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Abstract. It was shown that for an Artinian serial right R-module M, if M is quasi-p-
injective and a progenerator in �[M ], then the Endomorphism ring S = End(MR) is
serial Artinian (two-sided). As a corollary, every right serial right Artinian ring which
is right self-p-injective is left serial left Artinian.

Keywords: Serial module; Indecomposable module; Quasi-injective module; Quasi-

projective module; Artinian module.

1. Introduction and Preliminaries

Throughout this paper, R is an associative ring with identity and Mod-R is the
category of unitary right R-modules. The notations MR or M will usually be a
unitary right R-module and S = EndR(M), its endomorphism ring. A right R-
module M is called uniserial if the lattice of its submodules is linearly ordered
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by inclusion, i.e., if A and B are submodules of M, either A ⊂ B or B ⊂ A. A
ring R is right uniserial if it is uniserial as a right R-module. Note that left and
right uniserial rings are in particular local rings.

A right R-module M is called a serial module if it is a direct sum of uniserial
modules. Note that submodules and factor modules of serial modules need not
to be serial. A ring R is right serial if it is serial as a right R-module. So a ring
R is right serial if there are orthogonal idempotents e1, . . . , en of R such that
R = e1R ⊕ ⋅ ⋅ ⋅ ⊕ enR and each eiR is uniserial as a right R-module. We say R
is serial if R is left and right serial.

A right R-module N is called M -generated if there exists an epimorphism
M (I) −→ N for some index set I. If I is finite, then N is called finitely M -

generated. Factor modules of M are called M - cyclic. We denote �[M ], the full
subcategory of Mod-R, whose objects are submodules of M -generated modules.
M is a subgenerator if it generates all N ∈ �[M ], and a self-generator if it
generates all its submodules.

Following [10], for a given right R-module M, a right R-module N is called
M -p-injective if every homomorphism from an M -cyclic submodule of M to N
can be extended to one from M to N. M is called quasi-p-injective if it is M -
p-injective. A ring R is right self-p-injective if RR is quasi-p-injective as a right
R-module. For more details of finite injectivity, we can refer to [6, 10].

2. Results

First we need some Lemmas.

Lemma 2.1. [12, Theorem 31.11] Let M be an Artinian right R-module which

is finitely generated and quasi-projective. Then the endomorphism ring S =
End(MR) is right Artinian.

Lemma 2.2. [12, Theorem 55.2] Let M be a finitely generated, quasi-projective

module. If M is serial, then S = End(MR) is right serial.

Lemma 2.3. Let M be a serial right R-module. If M is finitely generated and

quasi-p-injective, then the endomorphism ring S = End(MR) is left serial. In

particular, a right serial, right self-p-injective ring is left serial.

Proof. SinceM is finitely generated and serial, we can writeM =
⊕n

i=1 Ui where
each Ui is uniserial. Since every R-homomorphism f from Ui to M can be con-
sidered as an element of S and End(MR) = End(

⊕n

i=1 Ui) ≃
⊕n

j=1 Hom(Uj ,M),
it is enough to show that Hom(Uj ,M) is uniserial as a left ideal of S.

Take any f, g ∈ Hom(Uj ,M). Since Mj is uniserial, we can suppose that
Ker(g) ⊂ Ker(f). Considering g : Uj → g(Uj) as an epimorphism, we can find
' : g(Uj) → M such that 'g = f. Since M is quasi-p-injective and g(Uj) is
an M -cyclic submodule of M, there is an R-homomorphism  ∈ End(MR) such
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that  ∣g(Uj )
= '. It means that for any x ∈ Uj,  (g(x)) = '(g(x)) = f(x). Hence

f =  g ∈ Sg, proving that Sf ⊂ Sg and therefore Hom(Uj ,M) is uniserial.

Theorem 2.4. Let M be an Artinian right R-module which is quasi-p-injective

and a projective subgenerator with S = End(MR). Then the following conditions

are equivalent:

(1) M is serial;

(2) S is Artinian and serial;

(3) Every indecomposable module in �[M ] is quasi-injective;

(4) Every indecomposable module in �[M ] is quasi-projective;

(5) Every indecomposable quasi-injective module in �[M ] is quasi-projective;

(6) Every indecomposable quasi-projective module in �[M ] is quasi-injective.

Proof. Since M is a projective generator in �[M ], we can see that the category
�[M ] is equivalent to the category Mod-S of right S-modules, by [12, Theorem
46.2].

(1) ⇒ (2). Since M is serial, finitely generated and quasi-projective, the
endomorphism ring S = End(MR) is right serial by Lemma 2.2 and left serial
by Lemma 2.3.

Using Lemma 2.1, we see that S is right Artinian. We now show that S is
left Artinian. Since S is left serial, S =

⊕k

i=1 Si with each Si is a uniserial left
ideal. Therefore every finitely generated left ideal I which is contained in Si is
cyclic and hence I is isomorphic to Hom(M/KerI,M) since KerI = Ker(f) for
some f ∈ S and M is quasi-p-injective. Now let I1 ⊂ I2 ⊂ I3 ⊂ ... ⊂ In ⊂ ...
be an ascending chain of finitely generated left ideals contained in Si. Then
KerI1 ⊃ KerI2 ⊃ ... ⊃ KerIn ⊃ ... is a descending chain of submodules of M.
This chain is stationary since M is Artinian. Therefore there is an integer n0

such that KerIn = KerIn+k for all n ≥ n0. This would imply that In = In+k

for any n ≥ n0 and hence Si is a Noetherian left ideal of S. Thus S is left
Noetherian. Since S is right Artinian and left Noetherian, it follows that S is
left Artinian. Hence S is serial and Artinian, proving (1) ⇒ (2).

(2) ⇒ (1). Applying [5, Theorem 5.4], we see that every indecomposable left
(right) S-module is uniserial. Using the equivalence between �[M ] and Mod-
S, we can see that every indecomposable module in �[M ] is uniserial. Since
M =

⊕n

i=1Mi, with each Mi is indecomposable, we infer that M is a serial
right R-module.

(2) ⇔ (3). Using [5, Theorem 5.3], the condition (2) is equivalent to the
fact that every indecomposable right S-module is quasi-injective. Since �[M ]
is equivalent to Mod-S, we infer that every indecomposable module in �[M ] is
quasi-injective and vice versa.

(2) ⇔ (4) ⇔ (5) ⇔ (6). By a similar argument as that of (2) ⇔ (3).

Corollary 2.5. For a right Artinian right self-p-injective, the following conditions

are equivalent:
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(1) R is right serial;

(2) R is Artinian and serial;

(3) Every indecomposable right R-module is quasi-projective;

(4) Every indecomposable right R-module is quasi-injective;

(5) Every indecomposable quasi-injective right R-module is quasi-projective;

(6) Every indecomposable quasi-projective right R-module is quasi-injective.

Corollary 2.6. Let R be a right Artinian right serial ring. If R is right self-p-

injective, then R is left Artinian and left serial.

By applying the Theorem 2.5 we can prove the following:

Theorem 2.7. Let M be an Artinian right R-module which is quasi-p-injective

and a projective generator in �[M ]. Then the following conditions are equivalent:

(1) M is serial;

(2) Every indecomposable module in �[M ] is both quasi-projective and quasi-

injective;

(3) Every indecomposable module in �[M ] is uniserial.
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