
Southeast Asian
Bulletin of
Mathematics
c© SEAMS. 2009

Southeast Asian Bulletin of Mathematics (2009) 33: 497–508

Estimates of Sample Paths of Dynamical Systems De-

scribed by Stochastic Differential Equations∗

Nguyen Huu Du
Faculty of Mathematics, Informatics and Mechanics, Vietnam National University, 334

Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

E-mail: nhdu2001@yahoo.com

Nguyen Van Sanh
Department of Mathematics, Faculty of Science, Mahidol University, Thailand

E-mail: frnvs@mahidol.ac.th

Received 6 April 2006

Accepted 13 July 2006

Communicated by Y.Q. Chen

AMS Mathematics Subject Classification (2000): 60H10, 34F05, 93E15

Abstract. In this article, we are concerned with sample trajectory estimates of solutions
of an Ito stochastic differential equation�

dXt = a(t, Xt) dt + σ(t, Xt) dWt

X0 ∈ Rd,

where (Wt) is a Brownian motion. By virtues of the law of iterated logarithm and non-

linear inequalities, some estimates of Gronwall-Bellman type for sample trajectories

are given.
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1. Introduction

There is current interest in dynamic systems especially after 60-year old conjec-
ture due to Faton who solved by Misiurewicz in 1981[13]. In 1997, W.S. Li and

∗This work was partially supported by the VNCR program, N0 NCCB 101406.
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F.Y. Ren [8] generalized the results of Mismirewicz, Devaney and Krych [2] by
proving that for some λ, µ the Julia set of f(z) = P (λez + µd−z) is the whole
plane.

In this paper, we consider the dynamic systems described by stochastic dif-
ferential equation.

Suppose that (Wt) is a d−dimension Brownian motion defined on a stochastic
basis (Ω,Ft, P ) (see [4]). Let us consider a dynamical system described by the
Ito stochastic differential equation

{
dXt = a(t,Xt) dt + σ(t,Xt) dWt

X0 ∈ Rd,
(1.1)

where, for any x ∈ Rd, (a(t, x))t≥0 and (σ(t, x))t≥0 are two stochastic progres-
sively measurable processes with value in Rd and d × d−matrices respectively.
We suppose that for every initial value x ∈ Rd, the equation (1.1) has (not nec-
essarily unique) a solution Xt satisfying X0 = x. As is known, there are some
works dealt with an estimate of pth− moments E|Xt|p or of the probability
P{Xt ∈ A} where A is a subset of Rn (see [4, 5] for example). The general way
to establish these estimates is to use the hypothesis of the linear growth rate of
coefficients and Gronwall - Bellman inequality to obtain a formula of the form

E|Xt|p ≤ c. exp{m.t} for any t ∈< α, β >, (1.2)

where α, β are fixed and c,m are suitable constants.
However, it is difficult to use this idea to estimate a sample trajectory of

System (1.1). The main reason is that all trajectories of the Brownian motion
(Wt) have unbounded variations. Moreover, without the hypothesis of linear
growth rate of coefficients, this method is no longer valid. As far as we know,
there is no work concerned with such a problem.

We now deal with a method that allows us to give such a type of estimates
for the sample trajectory without a uniqueness of solutions. The main idea here
is to use the law of iterated logarithm to treat the diffusion component and after
that we use Lukshmikantham type of inequalities to obtain

sup
0≤t≤T

|Xt| ≤ K(T ),

where K(t) is a certain function that will be given later.
The article is organized as follows: Section 2 concerns with some properties

of stochastic integral with respect to Brownian motions. In Section 3, we give
estimates of Gronwall - Bellman type for sample paths of solutions of System
(1.1)
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2. Some Properties of Stochastic Integral

First, we study some properties of Ito stochastic integral with respect to Brown-
ian motions.

Let (Ft)t≥0 be a continuous filtration (see [4]). Suppose that (Wt) is a Ft

standard Brownian motion and f(t, ω) is a stochastic process, Ft - progressively
measurable such that

P

{
ω :

∫ T

0

|f(t, ω)|2 dt < ∞
}

= 1 for any T > 0.

It is known that the stochastic integral
∫ T

0
f(t, ω) dWt is well - defined for any

T > 0. Set

m(t) =
∫ t

0

|f(s, ω)|2 ds, M(t) =
∫ t

0

f(s, ω) dWs. (2.1)

We define a sequence of stopping times τ(t); t > 0, given by

τ(t) =

{
inf{s : m(s) > t},
∞, if t ≥ m(∞) = lims↑∞m(s).

Then, from Theorem 7.2’, §7.2, in [5, pp. 92], it follows that on an extension

(
∼
Ω,

∼
F t,

∼
P ) of (Ω,F , P ), there exists an

∼
F t− Brownian motion µ(t) such that

µ(t) = M(τ(t)), t ∈ [0,m(∞)). Consequently, we can represent M(t) by an
∼
F t− Brownian motion µ(t) and the stopping times m(t), i.e.,

∫ t

0

f(s, ω) dWs = µ(m(t)).

On the other hand, since (µ(t)) is a Brownian motion, then by virtue of the law
of iterated logarithm, it follows that

lim sup
t→∞

|µ(t)|√
2t ln ln t

= 1, lim sup
t→0

|µ(t)|√
2t| ln | ln t|| = 1 a.s..

Therefore,

lim sup
t→∞

|µ(t)|√
2t ln t

= 0, lim sup
t→0

|µ(t)|√
2t| ln t| = 0 a.s..

Let c = (e− e−1)−1. It is easy to see that the parabola y = c(t− e−1)2 + e−1

is tangent to the curve y = t ln t at the point e. We define

h(t) =





−t ln t if 0 < t < e−1,

y = c(t− e−1)2 + e−1 if e−1 ≤ t ≤ e,

t ln t if t > e, .

(2.2)
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Let

θ := sup
t≥0

|µ(t)|
h(t)

,

then it is easy to see that P{θ < ∞} = 1. Hence,

|µ(t)| ≤ θ h(t) for any t ≥ 0 a.s.

or, equivalently,

∣∣∣∣
∫ t

0

f(s, ω) dWs

∣∣∣∣ ≤ θh
( ∫ t

0

|f(s, ω)|2 ds

)
. (2.3)

We study some further properties of θ.

Lemma 2.1. 1. The distribution of θ is independent of f .
2. For any s ∈ R we have E exp{s θ} < ∞.

Proof. 1. The fact that the distribution of θ is independent of f follows from
the definition of θ.
2. Denote by F (t) the distribution function of θ and G(x) = 1−F (x). We have

E exp{sθ} < ∞⇐⇒
∫ ∞

1

esxG(x) dx < ∞

(see [8], pp. 256). On the other hand

G(x) = P{θ ≥ x} = P
{ |µ(t)|

h(t)
≥ x for some 0 < t < ∞

}

= P
{
|µ(t)| ≥ h(t)x for some 0 < t < ∞

}
.

Since (µ(t)) is a Brownian motion then

P
{
|µ(t)| ≥ h(t)x for some 0 < t < ∞

}

= 2P
{

µ(t) ≥ h(t)x for some 0 < t < ∞
}

≤ 2
∫ ∞

0

xh(t)√
2πt3

e−
x2h2(t)

2t dt

for any x > 1 (see [9], pp. 34).
It is easy to see that there is a constant k such that:
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∫ ∞

0

h(t)√
2πt3

exp
{
−x2h2(t)

2t

}
dt =

1√
2π

[∫ e−1

0

√− ln t

t
exp

{
x2 ln t

2

}
dt

+
∫ e

e−1

c(t− e−1)2 + e−1

√
t3

exp
{
−x2(c(t− e−1)2 + e−1)

2t

}
dt

+
1√
2π

∫ ∞

e

√
ln t

t
exp

{
−x2 ln t

2

}
dt

]
≤ k exp

{
−x2

4

}

for any x > 1. Therefore, for any s ∈ R we have
∫ ∞

1

esxG(x) dx ≤
∫ ∞

1

esx

( ∫ ∞

0

xh(t)√
2πt3

e−
x2h2(t)

2t dt

)
dx

≤ k

∫ ∞

1

x esx exp
{
−x2

4

}
dx < m exp{s2}, (2.4)

where

m = k

∫ ∞

1

x exp
{
−

(x

2
− s

)2
}

.

This implies that E[esθ] < ∞ for any s ∈ R. The proof is completed.

Remark 2.2. Inequality (2.3) is still valid when (Wt) is a Brownian motion on
Rd

3. Estimates for Sample Paths

3.1 Estimation for Sample Paths with the Coefficients Having a Linear

Growth Rate

We now turn to the estimation problem of solutions of Equation (1.1). Suppose
that the coefficients a(t, x) and σ(t, x) are two stochastic processes, progressively
measurable with respect to (Ft) such that (1.1) has a solution. Furthermore,
there exists a continuous function k(t) defined on R+ such that

|a(t, x)| ≤ k(t).(1 + |x|) t ≥ 0, x ∈ Rd, (3.1)

|σ(t, x)| ≤ k(t).(1 + |x|) t ≥ 0, x ∈ Rd. (3.2)

Let (Xt) be a solution of Equation (1.1). Then, by using the Ito formula we
have

d|Xt|2 = 2X ′
t.a(t,Xt) dt + |σ(t,Xt)|2 dt + 2X ′

tσ(t,Xt) dWt,
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where X ′ denotes the transpose vector of X. Thus,

d ln(1 + |Xt|2) =
1

1 + |Xt|2
(

2X ′
ta(t,Xt)dt + |σ(t,Xt)|2

)
dt

− 2
(

X ′
tσ(t,Xt)
1 + X2

t

)2

dt + 2
X ′

tσ(t,Xt)
1 + X2

t

dWt.

Therefore,

ln(1 + |Xt|2)− ln(1 + |X0|2)

≤
∫ t

0

2X ′
sa(s,Xs) + |σ(s,Xs)|2

1 + |Xs|2 ds + 2
∫ t

0

X ′
sσ(s,Xs)
1 + X2

s

dWs.

From (2.3), it yields

ln(1 + |Xt|2)− ln(1 + |X0|2) ≤
∫ t

0

2X ′
sa(s,Xs) + |σ(s,Xs)|2

1 + |Xs|2 ds

+ 2θh
( ∫ t

0

(
X ′

sσ(s,Xs)
1 + X2

s

)2

ds

)
.

Taking into account Conditions (3.1) and (3.2), we get
∣∣∣∣
2X ′

sa(s,Xs) + |σ(s,Xs)|2
1 + |Xs|2

∣∣∣∣ ≤ 3(k(s) + k2(s));
X ′

sσ(s,Xs)
1 + X2

s

≤
√

2k(s).

Hence,

ln(1 + |Xt|2)− ln(1 + |X0|2) ≤ 3
∫ t

0

(
k(s) + k2(s)

)
ds + 4θh

( ∫ t

0

k2(s) ds

)
.

Thus, we have proved:

Theorem 3.1. Suppose that the coefficients of Equation (1.1) satisfy Conditions
(3.1) and (3.2), then any solution Xt of (1.1) can be estimated by the inequality

|Xt|2 ≤ (1 + X2
0 ) exp

{
3

∫ t

0

(
k(s) + k2(s)

)
ds + 4θh

( ∫ t

0

k2(s) ds

)}
.

Corollary 3.2. Suppose that E[|X0|2] < ∞ then

E|Xt| ≤ K. exp
{

3
2

∫ t

0

(
k(s) + k2(s)

)
ds + 8h2

( ∫ t

0

k2(s) ds

)}
.

Proof. The proof follows immediately from Theorem 3.1 and Inequality (2.4)
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3.2 Estimates of Sample Paths with the Coefficients Having Non-linear

Growth Rate

We study the case where solutions of (1.1) may not be defined on the whole
interval [0, ∞). For Equation (1.1), instead of (3.1) and (3.2) we assume that

|a(t, x)| ≤ kt(1 + |x|)α t ≥ 0, x ∈ Rd, (3.3)

|σ(t, x)| ≤ kt(1 + |x|)α t ≥ 0, x ∈ Rd, (3.4)

where k > 0; α > 0. If 0 < α ≤ 1 then (3.3) and (3.4) imply (3.1) and (3.2).
So, we consider only the case α > 1.

Let (Xt) be a solution of Equation (1.1). Then, we have

|Xt| ≤ |X0|+
∫ t

0

|a(s,Xs)| ds +
∣∣∣∣
∫ t

0

σ(s,Xs) dWs

∣∣∣∣.

From (2.3) it follows

|Xt| ≤ |X0|+
∫ t

0

|a(s,Xs)| ds + θh
( ∫ t

0

|σ(s,Xs)|2 ds

)
.

By virtue of (3.3) and (3.4) it yields

|Xt| ≤ |X0|+
∫ t

0

ks(1 + |Xs|)α ds + θh
( ∫ t

0

k2
s(1 + |Xs|)2α ds

)
.

Putting ut = 1 + |Xt| we get

ut ≤ u0 +
∫ t

0

ksu
α
s ds + θh

( ∫ t

0

k2
su2α

s ds

)

≤ u0 +
√

t

√∫ t

0

k2
su2α

s ds + θh
( ∫ t

0

k2
su2α

s ds

)
.

Since
√

v ≤ h(v) for any v > 0 then

ut ≤ u0 + (
√

t + θ)h
( ∫ t

0

k2
su2α

s ds

)
. (3.5)

We are going to use a nonlinear inequality due to V. Lakshmikantham [12,
Theorem 6.1, p. 111] which is formulated as follows

Lemma 3.3. Suppose that

a) H(t, v) is a continuous, increasing in v function defined on R+ × R+.

b) F (t, u) is a continuous, positive function defined on R+ × R+.
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c) The functions u(t) and b(t) are continuous on R+.

d) (ut) satisfies the inequality

ut ≤ b(t) + H
(
t,

∫ t

0

F (s, us) ds
)

t ≥ 0.

e) There exists a unique solution of the equation

φ̇ = F (t, b(t) + H(t, φ)), φ(0) = 0.

Then the following inequality holds

ut ≤ b(t) + H
(
t, φ(t)

)
t ≥ 0.

We apply this lemma to Inequality (3.5) by putting

H(t, v) = (
√

t + θ)h(v); F (t, u) = k2
t .u2α u > 0; v > 0,

then (3.5) leads to the inequality

ut ≤ u0 + H

(
t,

∫ t

0

F (s, us) ds

)

Suppose that φt be the solution of the equation

φ̇t = k2
t

[
u0 + (

√
t + θ)h

(
φt

)]2α
, φ0 = 0. (3.6)

Then, from Lemma 3.3 it follows that

ut ≤ u0 + (
√

t + θ).h(φt).

We estimate the solution φt of (3.6). It is obvious that

φ̇ ≤ 22α−1k2
t

[
u2α

0 + (
√

t + θ)2α · h2α(φt)
]
, φ0 = 0,

or

φt ≤ 22α−1

[
u2α

0 K(t) +
∫ t

0

k2
s(
√

s + θ)2αh2α(φs) ds

]
,

where K(t) =
∫ t

0
k2

s ds.
Set

δt = 22α−1K(t); ∆t = 22α−1k2
t (
√

t + θ)2α (3.7)

then

φt ≤ δtu
2α
0 +

∫ t

0

∆sh2α(φs) ds
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Set
G(u) =

∫ u

1

dx

h2α(x)
. (3.8)

It is easy to see that the limit limu→∞G(u) exists as a finite number γ > 0
and limu→0 G(u) = −∞. Moreover, G is strictly monotone. Therefore, the
inverse function G−1 is defined on (−∞, γ).

By applying estimate (6.3.1) in [12, p. 116] we obtain

φt ≤ G−1

{
G(δtu

2α
0 ) +

∫ t

0

∆s ds

}

for any t satisfying the following relation:

G(δtu
2α
0 ) +

∫ t

0

∆s ds < γ.

Summing up, we get

Theorem 3.4. Under Hypotheses (3.3) and (3.4), every solution of Equation
(1.1) has an estimate

|Xt| ≤ |X0|+ (
√

t + θ).h
(

G−1

{
G(δt(1 + |X0|)2α) +

∫ t

0

∆s ds

})
(3.9)

on the interval
{
t : G(δt(1 + |X0|)2α) +

∫ t

0
∆s ds < γ

}
where G is given by (3.8)

and δt are given by (3.7).

Next theorem is concerned with the stability of a stochastic differential equa-
tion by first approximations

Theorem 3.5. Consider the equation
{

dXt = (qtXt + a(t,Xt) dt + σ(t,Xt) dWt,

X0 ∈ Rd,
(3.10)

where lim supt→∞
1
t

∫ t

0
qsds < 0. Suppose that there exist constants k, α >

1, β > 1 such that

|a(t, x)| ≤ k|x|α |σ(t, x)| ≤ k|x|β t ≥ 0, x ∈ Rd,

If there is a δ > 0 such that every solution starting from x with |x| < δ is defined
on [0,∞) then the solution X = 0 is stable.

Proof. Putting Zt = exp{∫ t

0
qs ds} and Yt = Z−1

t Xt we have

dYt = Z−1
t a(t,Xt) dt + Z−1

t σ(t,Xt) dWt.
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From (2.3) it follows that

|Yt| ≤ |Y0|+
∫ t

0

Z−1
s |a(s,Xs)| ds + θh

( ∫ t

0

|Z−2
s σ2(s,Xs)| ds

)

≤ |Y0|+ k

∫ t

0

Z−1
s |Xs|α ds + θh

( ∫ t

0

k2Z−2
s |Xs)|2β ds

)

≤ |Y0|+ k

∫ t

0

Zα−1
s |Ys|α ds + θh

( ∫ t

0

k2Z2β−2
s |Ys)|2β ds

)
.

We suppose that α ≥ β (the case α < β can be done similarly). For any
ζ > 0, we put

τ = τ(X0, ω) = inf{t > 0 : |Xt| > ζ} = inf{t > 0 : |Yt| > Z−1
t ζ}

then for any 0 < t < τ

|Yt| ≤ |Y0|+ kζα−β

∫ t

0

Zβ−1
s |Ys|β ds + θh

( ∫ t

0

k2Z2β−2
s |Ys|2β ds

)
.

By a similar way as in the proof of Theorem 3.4 we get

|Yt| ≤ |Y0|+ (ζα−β
√

t + θ)h
( ∫ t

0

k2Z2β−2
s |Ys|2β ds

)
.

Hence, by definition G−1(x) = ∞ if x ≥ γ, we can show that

|Yt| ≤ |Y0|+ (ζα−β
√

t + θ)h
(

G−1

{
G(mt|Y0|2α) +

∫ t

0

∆s ds

})
,

where mt = 22β−1k2
∫ t

0
Z

2(β−1)
s ds and ∆t = 22α−1k2Z

2(β−1)
s (ζα−β

√
t + θ)2β .

Indeed, this inequality is obvious if G(mt|Y0|2α) +
∫ t

0
∆s ds ≥ γ. In the case

G(mt|Y0|2α) +
∫ t

0
∆s ds < γ this one follows from Lemma 3.3. Thus,

|Xt| ≤ exp

{∫ t

0

qs ds

}{
|X0|+(ζα−β

√
t+θ)h

(
G−1

(
G(mt|X0|2β)+

∫ t

0

∆s ds

))}
.

We see that sup0<t<∞mt := m < ∞; max{sup0<t<∞ Zt

√
t, sup0<t<∞ Zt}

:= M < ∞ and sup0<t<∞
∫ t

0
∆s ds := ∆(θ) < ∞ a.s. Hence,

|Xt| ≤ M |X0|+ M(ζα−β + θ)h
(

G−1

(
G(m|X0|2β) + ∆(θ)

))

for any 0 ≤ t ≤ τ.

On the other hand, by the definition of θ, its distribution is as same as the
distribution of the random variable η := sup0<t<∞ |Wt|/h(t), then for any X0
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P{sup
t
|Xt| > ζ} = P{τ < ∞} ≤ P{Xτ = ζ}

≤ P

{
ζ ≤ M |X0|+ M(ζα−β + η)h

(
G−1

(
G(m|X0|2β) + ∆(η)

))}

It is clear that limX0→0 h(G−1(G(m|X0|2β) + ∆(η))) = 0 a.s.Thus,

P{sup
t
|Xt| > ζ}

≤P

{
ζ ≤ M |X0|+ M(ζα−β + η)h

(
G−1

(
G(m|X0|2β) + ∆(η)

))}

tends to 0 as X0 → 0. This mean that the trivial solution X = 0 is stable.
Theorem is proved.

Applications. Consider the quasi-linear stochastic differential equation
{

dXt = (atXt + X3
t ) dt +

√
2X2

t dWt,

X0 ∈ R,
(3.11)

where lim supt→∞
1
t

∫ t

0
as ds = σ < 0. Let X0 > 0. By using the Ito’s formula

we have

d(lnXt) =
(

atXt + X3
t

Xt
− X4

t

X2
t

)
dt +

√
2X2

t

Xt
dWt

= at dt +
√

2Xt dWt

Hence, for X0 > 0 we have EXt < ∞. Similarly, EXt > −∞ for X0 < 0. This
means that the solution X(t,X0) exists on [0,∞) which implies that the solution
X = 0 of the equation (3.11) is stable by Theorem 3.5.

Acknowledgement. The authors are grateful to the referee for his valuable comments

and suggestions on this paper.

References

[1] L. Arnold, W. Klienman, Quantitative theory of stochastic systems, Probabilistic
Analysis and Related Topics 3 (1983) 1–19.

[2] R.L. Devaney, M. Krych, Dynamics of exp(z), Erg. Th. Dyn. Sys. 4 (1984) 35–52.

[3] B.F. Farrel, P.J. Ioannor, Perturbation growth and structure in uncertain flow, J.
of the Atmospheric Science 58 (2002) 141–156.

[4] I.I. Ghihman, A.V. Skorohod, Stochastic Differential Equations, Springer - Verlag,
1973.



508 H.D. Nguyen and V.S. Nguyen

[5] N. Ikeda, S. Wantanabe, Stochastic Differential Equations and Diffusion
Processes, North - Holland, Amsterdam, 1981.

[6] K. Ito, H.P. McKean, Diffusion Processes and their Sample Paths. Springer-Verlag
Berlin Heidelberg, 1974.

[7] R.S. Khaminskii, Stability of Systems of Differential Equations with Random Per-
turbations of Their Parameters, Nauka , Moscow, 1969. (in Russian).

[8] W.S. Li, F.Y. Ren, Domains of explosion of dynamic system generated by P (λdz+
µe−z), Southeast Asian Bull. Math. 21 (2) (1997) 193–201.

[9] R.S. Lipshter, Shyriaev, Statistics of Stochastic Processes, Nauka, Moscow, 1974.

[10] M. Loeve, Probability Theory, Moscow, 1962. (in Russian).

[11] X. Mao, S. Sabanis, E. Renshaw, Asymptotic behavior of the Stochastic Lotka-
Volterra Model, J. Math. Anal. App. 287 (2003) 141–156.

[12] M. Martyniuk, V. Lakshmikantham, S. Leela, The Stability of Motions, Kiev
Naykova Dumka, 1989. (in Russian).

[13] M. Misiurewicz, On iterates of exp(z), Erg. Th. Dyn. Sys. 1 (1981) 102–106.


