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Abstract. We introduce and investigate e-small and s-essential submodules, and prove

that Rade(M)= ∩{ N ⊴ M ∣ N is maximal in M }=
∑

{ N ⊆ M ∣ N ≪e M} and

Socs(M)=
∑

{N ≪ M ∣ N is minimal in M }=∩{ L ≤ M ∣ L⊴sM}. As an application,

we introduce the e-gH and s-wcH pairs of modules, and show that they are dual to

each other under Morita duality.
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1. Introduction

The notion of small submodules (also called superfluous submodules) plays an
important role in the theory of modules and rings (see [1, 6, 13]). Recently,
Zhou[13] generalizes the concept of small to that of �-small by considering the
class � of all singular right R-modules in place of right R-modules, and gives
various properties of �-small submodules, which are similar to those of small
submodules, and then uses this concept to generalize the notions of perfect,
semiperfect and semiregular rings to those of �-perfect, �-semiperfect and �-
semiregular rings. Recently, in [12] we define the dual concept of �-small sub-
modules, which is a generalization of essential submodules, and obtain some
interesting properties. It was stated and proved by Xu and Shum [9] some re-
sults about the equivalence between the module categories over two rings K and
R, where R does not necessary have a unity.

In this paper, we introduce the class of all essential submodules to generalize
small submodules and the class of all small submodules to generalize essential
submodules respectively. It is of interest to know how far the old theories ex-
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tend to the new situation. As will be shown later, they do to a very great
extent. In Section 2, we give various properties of e-small and s-essential sub-
modules, and characterize the generalized socle and radical of modules, that is,
Rade(M) = ∩{ N ⊴M ∣ N is maximal in M } =

∑
{ N ⊆ M ∣ N ≪e M} and

Socs(M) =
∑

{ N ≪ M ∣ N is minimal in M } = ∩{ L ≤ M ∣ L ⊴s M}. In
Section 3, we use the concepts of e-small and s-essential submodules to charac-
terize some properties of homomorphisms of modules. It is proved that e-small
homomorphisms and s-essential homomorphisms are dual to each other under
Morita duality. In Section 4, as applications, we introduce e-gH pairs and s-wcH
pairs of modules, which generalize the generalized Hopfian modules and weakly
co-Hopfian modules([3, 4, 8, 10]). We give some conditions under which if a
pair of modules satisfies one of e-gH or s-wcH then its dual satisfies the other.
In particular, if SUR defines a Morita duality, MR and NR are U -reflexive then
(M,N) is s-wcH (resp., e-gH) if and only if (N∗,M∗) is e-gH (resp., s-wcH).

Throughout this paper, R denotes an associative ring with identity and mod-
ules are unitary right R-modules. Let K ⊴ N denote that K is an essential
submodule of N , and K ≪ N denote that K is a small submodule of N . For
other definitions and notations in this paper we refer to [2].

2. E-small and s-essential submodules

In this section, as generalizations of small submodules and essential submodules,
s-essential submodules and e-small submodules are introduced, and their various
properties are given.

Definition 2.1. Let N be a submodule of a module M .

(1) N is said to be e-small in M (denoted by N ≪e M), if N + L = M with
L⊴M implies L = M ;

(2) N is said to be s-essential in M (denoted by N ⊴s M), if N ∩ L = 0 with
L ≪ M implies L = 0.

Obviously, every small (�-small) submodule of M is e-small in M , and every
essential submodule of M is s-essential in M . The converses are false.

Example 2.2. Assume that R = ℤ, M = ℤ6, N = { 0, 3 } and K = { 0, 2, 4 }.
Then

(1) N is e-small in M . But M/K is singular and N +K = M . So N is not
�-small in M .

(2) K is s-essential in M . However, K ∩ N = 0, hence K is not essential in
M .

It is proved in [13, Lemma 1.2] that N ≪� M if and only if M = X ⊕ Y for
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a projective semisimple submodule Y with Y ⊆ N whenever X +N = M . We
generalize this as follows.

Proposition 2.3. Let N be a submodule of a module M . The following are
equivalent.

(1) N ≪e M ;

(2) if X+N = M , then X is a direct summand of M with M/X a semisimple
module.

Proof. (1) ⇒ (2). Let Y be a complement of X in M , then X ⊕ Y ⊴M . Since
X + Y + N = M and N ≪e M , it follows that X ⊕ Y = M . To see that
M/X ∼= Y is semisimple, let A be a submodule of Y . Then X + A + N = M .
Arguing as above with X + A replacing X , we have that X + A = X ⊕ A is a
direct summand of M , implying that A is a direct summand of Y , so M/X is
semisimple.

(2) ⇒ (1). Let K ⊴M and K +N = M , then K is a direct summand of M ,
so K = M . We have N ≪e M .

In particular, if M is a projective module, then every e-small submodule N
of M is just a �−small submodule of M by Proposition 2.3 and [13, Lemma 1.2].

The next proposition, which will be used frequently, explains how close the
notion of s-essential submodules is to that of essential submodules.

Proposition 2.4. Let 0 ∕= K ≤ M be a module. Then K ⊴s M if and only if
for each 0 ∕= x ∈ M , if Rx ≪ M , then there is an element r ∈ R such that
0 ∕= rx ∈ K.

Proof. (⇒) Let K be a submodule of M and K ⊴s M . For each 0 ∕= x ∈ M , if
Rx ≪ M , then Rx ∕= 0 and K ∩ Rx ∕= 0. Thus there is an element r ∈ R such
that 0 ∕= rx ∈ K.

(⇐) Suppose L is a small submodule ofM and 0 ∕= x ∈ L. We have Rx ≪ M ,
hence there exists an element r ∈ R such that 0 ∕= rx ∈ K∩L. That is, K⊴sM .

Proposition 2.5. Let M be a module.

(1) Assume that N,K,L are submodules of M with K ⊆ N .

(a) If N ≪e M , then K ≪e M and N/K ≪e M/K.

(b) N + L ≪e M if and only if N ≪e M and L ≪e M .

(2) If K ≪e M and f : M → N is a homomorphism, then f(K) ≪e N . In
particular, if K ≪e M ⊆ N , then K ≪e N .

(3) Assume that K1 ⊆ M1 ⊆ M , K2 ⊆ M2 ⊆ M and M = M1 ⊕ M2, then
K1 ⊕K2 ≪e M1 ⊕M2 if and only if K1 ≪e M1 and K2 ≪e M2.
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Proof.

(1) (a) Suppose that L⊴M and L+K = M , thenN+L = M , thus L = M for
N ≪e M , so K ≪e M . If L ≤ M with L/K ⊴M/K and L/K +N/K = M/K,
then N + L = M and L ⊴ M . Hence L = M and L/K = M/K. Therefore
N/K ≪e M/K. (b) The necessity follows immediately from (a). Conversely,
suppose K ⊴M with N +L+K = M , then L+K = M since L+K ⊴M and
N ≪e M . Whence K = M for K ⊴M and L ≪e M .

(2) Suppose that A⊴N and A+f(K) = N . Then f←(A)⊴M , and f←(A)+
K = M . Since K ≪e M , we have f←(A) = M . Thus f(K) ⊆ A and A = N .
So f(K) ≪e N .

(3) Immediate from (1) and (2).

It is proved in [13, Lemma 1.3] that if K ≪� M and N/K ≪� M/K, then
N ≪� M . The following example shows that the converse of Proposition 2.5 (a)
is false.

Example 2.6. Assume that R = ℤ, M = ℤ24 K = 6ℤ24 and N = 3ℤ24. Then
K ≪ M and N/K ≪e M/K. But N is not e-small in M .

Dually, we have the following conclusions on s-essential submodules.

Proposition 2.7.Let M be a module.

(1) Assume that N,K,L are submodules of M with K ⊆ N .
(a) If K ⊴s M , then K ⊴s N and N ⊴s M .
(b) N ∩ L⊴s M if and only if N ⊴s M and L⊴s M .

(2) If K ⊴s N and f : M → N is a homomorphism, then f←(K)⊴s M .
(3) Assume that K1 ⊆ M1 ⊆ M , K2 ⊆ M2 ⊆ M and M = M1 ⊕ M2, then

K1 ⊕K2 ⊴s M1 ⊕M2 if and only if K1 ⊴s M1 and K2 ⊴s M2.

The converse of Proposition 2.7 (1)(a) is not true.

Example 2.8. Let R = ℤ, M = ℤ36, N = 6ℤ36 and K = 18ℤ36. Then K ⊴s N ,
N ⊴s M . But K is not s-essential in M .

The socle and radical of a module are important in the study of modules and
rings. In [13], the radical of a module M is generalized as follows

�(M) = ∩{ K ≤ M ∣ M/K is singular and simple}.

Furthermore, we have

Definition 2.9. Let M be a module. Define

Rade(M) = ∩{ N ⊴M ∣ N is maximal in M },

and
Socs(M) =

∑
{ N ≪ M ∣ N is minimal in M }.
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Obviously,

Socs(M) ⊆ Rad(M) ⊆ �(M) ⊆ Rade(M)

and

Socs(M) ⊆ Soc(M) ⊆ Rade(M).

In the following we use e-small submodules and s-essential submodules to char-
acterize Rade(M) and Socs(M).

Theorem 2.10. Let M be a module. Then

(1) Rade(M) =
∑

{ N ⊆ M ∣ N ≪e M}.

(2) Socs(M) = ∩{ L ≤ M ∣ L⊴s M}.

Proof. (1). Let U=
∑

{ N ⊆ M ∣ N ≪e M}. Suppose that L ≪e M and
K ⊴M is maximal in M , hence L ≤ K. Otherwise, we have K + L = M . But
L ≪e M , hence K = M , a contradiction. It follows that U ⊆ Rade(M).

On the other hand, for x ∈ Rade(M) suppose that Rx is not e-small in M .
Set

Γ = { B ∣ B ∕= M, B ⊴ M and Rx+B = M}.

Clearly, Γ is a non-empty subposet of the lattice of submodules of M . By the
Maximal Principle, Γ has a maximal element, say B0. Now we claim that B0 is
maximal in M . Otherwise, there is a submodule C ofM such that B0 ⫋ C ⫋ M ,
thus

Rx+ C ⊇ Rx+B0 = M

and C ⊴ M , hence C ∈ Γ, which contradicts the maximality of B0. So B0 is
maximal in M and B0 ⊴ M . Thus x ∈ Rade(M) ⊆ B0 and Rx ⊆ B0. Since
Rx + B0 = M , it follows that B0 = M , a contradiction. So Rx ≪e M , hence
Rade(M) ⊆ U . Therefore

Rade(M) =
∑

{ N ⊆ M ∣ N ≪e M}.

(2). Let S=∩ { L ≤ M ∣ L ⊴s M}. Suppose that L ⊴s M and K ≪ M is
minimal inM , then K ≤ L. Otherwise, K∩L = 0, henceK = 0, a contradiction.
So Socs(M) ⊆ S. Note that S ⊆ Soc(M), thus Socs(M) and S are semisimple
modules. If S " Socs(M), there is a simple module T such that T ≤ S and T is
not small in M . Let K be a proper submodule such that K + T = M .

(a) If K ∩ T ∕= 0, then T ⊆ K, hence K = M , a contradiction.

(b) If K ∩ T = 0, then M = K ⊕ T . For each H ≤ M , if H ≪ M and
K∩H = 0, then H+K is a proper submodule of M and H ∼= (H +K)/K
is a submodule ofM/K, whereM/K ∼= T is a simple module. ThusH = 0.
Then K ⊴s M , that is, T ⊆ S ⊆ K, a contradiction.
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Thus T ≪ M , a contradiction. Therefore S = Socs(M).

Corollary 2.11. Let M and N be modules.

(1) If f : M → N is an R−homomorphism, then f(Rade(M)) ⊆ Rade(N). In
particular, Rade(M) is a fully invariant submodule of M .

(2) If every proper essential submodule of M is contained in a maximal sub-
module of M , then Rade(M) is the unique largest e-small submodule of
M .

Proof.

(1) By Proposition 2.5 and Proposition 2.10.

(2) For each essential submodule K of M , if K ∕= M , there is a maximal
submodule L of M such that K ⊆ L, then L⊴M . By the definition of Rade(M),
Rade(M) ⊆ L. So Rade(M) +K ⊆ L ⫋ M . Thus Rade(M) ≪e M .

Dually, we have

Corollary 2.12. Let M and N be modules. Then

(1) If f : M → N is an R−homomorphism, then f(Socs(M)) ⊆ Socs(N).
Therefore, Socs(M) is a fully invariant submodules of M .

(2) If M = ⊕n
i=1

Mi, then Socs(M) =⊕n
i=1

Socs(Mi).
(3) If every non-zero small submodule of M contains a minimal submodule of

M , then Socs(M) is the unique least s-essential submodule of M .

Example 2.13. Let R = ℤ, M = ℤ24 and N ≤ M . All submodules of M have
the following properties.

N ≤ M small e-small essential s-essential
ℤ24 ✕ ✕ ✓ ✓

2ℤ24 ✕ ✓ ✓ ✓
3ℤ24 ✕ ✕ ✕ ✓

4ℤ24 ✕ ✓ ✓ ✓

6ℤ24 ✓ ✓ ✕ ✓
8ℤ24 ✕ ✓ ✕ ✕

12ℤ24 ✓ ✓ ✕ ✓
0 ✓ ✓ ✕ ✕

According to the above chart, we have

(1) Rad(M) = 6ℤ24, Rade(M) = 2ℤ24, Soc(M) = 4ℤ24 and Socs(M) =
12ℤ24.
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(2) Socs(M) ⫋ Rad(M) ⫋ Rade(M) and Socs(M) ⫋ Soc(M) ⫋ Rade(M).

3. E-small and s-essential homomorphisms

In this section, we use the concepts of e-small and s-essential submodules to
characterize some properties of homomorphisms.

Definition 3.1. Let M and N be modules.

(1) An epimorphism g : M → N is e-small in case Kerg ≪e M .
(2) A monomorphism f : M → N is s-essential in case Imf ⊴s M .

In the following, we give a useful characterization of e-small homomorphisms
and s-essential homomorphisms.

Proposition 3.2. Let M and N be modules.

(1) An epimorphism g : M → N is e-small if and only if for each essential
monomorphism ℎ, if gℎ is epic, then ℎ is epic.

(2) A monomorphism f : M → N is s-essential if and only if for each small
epimorphism ℎ, if ℎf is monic, then ℎ is monic.

Proof.

(1) Let g : M → N be an epimorphism and K = Kerg. Then there is a
unique isomorphism v : M/K → N , such that v� = g where � : M → M/K.
Thus it follows that for each homomorphism ℎ, v�ℎ = gℎ is epic if and only if
�ℎ is epic.

(⇒) If g is e-small, then K ≪e M . Since �ℎ is epic, we have Imℎ+K = M .
Note that ℎ is an essential monomorphism, hence Imℎ⊴M , thus Imℎ = M . So
ℎ is epic.

(⇐) Let L be an essential submodule of M . Let iL : L → M be the inclusion.
Then iL is essential. If K + L = M , then �iL is epic. By hypothesis, iL is epic,
that is, L = M . So K ≪e M , hence g is e-small.

(2) Dual to (1).

Proposition 3.3. Suppose that the following diagram of modules and homomor-
phisms

0 // A

�

��

f
// B

�

��

g
// C




��

// 0

0 // A′
f ′

// B′
g′

// C′ // 0

is commutative and has exact rows.
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(1) If � is epic and g is e-small, then g′ is e-small.
(2) If 
 is monic and f ′ is s-essential, then f is s-essential.

Proof.

(1) Assume that g is e-small, then Kerg ≪e B and �(Kerg) ≪e B′. It
suffices to show Kerg′ ≤ �(Kerg). Let b′ ∈ Kerg′. Since the bottom row is
exact, there is an element a ∈ A with �(a) = b′. Since the diagram commutes
and the top row is exact, b′ = f ′�(a) = �f(a) and gf(a) = 0. Thus there is a
f(a) ∈ Kerg such that �(f(a)) = b′. So b′ ∈ �(Kerg), hence Kerg′ ≪e B

′.

(2) Dual to (1).

Corollary 3.4. Consider the following diagram

A

�2

��

�1
// B

�2

��

C
�1

// D

(1) Assume that the diagram is a pullback of �1 and �2. If �1 is a s-essential
monomorphism, so is �1.

(2) Assume that the diagram is a pushout of �1 and �2. If �1 is an e-small
epimorphism, so is �1.

Proof.

(1) Assume that the diagram is a pullback of �1 and �2 with �1 a s-essential
monomorphism. Then we have a full commutative diagram with exact rows by
[7, Proposition 5.1].

0 // A

�2

��

�1
// B

�2

��

�1
// L // 0

0 // C
�1

// D
�2

// L // 0

By Proposition 3.3, �1 is a s-essential monomorphism.

(2) Dual to (1).

Let R and S be two rings, if F : Mod−R → Mod−S define a Morita equiva-
lence, by Proposition 3.2 we note that f : M → N is e-small (resp., s-essential)
if and only if F (f) : F (M) → F (N) is e-small (resp., s-essential).

For two rings R and S, a bimodule SUR is said to define a Morita duality,
if SUR is a faithfully balanced bimodule such that SU and UR are injective
cogenerators. A presentation of Morita duality can be found in [2, §23, §24] and
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[11]. If M is a right R-module (left S-module), we let M∗ = SHomR(M,U) (=
HomS(M,U)R), andM is said to be U -reflexive if the evaluation homomorphism
eM : M → M∗∗ is an isomorphism. According to [2], let RR[U ] and SR[U ]
denote the class of all U -reflexive right R-modules and that of all U -reflexive left
S-modules, respectively.

Theorem 3.5. Assume that SUR defines a Morita duality and f : M → N . If
M,N are U -reflexive, then

(1) f is an e-small epimorphism if and only if f∗ : N∗ → M∗ is a s-essential
monomorphism.

(2) f is a s-essential monomorphism if and only if f∗ : N∗ → M∗ is an e-small
epimorphism.

Proof. (1). Let f : M → N be an e-small epimorphism, then f∗ : N∗ → M∗ is
monic by [2, Corollary 24.2]. We claim that f∗ is a s-essential monomorphism.

Suppose that ℎ : M∗ → H is such that ℎf∗ is a monomorphism and ℎ is
a small epimorphism, then (ℎf∗)∗ = f∗∗ℎ∗ is an epimorphism and ℎ∗ is an
essential monomorphism. Since MR and NR are U -reflexive, the evaluation
homomorphisms �M : M → M∗∗ and �N : N → N∗∗ are isomorphisms, that is,
the following diagram commutes:

M
f

//

�M

��

N

�N

��

M∗∗
f∗∗

// N∗∗

Since f is an e-small epimorphism, f∗∗ is an e-small epimorphism. By Proposi-
tion 3.2, ℎ∗ is epic. By [2, Corollary 24.2] ℎ is monic. Therefore f∗ is a s-essential
monomorphism by Proposition 3.2.

Conversely, let f∗ : N∗ → M∗ be a s-essential monomorphism. By [2, Corol-
lary 24.2], f : M → N is an epimorphism. We shall prove that f is e-small.

Suppose that ℎ : H → M is an essential monomorphism such that fℎ is
epimorphic, then (fℎ)∗ = ℎ∗f∗ is monic and ℎ∗ is a small epimorphism. By
Proposition 3.2, ℎ∗ is monomorphism. By [2, Corollary 24.2], ℎ is an epimor-
phism. So f is an e-small epimorphism by Proposition 3.2.

Dually, (2) can be proved.

4. On generalizations of Hopfian modules

According to [3, 4], a module M is generalized Hopfian (gH for short) if every
surjective R-endomorphism f of M has a small kernel in M . Dually, a module
M is weakly co-Hopfian (abbreviated wcH) if every injective endomorphism of
M is essential. These notions have been extensively studied in [3, 4, 8, 10]. We
generalize these notions as follows.
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Definition 4.1. Let M and N be modules.

(1) a pair (M,N) is called an e-gH pair of modules, if every epimorphism from
M to N is e-small.

(2) a pair (M,N) is called a s-wcH pair of modules, if every monomorphism
from M to N is s-essential.

Clearly, (M,M) is an e-gH pair for each gH module M , and (N,N) is a s-wcH
pair for each wcH module N .

Let R and S be two fixed rings and SUR a left S right R bimodule. For
M ∈ Mod-R and N ∈ S-Mod, the U -duals HomR(M,U) and HomS(N,U) are
denoted by M∗ and N∗ respectively. In this section we give some conditions
under which if a pair of modules satisfies one of e-gH or s-wcH then its dual
satisfies the other.

Proposition 4.2. Assume that M,N ∈ Mod-R and for each proper essential
submodule L of M there exists 0 ∕= g ∈ M∗ such that Sg ≪ M∗ and g(L) = 0.
If (N∗,M∗) is s-wcH, then (M,N) is e-gH.

Proof. Let ' : M → N be an epimorphism, then '∗ : N∗ → M∗ is a monomor-
phism, where '∗(f) = f' for each f ∈ N∗. Suppose that ker' + L = M and
L ⊴M , then '(L) = '(M) = N . Since (N∗,M∗) is s-wcH, Im'∗ ⊴s M

∗. For
each 0 ∕= g ∈ M∗ with Sg ≪ M∗, by Proposition 2.4 there is an element s ∈ S
such that 0 ∕= sg ∈ Im'∗, that is, there is a homomorphism f ∈ N∗ such that
0 ∕= sg = '∗(f) = f'. Thus

sg(L) = f'(L) = f'(M) ∕= 0,

hence for every 0 ∕= g ∈ M∗ with Sg ≪ M∗, we have that g(L) ∕= 0. By
hypothesis, L = M . Therefore (M,N) is e-gH.

Corollary 4.3. Assume that SUR defines a Morita duality, M ∈ RR[U ], N ∈
Mod-R. If (N∗,M∗) is s-wcH, then (M,N) is e-gH.

Proof. Let L be a proper essential submodule of M . Since UR is a cogenerator,
there is a map f : M/L → U with 0 ∕= f� ∈ M∗, where � : M → M/L is the
canonical map. Thus f�(L) = 0. Since L⊴M , it follows that �∗((M/L)∗) ≪ M∗

by [2, Ex24.5]. Note that Sf� = S�∗(f) ⊆ �∗((M/L)∗), thus Sf� ≪ M∗.
Therefore (M,N) is e-gH by Proposition 4.2.

In the following, we give the converse of above propositions.

Proposition 4.4. Assume that SUR defines a Morita duality, M ∈ Mod-R and
N ∈ RR[U ]. If (N∗,M∗) is an e-gH pair of left S-modules, then (M,N) is a
s-wcH pair of right R-modules.



Small-Essential Submodules and Morita Duality 1061

Proof. Suppose that ' : M → N is a monomorphism, ℎ : N → H is a small
epimorphism and ℎ' is monic. Since UR is injective, '∗ : N∗ → M∗ is an
epimorphism, where '∗(f) = f' for each f ∈ N∗. By [2, Ex24.5] ℎ∗ : H∗ → N∗

is an essential monomorphism and '∗ℎ∗ is epic. Since (N∗,M∗) is an e-gH pair, it
follows that '∗ is e-small. Thus by Proposition 3.2 ℎ∗ is an epimorphism, hence
an isomorphism. Since UR is an injective cogenerator, ℎ is an isomorphism,
whence ' is s-essential by Proposition 3.2. So (M,N) is a s-wcH pair.

Theorem 4.5. Assume that SUR defines a Morita duality, MR and NR are U -
reflexive. Then

(1) (M,N) is s-wcH if and only if (N∗,M∗) is e-gH.

(2) (M,N) is e-gH if and only if (N∗,M∗) is s-wcH.

Proof. Since SUR define a Morita duality, it follows that SUR is a faithfully
balanced bimodules, UR and SU are injective cogenerators.

(1) Let (M,N) be s-wcH. Since M ∼= M∗∗ and N ∼= N∗∗, we have
that (M∗∗, N∗∗) is s-wcH. By Corollary 4.3, (N∗,M∗) is e-gH. Conversely, let
(N∗,M∗) be e-gH. By Proposition 4.4, (M,N) is s-wcH.

(2) Let (M,N) be e-gH. Since M ∼= M∗∗ and N ∼= N∗∗, it follows that
(M∗∗, N∗∗) is e-gH. By (1), (N∗,M∗) is s-wcH. Conversely, let (N∗,M∗) be
s-wcH. By Corollary 4.3, (M,N) is e-gH.
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