Southeast Asian Bulletin of Mathematics (2013) 37: 401-404

Southeast Asian Bulletin of Mathematics © SEAMS. 2013

On Serial Artinian Modules and Their Endomorphism Rings

Supunnee Sanpinij^{*} Department of Mathematics, Mahidol University, Bangkok 10400, Thailand Email: s_sanpinij@yahoo.com

Nguyen Van Sanh[†] Department of Mathematics, Mahidol University, Center of Excellence in Mathematics, Bangkok, Thailand Email: nguyen.san@mahidol.ac.th

Received 27 July 2008 Accepted 20 June 2010

Communicated by K.P. Shum

AMS Mathematics Subject Classification(2000): 16D50, 16D70, 16D80

Abstract. It was shown that for an Artinian serial right *R*-module *M*, if *M* is quasi-pinjective and a progenerator in $\sigma[M]$, then the Endomorphism ring $S = End(M_R)$ is serial Artinian (two-sided). As a corollary, every right serial right Artinian ring which is right self-p-injective is left serial left Artinian.

Keywords: Serial module; Indecomposable module; Quasi-injective module; Quasi-projective module; Artinian module.

1. Introduction and Preliminaries

Throughout this paper, R is an associative ring with identity and Mod-R is the category of unitary right R-modules. The notations M_R or M will usually be a unitary right R-module and $S = End_R(M)$, its endomorphism ring. A right R-module M is called *uniserial* if the lattice of its submodules is linearly ordered

^{*}Partially supported by the Development and Promotion of Science and Technology Talents Project (DPST).

 $^{^\}dagger \rm Corresponding$ author, partially supported by Center of Exellence in Mathematics, The Commission on Higher Education, Thailand, Grant no RG-53-13-1.

by inclusion, i.e., if A and B are submodules of M, either $A \subset B$ or $B \subset A$. A ring R is *right uniserial* if it is uniserial as a right R-module. Note that left and right uniserial rings are in particular local rings.

A right *R*-module *M* is called a *serial module* if it is a direct sum of uniserial modules. Note that submodules and factor modules of serial modules need not to be serial. A ring *R* is *right serial* if it is serial as a right *R*-module. So a ring *R* is right serial if there are orthogonal idempotents e_1, \ldots, e_n of *R* such that $R = e_1 R \oplus \cdots \oplus e_n R$ and each $e_i R$ is uniserial as a right *R*-module. We say *R* is *serial* if *R* is left and right serial.

A right *R*-module *N* is called *M*-generated if there exists an epimorphism $M^{(I)} \longrightarrow N$ for some index set *I*. If *I* is finite, then *N* is called finitely *M*-generated. Factor modules of *M* are called *M*-cyclic. We denote $\sigma[M]$, the full subcategory of Mod-*R*, whose objects are submodules of *M*-generated modules. *M* is a subgenerator if it generates all $N \in \sigma[M]$, and a self-generator if it generates all its submodules.

Following [10], for a given right R-module M, a right R-module N is called M-p-injective if every homomorphism from an M-cyclic submodule of M to N can be extended to one from M to N. M is called quasi-p-injective if it is M-p-injective. A ring R is right self-p-injective if R_R is quasi-p-injective as a right R-module. For more details of finite injectivity, we can refer to [6, 10].

2. Results

First we need some Lemmas.

Lemma 2.1. [12, Theorem 31.11] Let M be an Artinian right R-module which is finitely generated and quasi-projective. Then the endomorphism ring S = $End(M_R)$ is right Artinian.

Lemma 2.2. [12, Theorem 55.2] Let M be a finitely generated, quasi-projective module. If M is serial, then $S = \text{End}(M_R)$ is right serial.

Lemma 2.3. Let M be a serial right R-module. If M is finitely generated and quasi-p-injective, then the endomorphism ring $S = \text{End}(M_R)$ is left serial. In particular, a right serial, right self-p-injective ring is left serial.

Proof. Since M is finitely generated and serial, we can write $M = \bigoplus_{i=1}^{n} U_i$ where each U_i is uniserial. Since every R-homomorphism f from U_i to M can be considered as an element of S and $\operatorname{End}(M_R) = \operatorname{End}(\bigoplus_{i=1}^{n} U_i) \simeq \bigoplus_{j=1}^{n} \operatorname{Hom}(U_j, M)$, it is enough to show that $\operatorname{Hom}(U_j, M)$ is uniserial as a left ideal of S.

Take any $f, g \in \text{Hom}(U_j, M)$. Since M_j is uniserial, we can suppose that $\text{Ker}(g) \subset \text{Ker}(f)$. Considering $g: U_j \to g(U_j)$ as an epimorphism, we can find $\varphi: g(U_j) \to M$ such that $\varphi g = f$. Since M is quasi-p-injective and $g(U_j)$ is an M-cyclic submodule of M, there is an R-homomorphism $\psi \in \text{End}(M_R)$ such

On Serial Artinian Modules and Their Endomorphism Rings

that $\psi_{|_{g(U_j)}} = \varphi$. It means that for any $x \in U_j, \psi(g(x)) = \varphi(g(x)) = f(x)$. Hence $f = \psi g \in Sg$, proving that $Sf \subset Sg$ and therefore $\operatorname{Hom}(U_j, M)$ is uniserial.

Theorem 2.4. Let M be an Artinian right R-module which is quasi-p-injective and a projective subgenerator with $S = End(M_R)$. Then the following conditions are equivalent:

- (1) M is serial;
- (2) S is Artinian and serial;
- (3) Every indecomposable module in $\sigma[M]$ is quasi-injective;
- (4) Every indecomposable module in $\sigma[M]$ is quasi-projective;
- (5) Every indecomposable quasi-injective module in $\sigma[M]$ is quasi-projective;
- (6) Every indecomposable quasi-projective module in $\sigma[M]$ is quasi-injective.

Proof. Since M is a projective generator in $\sigma[M]$, we can see that the category $\sigma[M]$ is equivalent to the category Mod-S of right S-modules, by [12, Theorem 46.2].

 $(1) \Rightarrow (2)$. Since *M* is serial, finitely generated and quasi-projective, the endomorphism ring $S = \text{End}(M_R)$ is right serial by Lemma 2.2 and left serial by Lemma 2.3.

Using Lemma 2.1, we see that S is right Artinian. We now show that S is left Artinian. Since S is left serial, $S = \bigoplus_{i=1}^{k} S_i$ with each S_i is a uniserial left ideal. Therefore every finitely generated left ideal I which is contained in S_i is cyclic and hence I is isomorphic to $\operatorname{Hom}(M/\operatorname{Ker} I, M)$ since $\operatorname{Ker} I = \operatorname{Ker}(f)$ for some $f \in S$ and M is quasi-p-injective. Now let $I_1 \subset I_2 \subset I_3 \subset \ldots \subset I_n \subset \ldots$ be an ascending chain of finitely generated left ideals contained in S_i . Then $\operatorname{Ker} I_1 \supset \operatorname{Ker} I_2 \supset \ldots \supset \operatorname{Ker} I_n \supset \ldots$ is a descending chain of submodules of M. This chain is stationary since M is Artinian. Therefore there is an integer n_0 such that $\operatorname{Ker} I_n = \operatorname{Ker} I_{n+k}$ for all $n \geq n_0$. This would imply that $I_n = I_{n+k}$ for any $n \geq n_0$ and hence S_i is a Noetherian left ideal of S. Thus S is left Noetherian. Since S is right Artinian and left Noetherian, it follows that S is left Artinian. Hence S is serial and Artinian, proving $(1) \Rightarrow (2)$.

 $(2) \Rightarrow (1)$. Applying [5, Theorem 5.4], we see that every indecomposable left (right) S-module is uniserial. Using the equivalence between $\sigma[M]$ and Mod-S, we can see that every indecomposable module in $\sigma[M]$ is uniserial. Since $M = \bigoplus_{i=1}^{n} M_i$, with each M_i is indecomposable, we infer that M is a serial right R-module.

(2) \Leftrightarrow (3). Using [5, Theorem 5.3], the condition (2) is equivalent to the fact that every indecomposable right *S*-module is quasi-injective. Since $\sigma[M]$ is equivalent to Mod-*S*, we infer that every indecomposable module in $\sigma[M]$ is quasi-injective and vice versa.

 $(2) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$. By a similar argument as that of $(2) \Leftrightarrow (3)$.

Corollary 2.5. For a right Artinian right self-p-injective, the following conditions are equivalent:

S. Sanpinij and N.V. Sanh

- (1) R is right serial;
- (2) R is Artinian and serial;
- (3) Every indecomposable right R-module is quasi-projective;
- (4) Every indecomposable right R-module is quasi-injective;
- (5) Every indecomposable quasi-injective right R-module is quasi-projective;
- (6) Every indecomposable quasi-projective right R-module is quasi-injective.

Corollary 2.6. Let R be a right Artinian right serial ring. If R is right self-pinjective, then R is left Artinian and left serial.

By applying the Theorem 2.5 we can prove the following:

Theorem 2.7. Let M be an Artinian right R-module which is quasi-p-injective and a projective generator in $\sigma[M]$. Then the following conditions are equivalent:

- (1) M is serial;
- (2) Every indecomposable module in $\sigma[M]$ is both quasi-projective and quasiinjective;
- (3) Every indecomposable module in $\sigma[M]$ is uniserial.

References

- F.W. Anderson, K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [2] J. Clark, Ch. Lomp, Na. Vanaja, R. Wisbauer, Lifting Modules Supplementes and Projectivity in Module Theory, Basel, Boston, Berlin, 2006.
- [3] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, 1996.
- [4] C. Faith, Algebra: Rings, Modules and Categories II, Springer, 1973.
- K.R. Fuller, On indecomposable injectives over Artinian rings, *Pacific J. Math.* 29 (1) (1969) 115–135.
- [6] P. Jampachon, J. Ittharat, N.V. Sanh, On finite injectivity, Southeast Asian Bull. Math. 24 (4) (2000) 559–564.
- [7] K.F. Kasch, Modules and Rings, London Mathematical Society monograph, Academic Press, London, New York, Paris, 1982.
- [8] S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules, London Mathematical Society, Cambridge University Press, Cambridge, New York, 1990.
- B.L. Osofsky, Rings all of whose finitely generated modules are injective, *Pacific. J. Math.* 14 (1982) 646–650.
- [10] N.V. Sanh, K.P. Shum, S. Dhompongsa, S. Wongwai, On quasi-principally injective modules, Algebra Colloq. 6 (3) (1999) 269–276.
- [11] B. Stenström, *Rings of Quotients*, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [12] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Tokyo, 1991.

404