Southeast Asian Bulletin of Mathematics (2011) 35: 21-27 Southeast Asian

Bulletin of

Mathematics
© SEAMS. 2011

On Pseudo-P-Injectivity™

Samruam Baupradist

Department of Mathematics, Mahidol University, Bangkok, Thailand
E-mail: samruam_b@hotmail.com

Hoang Dinh Hai

International Education Center, Hong Duc University, Thanh Hoa, Vietnam
Email: haiedu93@yahoo.com

Nguyen Van Sanh

Department of Mathematics, Mahidol University, Center of Excellence in Mathematics,
Bangkok, Thailand

Email: frnvs@mahidol.ac.th

Received 11 March 2008
Accepted 13 May 2008

Communicated by K. P. Shum
AMS Mathematics Subject Classification (2000): 16D50, 16D70, 16D80

Abstract. For a given right R-module M, a right R-module N is called pseudo-M-p-
injective if every monomorphism from an M-cyclic submodule X of M to N can be
extended to a homomorphism from M to N. A right R-module M is said to be a
quasi-pseudo-p-injective module if it is pseudo-M-p-injective. We study the structure
of the endomorphism ring of a quasi-pseudo-p-injective module M which is a quasi-
projective Kasch module. In this case, we show that there is a bijection between the
class of all maximal submodules of M and the class of all left ideals of its endomorphism
rings. Especially, for a right self-pseudo-p-injective right Kasch ring, we get a bijection
between the class of all maximal right ideals and the class of all minimal left ideals.
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1. Introduction and Preliminaries

Throughout this paper, R is an associative ring with identity and Mod-R is
the category of unitary right R-modules. Let M be a right R-module, and
S = Endr(M), its endomorphism ring. A right R-module N is called M-
generated if there exists an epimorphism M) — N for some index set I. If T
is finite, then N is called finitely M-generated. In particular, N is called M-cyclic
if it is isomorphic to M/L for some submodule L of M. Hence, any M-cyclic
submodule X of M can be considered as the image of an endomorphism of M.
Following Wisbauer [19], o[M] denotes the full subcategory of Mod-R, whose
objects are the submodules of M-generated modules. A module M is called a
self-generator if it generates all of its submodules. M is called a subgenerator if
it is a generator of o[M].

Let M be a right R-module. A right R-module N is called M-p-injective if
every homomorphism from an M-cyclic submodule of M to N can be extended
to a homomorphism from M to N. For more details of M-p-injective modules,
we can refer to [11].

Pseudo-injective modules have been studied in [2, 6, 13-18]. Recently, Hai
Quang Dinh [4] introduced the notion of pseudo-M-injective modules (the orig-
inal terminology is M-pseudo-injective), following which a right R-module N is
called pseudo-M-injective if for every submodule A of M, any monomorphism
a: A — N can be extended to a homomorphism g : M — N. A right R-
module N is called quasi-pseudo-injective if N is pseudo-N-injective. In 1999,
Sanh et. al., introduced the notion of M-p-injective modules and studied the
endomorphism rings of quasi-p-injective modules (see [11]).

In this paper, we will investigate pseudo-M-p-injectivity, and endomorphism
rings of quasi-pseudo-p-injective modules. As an application, we can get some
results to all right self-pseudo-p-injective rings as corollaries when M = Rpg.

Definition 1.1. Let M be a right R-module and S = Endg(M). A right R-module
N is said to be pseudo-M -p-injective (resp. M -p-injective) if for any s € S, and
every monomorphism (resp. homomorphism) from s(M) to N can be extended
to a homomorphism from M to N.

A right R-module M is called a quasi-pseudo-p-injective if M is pseudo-
M -p-injective. A right R-module N is pseudo-p-injective if it is pseudo-Rg-
p-injective. A ring R is right self-pseudo-p-injective if Rg is quasi-pseudo-p-
injective as a right R-module.

Ezxample 1.2.
(1) Clearly, if N is pseudo-M-injective, then N is pseudo-M-p-injective. More-
over, if N is M-p-injective, then it is pseudo-M-p-injective too (see [3, 7]).
(2) The following example (see [8, Exercise(2), p. 361]) shows that pseudo-M-
p-injective modules need not to be pseudo-M-injective.

Let K be a field and let R = (K K

0 K) be the ring of all matrices of the
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form ( 0K

: ’C’) with a,b,c € K, M = (
following statements (see [3]):
(i) N is pseudo-M-p-injective,

(ii) N is not pseudo-M-injective.

) and N = ( ) . Then we have the

Proposition 1.3. Let M, N be right R-modules, S = Endr(M).
(1) If N is pseudo-M -p-injective, then N is pseudo-s(M)-p-injective for all
s € S. Especially, if B Ceg M, then N is pseudo-B-p-injective.
(2) If N is pseudo-M -p-injective, then every direct summand of N is pseudo-
M -p-injective.
(3) For any s € S, if s(M) is pseudo-M -p-injective, then s(M) is a direct
summand of M.

Proof. (1) Let s € S. Take any h € Endgr(s(M)) and any monomorphism ¢ :
h(s(M)) — N. We can see that h(s(M)) = k(M) for some endomorphism k
of M. Let ¢ty : hs(M) = h(s(M)) — s(M) and t3 : s(M) — M be inclusions.
Since N is pseudo-M-p-injective, there is a homomorphism « : M — N such
that alya) = ¢. We can see that @ = aup is an extension of ¢ from s(M) to N.
It follows that N is s(M)-pseudo-p-injective.

The last statement follows from the fact that any direct summand of M can
be considered as e(M) for some idempotent e of S.

(2) The proof is routine.

(3) The result follows from the fact that the inclusion map i : s(M) — M
splits. [ |

The following Corollary is straightforward.

Corollary 1.4. Let M be a quasi-pseudo-p-injective module which is quasi-
projective, and s € S = Endr(M). The following statements are equivalent:

(1) Im(s) is a direct summand of M;

(2) Im(s) is a pseudo-M -p-injective;

(3) Im(s) is M-projective.

2. Quasi-pseudo-p-injective Modules

Lemma 2.1. Let M be a right R-module. If M is a quasi-pseudo-p-injective and
Im(s) C M where s € S = Endr(M), then every monomorphism ¢ : s(M) —
M can be extended to a monomorphism in S.

Proof. Since M is quasi-pseudo-p-injective, there exists p : M — M such that
Ps = ps. It follows that Im(s) N Ker(®) = 0. From Im(s) C% M, we get
Ker(p) =0. [
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Recall that a right R-module M satisfies the condition Cjy if every submodule
of M isomorphic to a direct summand is again a direct summand.

Lemma 2.2.FEvery quasi-pseudo-p-injective module satisfies Cs.

Proof. The proof is routine by applying Proposition 1.3. ]

Following [9], a right R-module M is said to be direct projective if every
epimorphism f : M — X splits for any direct summand X of M. By Lemma 2.2
above, referring to 37.7 in [19] and considering the Theorem 2.7 in [11], we have
the following theorem:

Theorem 2.3. Let M be a direct projective module and S = Endgr(M). Then the
following conditions are equivalent:

(1) S is von Neumann reqular;
(2) Ewery M -cyclic submodule of M is M -p-injective;
(3) Every M-cyclic submodule of M is pseudo-M -p-injective.

Proof. By [11, Theorem 2.7], we get (1)<(2).

(2)=-(3) is obvious from the definitions.

(3)=(1) Let s € S. By assumption, s(M) is pseudo-M-p-injective and by
Proposition 1.3(3) we have s(M) C% M. Since M is direct projective, the epi-
morphism s : M — s(M) splits. It follows that Ker(s) 2 M. By Proposition
37.7 in [19], S is von Neumann regular. ]

Proposition 2.4. Let M be a quasi-pseudo-p-injective module. Then J(S) C
{s € S|Ker(s) # 0} where J(S) is the Jacobson radical of S. Moreover if M s
uniform, then S is a local ring and in this case J(S) = {s € S|Ker(s) # 0}.

Proof. Let s € J(5), the Jacobson radical of S. Suppose on the contrary that s
is a monomorphism. Then s(M) = M and hence s(M) is pseudo-M-p-injective.
It follows that s(M) is a direct summand of M and therefore s has a left inverse,
@ says. Then s = 157 or Ss = S, a contradiction. This shows that J(S) C {s €
S|Ker(s) # 0}. We now suppose that M is uniform. Then it is clear that every
monomorphism from M to M is an automorphism. Hence any non-invertible
element ¢ of S has Ker(p) # 0. Let ¢1 and @2 be non-invertible elements of S.
Then Ker(¢1) # 0 and Ker(ps) # 0. Since M is uniform, Ker(p1) N Ker(psz) #
0 and hence Ker(yp1 + ¢2) # 0, proving that ¢1 + 9 is not invertible. Thus S
is a local ring, as desired. ]

Theorem 2.5. Let My be a quasi-pseudo-p-injective module which is a Kasch
module. Consider the map

0:T — 1s(T)
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from the set of all mazximal submodules T of M to the set of all minimal left
ideals of S = Endg(M). Then we have:

(1) 0 is an injective map;
(2) If M is finitely generated, then 0 is a bijection if and only if lsrpy (K) = K
for all minimal left ideals K of S. In this case 01 is given by K + ry(K).

Proof. (1) Let T be a maximal submodule of M. Since M is a Kasch module,
M/T can be considered as a submodule of M, and hence M/T = s(M) for
some s € S = Endg(M). Take any 0 £ ¢ € lg(T). Then T C Ker(t) # M.
It follows that Ker(s) = T = Ker(t). By the homomorphism Theorem, there
is a monomorphism ¢ from s(M) to t(M) such that ps = ¢. Since t(M) and
s(M) are simple, the monomorphism ¢ must be isomorphic. Consider ¢ as a
monomorphism from s(M) to M. Then ¢ can be extended to a homomorphism
Y M — M, that is ¥s = ps and hence t = @s proving that ¢ € Ss. This
shows that Ig(T) C Ss. Moreover, we always have Ss C lg(Ker(s)) = ls(T).
This means that {g(T) = Ss. We now show that Ss is a minimal left ideal
of S. Take any 0 # v € Ss. We have v = gs for some g € S. It follows
that Ker(s) C Ker(v) # M and hence Ker(v) = Ker(s) by the maximality
of Ker(s). Then there is a monomorphism f : v(M) — s(M) which is also
an isomorphism satisfying fv = s. Consider f as a monomorphism from v(M)
to M. By the quasi-pseudo-p-injectivity of M, we can find h € S such that
hv = fv = s. This shows that Ss C Swv, proving that Ss = Sv or Ss is a
minimal left ideal of S.

(2) If 6 is surjective and K is a minimal left ideal of S, then we can write
K = 1g(T) where T is maximal in M. Then lgry (K) = K follows. Now, let
K C S be a minimal left ideal of S. Then K = Ss for some s € S. We now
show that )/ (K) is maximal in M. Note that ry(K) = Ker(s). Since M is
finitely generated, rps(K) is contained in a maximal submodule T" of M. Then
K =lgry(K) D ls(T) # 0 since M is a Kasch module. Therefore K = lg(T)
because K is simple. This leads to rp (K) = rals(T) D T. Therefore by the
maximality of T in M, we have rj;(K) = T, proving that 6 is surjective. [ ]

As an application, putting M = Rgr. We get the following result.

Theorem 2.6. If a ring R is right Kasch, right self-pseudo-p-injective ring, then
there is a bijection map between the class of all minimal left ideals of R and the
class of all mazimal right ideals of R.

We consider a right R-module as an S-R-bimodule, where S = Endgr(M) is
the endomorphism ring of M. The following proposition give a relation between
the socle of Mr and ¢M in a special case.

Proposition 2.7. Let M be a right R-module. If M is quasi-pseudo-p-injective
which is self-generator, then Soc(Mp) C Soc(sM).
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Proof. Suppose that xR is a simple submodule of M where z € M. Since M is
a self-generator, there exists an element s € S such that R = s(M), and hence
x = s(m) for some m € M. Take any 0 # u € Sz. Then u = @z for some ¢ € S.
So u = ps(m). Since M is quasi-pseudo-p-injective, every monomorphism from
ws(M) to M can be extended to an endomorphism of M.

Consider the following map:

xR =s(M) — ps(M) = pzR
xr — oz

Clearly, € is a non-zero homomorphism. Since gz R is simple and & # 0, we see
that ¢ is an isomorphism. Let 1) = 1£~! where ¢ : tR — M is the embedding.
Then 1 (pxr) = or for all » € R. Thus z = ¥(px) = 1u, where ¥ is an extending
of 1» on M. It shows that x € Su, that is Sz C Swu. It is clear that Su C Sz, and
hence Su = Sz, proving that Sz is a simple submodule of gM.

We now let « € Soc(Mpr) = > X;, where each X; is a simple submodule of
iel

M. Then z =x1 +z2 + ... + ©,,,0 # x; € X; and Sx C Sz1 + Szo + ... + Sz,.

Since X; = z;R is simple, Sx; is a simple submodule of gM. This shows that

x € Soc(sM), proving that Soc(Mpg) C Soc(sM). ]

As an application let M = Rg we get the following result:

Corollary 2.8. If R is a right self -pseudo-p-injective ring, then Soc(Rgr) C
Soc(sR).

Proposition 2.9. Let M be a quasi-pseudo-p-injective module and s,t € S =
Endr(M). If s(M) =2 t(M), then Ss = St.

Proof. Let f: s(M) — t(M) be an isomorphism. Embedding s(M) and t(M) to
M, f can be considered as a monomorphism from s(M) to M. By the property
of M, there exists a homomorphism ¢ € S such that |y = f. We now define
o: St = Ss by o(ut) = ups. Since Im(fs) C Im(t), the map o is well-defined
and we can check that o is an S-homomorphism.

We first show that o is an epimorphism. Let g : t(M) — s(M) be the
inverse of f. Embedding s(M) to M, we can consider g as a monomorphism
from t(M) to M. By using the property of M, we can find ¢y € S such that
Yleary = g. For any vs € Ss, we take u = v1), and by a routine calculation, we
get o(ut) = o(vit) = vs, proving that o is an epimorphism. We now suppose
uit, ust € St such that o(uit) = o(uot). By the definition, uips = usps. It
follows that Im(t) = Im(ps) C Ker(u; — uz) and then u;t = uot, showing that
o is a monomorphism. The proof of our proposition is now complete. |

Corollary 2.10. For a right self-pseudo-p-injective ring, if aR = bR then Ra =
Rb.
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