 9, 8, 7); (b) the decomposition of π in the diagonal sum of the
permutations (1, 2) ⊘ (1, 3, 2, 4)⊘ (1, 2) ⊘ (1, 4, 3, 2).
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D̃2 = {12};
D̃3 = {123, 132};
D̃4 = {1234, 1243, 1324, 1342, 1423, 1432}.

Analogously to Proposition 3.11 we can state that:

Proposition 4.2. If P is a directed convex permutomino, then all the convex
permutominoes associated with π1(P ) are directed convex ones.

Let us denote, as usual, by D̃n,k the set of permutations of D̃n having exactly
k free fixed points. We have,

∣∣∣D̃n

∣∣∣ =
n−2∑

k=0

∣∣∣D̃n,k

∣∣∣ , |Dn| =
n−2∑

k=0

2k
∣∣∣D̃n,k

∣∣∣ . (12)

The table below shows the cardinalities of D̃n,k for small values of n, k.

n/k 0 1 2 3 4 5 . . .
2 1
3 1 1
4 4 1 1
5 13 5 1 1
6 46 16 6 1 1
7 166 58 19 7 1 1
8 610 211 71 22 8 1 1
...

...
...

...
...

...
...

. . .

We would like to point out that similarly to Proposition 3.14, for any k > 0
the permutations of D̃n,k can be decomposed into k + 1 permutations having no
free fixed points.

Proposition 4.3. Let π ∈ Sn; we have that π ∈ D̃n,k, k > 0, if and only if
π can be uniquely decomposed into the diagonal sum of k + 1 permutations,
π = η1 ⊘ . . .⊘ ηk ⊘ ζ, where ηj ∈ P̃nj,0, ζ ∈ D̃r,0, and n1 + . . . + nk + r = n + k.

Proof. By definition a free fixed point is a fixed point lying in the increasing
part of µ. If i is a free fixed point of π, then for all j < i we have π(j) < i, since
otherwise i would not belong to µ. Then (π(1), . . . , π(i)) is a permutation of Si

with µ and σ both increasing, and π(1) = 1, π(i) = i, hence (π(1), . . . , π(i)) ∈ P̃i.

Moreover, if we consider the free fixed point j with maximal ordinate, then
(π(j) − j + 1, . . . , π(n) − j + 1) is a permutation of Sn−j+1 with µ unimodal, σ

increasing, and π(j) = j, hence (π(j) − j + 1, . . . , π(i) − j + 1) ∈ D̃n−j+1.
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In particular Proposition 4.3 states that each permutation of D̃n having ex-
actly k > 0 free fixed points is obtained as the diagonal sum of k permutations
associated with parallelogram permutominoes and one associated with directed
convex permutominoes, all having no fixed points. For instance, looking at Fig-
ure 18 we have that π = (1, 3, 2, 4, 5, 6, 8, 7, 9) ∈ P̃9,4 = (1, 3, 2, 4) ⊘ (1, 2) ⊘
(1, 2) ⊘ (1, 3, 2, 4). Passing to generating functions, and letting

D̃k(x) =
∑

n≥2

∣∣∣D̃n,k

∣∣∣ xn

by Proposition 4.3 we have that, with k > 0

D̃k(x) =
D̃0(x) P̃ k

0 (x)

xk
. (13)

Moreover, by (12) we have that the generating function D(x) of directed convex
permutominoes is equal to

D(x) =
∑

k≥0

2k D̃k(x) =
D̃0(x)

1 − 2 eP0(x)
x

. (14)

Since we know from [16] that

D(x) =
x

2

(
1√

1 − 4x
− 1

)
, (15)

from (14) and (15) we have the following

Proposition 4.4. The generating function of the class D̃n,0 is

D̃0(x) =
x2

(
3
√

1 − 4 x + 1 − 4 x
)

2 (x + 2) (1 − 4 x)
.

The function D̃0(x) defines the sequence A026641 in [22], whose first terms
are

1, 1, 4, 13, 46, 166, 610, 2269, 8518, 32206, 122464, . . .

Finally, the generating function D̃(x) of the permutations associated with
directed convex permutominoes is given by the sum

D̃(x) =
∑

k≥0

D̃k(x) =
x2

√
1 − 4x

,

which leads to the following remarkable result.

Proposition 4.5. For any n ≥ 0, we have
∣∣∣D̃n+2

∣∣∣ =
(
2n
n

)
.



The Combinatorics of Convex Permutominoes 907

As a generalization of Theorem 3.12, we can also state that the permutations
of D̃n are characterized by the avoidance of four patterns of length 4.

Theorem 4.6. A permutation π belongs to D̃n if and only if π(1) = 1, and
it avoids the patterns ν1 = (3, 2, 1, 4), ν2 = (3, 2, 4, 1), ν3 = (4, 2, 1, 3), ν4 =
(4, 2, 3, 1).

Proof. (⇒) One only has to check that if a permutation π begins with π(1) = 1
and contains one of the four patterns ν1, ν2, ν3, ν4 then its σ sequence cannot
be increasing.

(⇐) Let us assume by contradiction that π /∈ D̃n, i.e. that the sequence σ is not
increasing. Then there are two indices i1 and i2 such that 1 < i1 < i2 < n, and
such that σ(i1) > σ(i2). Moreover, there should be two indices j, k belonging to
µ, such that:

j < i1, and π(j) > σ(i1); in fact, without such an element, i1 would belong to
the increasing part of µ and not to σ;

k > i1, and π(k) > σ(i1); similarly, without such an element, i2 would belong
to the decreasing part of µ and not to σ;.

This leads to four possible configurations which are sketched in Figure 20,
and each of them defines one of the four patterns ν1, ν2, ν3, ν4.

5. The Cardinality of C̃n

In order to count C̃n we provide a further generalization of the statement of
Proposition 4.3.

Proposition 5.1. A permutation π ∈ C̃n,k, k > 0, if and only if π can be uniquely
decomposed into the diagonal sum of k+1 permutations, π = ζ1⊘η2⊘. . .⊘ηk⊘ζ2,
where:

1. ηj ∈ P̃nj ,0, 2 ≤ j ≤ k,

2. ζ2 ∈ D̃r,0, and

3. ζ1 = (ζ1(1), . . . , ζ1(s)) is simply the reflection of a permutation ζ′1 of D̃s,0

with respect to x+y = 0, precisely ζ′1 = (n+1− ζ1(1), . . . , n+1− ζ1(s) ) ∈ D̃s,0,

and r + s + n2 + . . . + nk = n + k.

Proof. It is analogous to that of Propositions 3.14 and 4.3.

For instance, looking at Figure 21 we have that the permutation π = (3, 1, 5,

2, 4, 6, 9, 7, 8, 10, 13, 12, 11) ∈ C̃13,2, and it can be decomposed as

(3, 1, 5, 2, 4, 6)⊘ (1, 4, 2, 3, 5)⊘ (1, 4, 3, 2).



908 Filippo Disanto, Andrea Frosini, Renzo Pinzani and Simone Rinaldi

j

2

i
2

i
1

i

µ

σ

(3,2,1,4)

σ

µ

i
i

2
1

k

i

σ

µ
k

j

(3,2,4,1)(4,2,1,3)

σ

µ

ii
2

1

k

j

(4,2,3,1)

j
k

1

Figure 20: The four forbidden patterns in the permutations of D̃n.

Looking at the figure, we easily observe that the permutation ζ = (3, 1, 5, 2, 4, 6)

is the reflection according to x + y = 0 of ζ′1 = (1, 3, 5, 2, 6, 4) ∈ D̃6,0.

To count the number of elements in C̃n we use essentially the same method
used for D̃n. Passing to generating functions, and letting

C̃k(x) =
∑

n≥2

∣∣∣C̃n,k

∣∣∣ xn ,

by Proposition 5.1 we have that, with k > 0

C̃k(x) =
D̃2

0(x) P̃ k−1
0 (x)

xk
. (16)

Moreover, by (7) we have that the generating function C(x) of convex per-
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(3,1,5,2,4,6)

(1,4,3,2)

(1,4,2,3,5)

Figure 21: (a) A convex permutomino associated with the permutation π =
(3, 1, 5, 2, 4, 6, 9, 7, 8, 10, 13, 12, 11); (b) the decomposition of π in the diagonal
sum of the permutations (3, 1, 5, 2, 4, 6)⊘ (1, 4, 2, 3, 5)⊘ (1, 4, 3, 2).

mutominoes is equal to

C(x) =
∑

k≥0

2k C̃k(x) = C̃0(x) +
∑

k≥1

2k C̃k(x)

= C̃0(x) +
2 D̃2

0(x)

x
(
1 − 2 eP0(x)

x

) . (17)

After some manipulations we obtain that the rightmost summand in (17), i.e.
the generating function of convex permutominoes having at least one free fixed
point is:

K̃(x) =
2 D̃2

0(x)

x
(
1 − 2 eP0(x)

x

) =
2 x P̃0(x)

1 − 4x
(18)

= 2x3 + 8x4 + 34x5 + 140x6 + 572x7 + 2324x8 + . . . ,

sequence not in [22]. These numbers K̃n then can be expressed in terms of the
convolution of Fine numbers fn with the sequence 4n,

K̃n+3 = 2

n∑

h=0

4h fn−h. (19)

Moreover from (4) and (19) we can also obtain the following result:

Proposition 5.2. The number of permutations of C̃n+1,0 is

2 (n + 3) 4n−2 − n

2

(
2n

n

)
− 2

n−2∑

h=0

4h fn−h−1.
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generating function 2 3 4 5 6 7 8 . . .

C(x) 1 4 18 84 394 1836 8468 . . .

C̃0(x) 1 2 10 50 254 1264 6144 . . .

∑
k≥1 2k C̃k(x) 2 8 34 140 572 2324 . . .

∑
k≥1 C̃k(x) 1 3 12 47 186 738 . . .

C̃(x) 1 3 13 62 301 1450 6881 . . .

Figure 22: The first terms of the sequences defined by the considered generating
functions, starting with n = 2.

Now we have set all the ingredients necessary to determine the cardinality of
C̃n. By Equation (7) we have that the generating function C̃(x) of the class C̃n

is given by

C̃(x) = C̃0(x) +
∑

k≥1

C̃k(x),

and using (16) and (17) we have that

C̃(x) = C(x) −




∑

k≥1

2k C̃k(x) −
∑

k≥1

C̃k(x)



 . (20)

Using the previous results and after some simplifications we get that

∑

k≥1

2k C̃k(x) −
∑

k≥1

C̃k(x) = x2

(
1

2 (1 − 4x)
− 1

2
√

1 − 4x

)
, (21)

and then the (n + 2)th term of the series is easily found to be

1

2

(
4n −

(
2n

n

) )
.

Eventually, starting from (20), and using the closed form for the number of
convex permutominoes in (4) and the above formula we have

Proposition 5.3. The number of permutations of C̃n+1 is

2 (n + 2) 4n−2 − n

4

(
3 − 4n

1 − 2n

) (
2n

n

)
, n ≥ 1. (22)
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6. Further Work

Here we outline the main open problems and research lines on the class of per-
mutominoes.

1. It would be natural to look for a combinatorial proof of the formula (4) for
the number of convex permutominoes and (22) for the number of permuta-
tions associated with convex permutominoes. These proofs could perhaps
be obtained using the matrix characterization for convex permutominoes
provided in Section .

2. We would like to consider the characterization and the enumeration of
the permutations associated with other classes of permutominoes, possibly
including the class of convex permutominoes. For instance, if we take
the class of column-convex permutominoes, we observe that Proposition
does not hold. In particular, one can see that, if the permutomino is

not convex, then the set of reentrant points does not form a permutation
matrix (Figure 23).

Figure 23: The four column-convex permutominoes associated with the permu-
tation (1, 6, 2, 5, 3, 4); only the leftmost permutomino is convex

Moreover, it might be interesting to determine an extension of Theorem 3.8
for the class of column-convex permutominoes, i.e. to characterize the set
of column-convex permutominoes associated with a given permutation. For
instance, we observe that while there is one convex permutomino associated
with π = (1, 6, 2, 5, 3, 4), there are four column-convex permutominoes
associated with π (Figure 23).
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[5] Bousquet-Mèlou, M.: Guttmann, A. J.: Enumeration of three dimensional convex
polygons, Ann. of Comb., 1, 27-53 (1997).

[6] Brak, R., Guttmann, A. J. and Enting, I. G.: Exact solution of the row-convex
polygon perimeter generating function, J. Phys., A 23, L2319-L2326 (1990).

[7] Brlek, S., Labelle, G. and Lacasse, A.: A note on a result of daurat and nivat,
Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3572, 189-198
(2005).

[8] Chang, S.J. and Lin, K.Y.: Rigorous results for the number of convex polygons
on the square and honeycomb lattices, J. Phys. A: Math. Gen., 21, 2635-2642
(1988).

[9] Conway, J.H. and Lagarias, J.C.: Tiling with polyominoes and combinatorial
group theory, J. Comb. Th. A, 53, 183-208 (1990).

[10] Daurat, A. and Nivat, M.: Salient and reentrant points of discrete sets, Disc.
Appl. Math., 151, 106-121 (2005).

[11] Delest, M. and Viennot, X.G.: Algebraic languages and polyominoes enumeration,
Theor. Comp. Sci., 34, 169-206 (1984).

[12] Del Lungo, A., Duchi, E., Frosini, A. and Rinaldi, S.: On the generation and
enumeration of some classes of convex polyominoes, El. J. Comb., 11, #R60
(2004).

[13] Deutsch, E. and Elizalde, S.: A simple and unusual bijection for Dyck paths and
its consequences, Ann. Comb., 7, 281-297 (2003).

[14] Deutsch, E. and Shapiro, L.: A survey of the Fine numbers, Disc. Math. 241,
241-265 (2001).

[15] Disanto, F., Frosini, A., Pinzani, R. and Rinaldi, S.: A closed formula for the
number of convex permutominoes, El. J. Combinatorics 14, #R57 (2007).

[16] Fanti, I., Frosini, A., Grazzini, E., Pinzani, R. and Rinaldi, S.: Polyominoes
determined by permutations, MathInfo 06 Fourth Colloquium on Mathematics
and Computer Science Algorithms, Trees, Combinatorics and Probabilities Nancy,
DMTCS proc. AG 381-390 (2006).

[17] Gardner, M.: Mathematical games, Scientific American, (1958) Sept. 182-192,
Nov. 136-142.

[18] Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems, and Packings, Prince-
ton Academic Press, 1996.

[19] Golomb, S. W.: Checker boards and polyominoes, Amer. Math. Monthly, 61,
675-682 (1954).

[20] Incitti, F.: Permutation diagrams, fixed points and Kazdhan-Lusztig R-
polynomials, Ann. Comb., 10, 369-387 (2006).

[21] Jensen, I., Guttmann, A.J.: Statistics of lattice animals (polyominoes) and poly-
gons, J. Phys. A, 33, 257-263 (2000).

[22] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/ ∼ njas/sequences/

[23] Stanley, R. P.: Enumerative Combinatorics, Vol. 2, Cambridge University Press,
Cambridge (1999).


