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Abstract. In this paper we study statistical convergence in 2-normed spaces. We show

that some properties of statistical convergence of real number sequences also hold

for sequences in 2-normed spaces. We also define the notion of a statistical Cauchy

sequence in 2-normed spaces. We obtain a criteria for a sequence in a 2-normed spaces

to be a statistical Cauchy sequence.
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1. Introduction and Background

The concept of statistical convergence was introduced by Steinhaus [12] in 1951
(see also [4]) and also independently by Buck [1] for real and complex sequences.
Statistical convergence has been discussed in number theory [3], trigonometric
series [13], and summability theory [5]. This notion of convergence has been
characterized using measure theory [10]. Also, Maddox [8] extended the concept
for sequences in any Hausdorff locally convex topological vector spaces. In the
case of real sequences, Fridy [6] obtained the statistical analogue of the Cauchy
criterion for convergence. In [9], these concepts were applied to Turnpike theory.

The concept of 2-normed spaces was initially introduced by Gähler in [7].
Since then, many researchers have studied this concept and obtained various
results, see for instance [2, 11].

We extend the work of Gähler to define statistical convergence in 2-normed
spaces. We also define a notion of statistical Cauchy sequence in 2-normed spaces
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and obtain a criteria for sequence in 2-normed spaces to be statistical Cauchy
sequence in 2-normed spaces.

Briefly, we recall some facts connecting with statistical convergence. Sta-
tistical convergence is a generalization of the usual notion of convergence that
parallels the usual theory of convergence. If K is subset of positive integers N,
then Kn denotes the set {k ∈ K : k ≤ n} . The natural density of K is given

by δ(K) = limn→∞
|Kn|

n
, where |Kn| denotes the number of elements in Kn,

provided this limit exists. Clearly, finite subsets have natural density zero and
δ(Kc) = 1 − δ(K) where Kc = N\K, i.e., the complement of K. If K1 ⊆ K2

and K1 and K2 have natural densities then δ(K1) ≤ δ(K2). Moreover, if
δ(K1) = δ(K2) = 1, then δ(K1 ∩ K2) = 1 (see [5]).

A real numbers sequence x = {xn} is statistically convergent to L provided
that for every ε > 0 the set {n ∈ N : |xn − L| ≥ ε} has natural density zero;
in this case we write st − limn xn = L. The sequence x = {xn} is statistically
Cauchy sequence if for each ε > 0 there is positive integer N = N (ε) such that
δ
({

n ∈ N :
∣

∣xn − xN(ε)

∣

∣ ≥ ε
})

= 0 (see [6]).

If x = {xn} is a sequence that satisfies some property P for all n except a
set of natural density zero, then we say that {xn} satisfies P for “almost all n”
and we abbreviate “a.a. n”.

The following theorem will help us in establishing our results.

Theorem 1.1. [6] The following statements are equivalent:

(i) x is statistically convergent sequence;

(ii) x is statistically Cauchy sequence;

(iii) x is sequence for which there is a convergent sequence y such that xn = yn

for a.a. n.

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on
X is a function ‖., .‖ : X × X → R which satisfies

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;

(ii) ‖x, y‖ = ‖y, x‖ ;

(iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R;

(iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ .

The pair (X, ‖., .‖) is then called a 2-normed space [7].

As an example of a 2-normed space we may take X = R2 being equipped
with the 2-norm ‖x, y‖ := the area of the parallelogram spanned by the vectors
x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Let (X, ‖., .‖) be a finite dimensional 2-normed space and u = {u1, ..., ud} be
a basis of X. We can define the norm ‖.‖∞on X by

‖x‖∞ := max {‖x, ui‖ : i = 1, ..., d} .
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Associated to the derived norm ‖.‖∞ , we can define the (closed) balls Bu(x, ε)
centered at x having radius ε by

Bu (x, ε) := {y : ‖x − y‖∞ ≤ ε} ,

where ‖x − y‖∞ := max {‖x − y, uj‖ , j = 1, ..., d.} .

Now, we introduce the notion of statistical convergence in 2-normed spaces
and give the main results of the paper.

2. Statistical Convergence of 2-Normed Spaces

Definition 2.1. Let {xn} be a sequence in 2-normed space (X, ‖., .‖) . The se-

quence {xn} is said to be statistically convergent to L, if for every ε > 0, the

set

{n ∈ N : ‖xn − L, z‖ ≥ ε}

has natural density zero for each nonzero z in X, in other words {xn} statistically

converges to L in 2-normed space (X, ‖., .‖) if

lim
n→∞

1

n
|{n : ‖xn − L, z‖ ≥ ε}| = 0

for each nonzero z in X. It means that for every z ∈ X,

‖xn − L, z‖ < ε a.a. n.

In this case we write st − limn→∞ ‖xn, z‖ := ‖L, z‖ .

Remark 2.2. If {xn} is any sequence in X and L is any element of X, then the
set

{n ∈ N : ‖xn − L, z‖ ≥ ε, for every z ∈ X} = ∅,

since if z =
−→
0 (0 vector) , ‖xn − L, z‖ = 0 � ε so the above set is empty.

If the sequence in 2-normed space (X, ‖., .‖) is convergent then it is also
statistically convergent since the natural density of any finite set is zero. The
converse of this claim does not hold in general, which can be seen by the following
examples.

Example 2.3. Let X = R2 be equipped with the 2-norm by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Define the {xn} in 2-normed space (X, ‖., .‖) by

xn =











(1, n) if n = k2, k ∈ N,
(

1,
n − 1

n

)

otherwise.
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and let L = (1, 1) and z = (z1, z2) . If z1 = 0 then

K = {n ∈ N : ‖xn − L, z‖ ≥ ε} = ∅

for each z in X. Hence δ (K) = 0. Therefore we have z1 6= 0. For each ε > 0 and

z ∈ X,
{

n ∈ N : n 6= k2, k ≤ |z1|
ε

}

is a finite set, so

{n ∈ N : ‖xn − L, z‖ ≥ ε} =

{

n ∈ N : n = k2, k ≥

√

ε

|z1|
+ 1

}

∪ {finite set} .

Therefore,

1

n
|{n ∈ N : ‖xn − L, z‖ ≥ ε}| =

1

n

∣

∣

∣

∣

{

n ∈ N : n = k2, k ≥

√

ε

|z1|
+ 1

}
∣

∣

∣

∣

∪
1

n
0 (1)

for each z in X. Hence, δ ({n ∈ N : ‖xn − L, z‖ ≥ ε}) = 0 for every ε > 0 and
z ∈ X, which means that st− limn→∞ ‖xn, z‖ = ‖L, z‖ . But, the sequence {xn}
is not convergent to L.

Example 2.4. Define the {xn} in 2-normed space (X, ‖., .‖) by

xn =

{

(0, n) if n = k2, k ∈ N,
(0, 0) otherwise.

and let L = (0, 0) and z = (z1, z2) . Then for every ε > 0 and z ∈ X

{n ∈ N : ‖xn − L, z‖ ≥ ε} ⊂
{

1, 4, 9, 16, ..., n2, ...
}

.

We have that δ ({n ∈ N : ‖xn − L, z‖ ≥ ε}) = 0, for every ε > 0 and z ∈ X.
This implies that st − limn→∞ ‖xn, z‖ = ‖L, z‖ . But, the sequence {xn} is not
convergent to L.

A sequence which converges statistically need not be bounded. This fact can
be seen from Example 2.3 and Example 2.4.

The uniqueness of the limit of a statistically convergent sequence can be
verified as follows.

Theorem 2.5. Let {xn} be a sequence in 2-normed space (X, ‖., .‖) and L, L′ ∈ X.
If st− limn→∞ ‖xn, z‖ = ‖L, z‖ and st− limn→∞ ‖xn, z‖ = ‖L′, z‖ , then L = L′.

Proof. Assume L 6= L′. Then L − L′ 6=
−→
0 , so there exists a z ∈ X, such that

L − L′ and z are linearly independent (such a z exists since d ≥ 2). Therefore

‖L − L′, z‖ = 2ε, with ε > 0.

Now

2ε = ‖(L − xn) + (xn − L′) , z‖

≤ ‖xn − L′, z‖ + ‖xn − L, z‖ .
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So {n : ‖xn − L′, z‖ < ε} ⊆ {n : ‖xn − L, z‖ ≥ ε} . But δ({n : ‖xn − L′, z‖ <
ε}) = 0 then contradicting the fact that xn → L′ (stat) .

The next theorem is an analogue of a result of Fridy [6].

Theorem 2.6. Let a sequences {xn} and {yn} in 2- normed space (X, ‖., .‖). If

{yn} is a convergent sequence such that xn = yn a.a. n then {xn} is statistically

convergent.

Proof. Suppose δ ({n ∈: N : xn 6= yn}) = 0 and limn→∞ ‖yn, z‖ = ‖L, z‖ . Then,
for every ε > 0 and z ∈ X

{n ∈ N : ‖xn − L, z‖ ≥ ε} ⊆ {n ∈ N : ‖yn − L, z‖ ≥ ε} ∪ {n ∈ N : xn 6= yn} .

Therefore

δ ({n ∈ N : ‖xn − L, z‖ ≥ ε})
≤ δ ({n ∈ N : ‖yn − L, z‖ ≥ ε}) + δ ({n ∈ N : xn 6= yn}) .

(1)

Since limn→∞ ‖yn, z‖ = ‖L, z‖ for every z ∈ X , the set
{n ∈ N : ‖yn − L, z‖ ≥ ε} contain finite number of integers. Hence,
δ ({n ∈ N : ‖yn − L, z‖ ≥ ε}) = 0. Using inequality (1), we get

δ ({n ∈ N : ‖xn − L, z‖ ≥ ε}) = 0

for every ε > 0 and z ∈ X. Consequently, st − limn→∞ ‖xn, z‖ = ‖L, z‖.

We next provide a proof of the fact that statistical limit operation for se-
quence in 2-normed space (X, ‖., .‖) is linear with respect to summation and
scalar multiplication.

Theorem 2.7. Let a sequences {xn} and {yn} in 2-normed space (X, ‖., .‖) and

L, L′ ∈ X and a ∈ R. If st−limn→∞ ‖xn, z‖ = ‖L, z‖ and st−limn→∞ ‖yn, z‖ =
‖L′, z‖ , for every nonzero z ∈ X, then

(i) st − limn→∞ ‖xn + yn, z‖ = ‖L + L′, z‖ , for each nonzero z ∈ X and

(ii) st − limn→∞ ‖axn, z‖ = ‖aL, z‖ , for each nonzero z ∈ X.

Proof. (i) Assume that st− limn→∞ ‖xn, z‖ = ‖L, z‖ and st− limn→∞ ‖yn, z‖ =
‖L′, z‖ for every nonzero z ∈ X. Then δ (K1) = 0 and δ (K2) = 0 where

K1 = K1 (ε) :=
{

n ∈ N : ‖xn − L, z‖ ≥
ε

2

}

and
K2 = K2 (ε) :=

{

n ∈ N : ‖yn − L′, z‖ ≥
ε

2

}

for every ε > 0 and z ∈ X. Let

K = K (ε) := {n ∈ N : ‖xn + yn − (L + L′) , z‖ ≥ ε} .
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To prove that δ (K) = 0, it suffices to show that K ⊂ K1∪K2. Suppose n0 ∈ K.
Then

‖xn0
+ yn0

− (L + L′) , z‖ ≥ ε. (2)

Suppose to the contrary, that n0 /∈ K1 ∪ K2. Then n0 /∈ K1 and n0 /∈ K2. If
n0 /∈ K1 and n0 /∈ K2 then ‖xn0

− L, z‖ < ε
2 and ‖yn0

− L′, z‖ < ε
2 . Then, we

get

‖xn0
+ yn0

− (L + L′) , z‖ ≤ ‖xn0
− L, z‖ + ‖yn0

− L′, z‖

<
ε

2
+

ε

2
= ε

which contradicts (2). Hence n0 ∈ K1 ∪ K2, that is, K ⊂ K1 ∪ K2.

(ii) Let st − limn→∞ ‖xn, z‖ = ‖L, z‖ , a ∈ R and a 6= 0. Then

δ

({

n ∈ N : ‖xn − L, z‖ ≥
ε

|a|

})

= 0.

Then, we have

{n ∈ N : ‖axn − aL, z‖ ≥ ε} = {n ∈ N : |a| ‖xn − L, z‖ ≥ ε}

=

{

n ∈ N : ‖xn − L, z‖ ≥
ε

|a|

}

.

Hence, the right hand side of above equality equals 0. Hence, st −
limn→∞ ‖axn, z‖ = ‖aL, z‖ for every nonzero z ∈ X.

We introduce the statistical analog of the Cauchy convergence criterion in
2-normed space (X, ‖., .‖) .

Definition 2.8. A sequence {xn} in 2-normed space (X, ‖., .‖) is said to be statis-

tically Cauchy sequence in X if for every ε > 0 and every nonzero z ∈ X there

exists a number N = N (ε, z) such that

δ
({

n ∈ N :
∥

∥xn − xN(ε,z), z
∥

∥ ≥ ε
})

= 0,

i.e., for every nonzero z ∈ X,

∥

∥xn − xN(ε,z), z
∥

∥ < ε a.a. n.

From Theorem 1 of Fridy [6] we have

Theorem 2.9. Let {xn}n≥1 be a statistically Cauchy sequence in a finite di-

mensional 2-normed space (X, ‖., .‖). Then, there exists a convergent sequence

{yn}n≥1 in (X, ‖., .‖) such that xn = yn for a.a. n.
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Proof. First note that {xn}n≥1 is a statistically Cauchy sequence in (X, ‖.‖∞) .

Choose a natural number N (1) such that the closed ball B1
u = Bu

(

xN(1), 1
)

contains xn for a.a. n. Then, choose a natural number N (2) such that the
closed ball B2 = Bu

(

xN(1),
1
2

)

contains xn for a.a. n. Note that, B2
u = B1

u ∩ B2

also contains xn for a.a. n. Thus by continuing of this process, we can obtain a
sequence {Bm

u }m≥1 of nested closed balls such that diam (Bm
u ) ≤ 1

2m . Therefore,
∩∞

m=1B
m
u = {A} . Since each Bm

u contains xn for a.a. n, we can choose a sequence
of strictly increasing natural numbers {Tm}m≥1 such that

1

n
|{n ∈ N : xn /∈ Bm

u }| <
1

m
, if n > Tm.

Put Wm = {n ∈ N : n > Tm, xn /∈ Bm
u } for all m ≥ 1, and W = ∪∞

m=1Wm. Now,
define the sequence {yn}n≥1 as following:

yn =

{

A if n ∈ W,
xn otherwise.

Note that, limn→∞ yn = A. In fact, for each ε > 0 choose a natural number m
such that ε > 1

m
> 0. Then for each n > Tm, or yn = A, or yn = xn ∈ Bm

u , and
so in each case, ‖yn − A‖∞ ≤ diam (Bm

u ) ≤ 1
2m−1 . Since {n ∈ N : yn 6= xn} ⊆

{n ∈ N : xn /∈ Bm
u } , we have

1

n
|{n ∈ N : yn 6= xn}| ≤

1

n
|{n ∈ N : xn /∈ Bm

u }| <
1

m
.

Hence, δ ({n ∈ N : yn 6= xn}) = 0. Thus in the space (X, ‖.‖∞) , xn = yn for a.a.
n. Suppose that {u1, ..., ud} is a basis for (X, ‖., .‖) . Since limn→∞ ‖yn − A‖∞ =
0 and ‖yn − A, ui‖ ≤ ‖yn − A‖∞ for all 1 ≤ i ≤ d, limn→∞ ‖yn − A, z‖∞ = 0 for
every z ∈ X. It completes the proof.

In order to prove the equivalence of Definitions 2.1 and 2.8 we shall find it
helpful to use Theorems 2.6 and 2.9.

Theorem 2.10. Let {xn} be a sequence in 2-normed space (X, ‖., .‖) . The se-

quence {xn} is statistically convergent if and only if {xn} is a statistically Cauchy

sequence.

Proof. Assume that st− lim ‖xn, z‖ = ‖L, z‖ for every nonzero z ∈ X and ε > 0.
Then, for every z ∈ X,

‖xn − L, z‖ <
ε

2
a.a. n,

and if N := N (ε, z) is chosen so that
∥

∥xN(ε,z) − L, z
∥

∥ < ε
2 , then, we have

∥

∥xn − xN(ε,z), z
∥

∥ ≤ ‖xn − L, z‖ +
∥

∥L − xN(ε,z), z
∥

∥

<
ε

2
+

ε

2
a.a. n

= ε a.a. n.
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Hence, {xn} is statistically Cauchy sequence.

Conversely, assume that {xn} is a statistically Cauchy sequence. By Theo-
rem 2.9, there exists a convergent sequence {yn} in (X, ‖., .‖) such that xn = yn

for a.a. n. By Theorem 2.6, we have st− lim ‖xn, z‖ = ‖L, z‖ for each z in X .

As an immediate consequence of Theorem 6 we have the following result.

Theorem 2.11. If {xn} is a sequence in 2-normed space (X, ‖., .‖) such that

st-lim ‖xn, z‖ = ‖L, z‖ for every nonzero z ∈ X, then {xn} has a subsequence

{xni
} such that limi→∞ ‖xni

, z‖ = ‖L, z‖ for every nonzero z ∈ X.
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