A Generalization of Hopkins-Levitzki Theorem

Le Phuong-Thao

Department of Mathematics, Mahidol University, Bangkok 10400, Thailand
Can Tho University, Can Tho, Vietnam
Email: lpthao@ctu.edu.vn

Nguyen Van Sanh*
Department of Mathematics, Mahidol University, Center of Excellence in Mathematics, Bangkok, Thailand
Email: frnvs@mahidol.ac.th

Received 18 August 2010
Accepted 29 October 2010

Communicated by K.P. Shum

AMS Mathematics Subject Classification(2000): 16D50, 16D70, 16D80
Abstract. Hopkin-Levitzki theorem said that every right Artinian ring is right Noetherian. It is well-knnown that not every Artinian is Noetherian, for example the Prüfer group $\mathbb{Z}_{p \infty}$ is Artinian but not Noetherian. In this paper, we prove that if M is an Artinian quasi-projective finitely generated right R-module which is a self-generator, then it is Noetherian. This result can be considered as a generalization of Hopkins-Levitzki Theorem.

Keywords: Prime submodule; Semiprime submodule; Prime radical; Nilpotent submodule.

1. Introduction and Preliminaries

Throughout this paper, all rings are associative with identity and all modules are unitary right R-modules. Let M be a right R-module and $S=\operatorname{End}\left(M_{R}\right)$, its endomorphism ring. We denote $\sigma[M]$ the full subcategory of $\operatorname{Mod}-R$ whose objects are submodules of M-generated modules. M is called a subgenerator if it generates $\sigma[M]$ and a self-generator if it generates all its submodules only. A

[^0]right R-module M is retractable if every non-zero submodule contains a nonzero M-generated submodules. It is clear that if M is a subgenerator, then it is a self-generator and every self-generator module is retractable. A submodule X of M is called a fully invariant submodule of M if for any $s \in S$, we have $s(X) \subset X$. By the definition, the class of all fully invariant submodules of M is non-empty and closed under intersections and sums. Especially, a right ideal of R is a fully invariant submodule of R_{R} if it is a two-sided ideal of R.

Let M be a right R-module and X, a fully invariant proper submodule of M. Following [15], the submodule X is called a prime submodule of M if for any ideal I of S, and any fully invariant submodule U of $M, I(U) \subset X$ implies that either $I(M) \subset X$ or $U \subset X$. Especially, an ideal P of R is a prime ideal if for any ideals I, J of R, if $I J \subset P$ then either $I \subset P$ or $J \subset P$. A fully invariant submodule X of a right R-module M is called a semiprime submodule if it is an intersection of prime submodules of M. A right R-module M is called a prime module if 0 is a prime submodule of M. A ring R is a prime ring if R_{R} is a prime module. A right R-module M is called a semiprime module if 0 is a semiprime submodule of M. Especially, the ring R is a semiprime ring if R_{R} is a semiprime module. By symmetry, the ring R is a semiprime ring if ${ }_{R} R$ is a semiprime left R-module. From now on, for a submodule X of M, we denote $I_{X}=\{f \in S \mid f(M) \subset X\}$, the right ideal of S related to X. A submodule X of M is called an M-annihilator if it is of the form $X=\operatorname{ker} A$ for some subset A of S.

Let M be a right R-module. We denote $P(M)$ to be the intersection of all prime submodules of M. It was shown in [15] that for a quasi-projective module M, we have $P(M / P(M))=0$, (see [15, Theorem 2.7$]$) and we call roughly $P(M)$ the prime radical of the module M by modifying the notion of the prime radical $P(R)$ of a ring R as the intersection of all prime ideals of R. Following [14, Theorem 1.10], if X is a prime submodule of a right R-module M, then the set I_{X} is a prime ideal of the endomorphism ring S, and the converse is true if M is a self-generator. Motivating this idea, we will introduce the notions of nilpotent submodules of a given right R-module. We investigate the prime radical and nilpotent submodules of a given right R-module and give a generalization of Hopkins-Levitzki Theorem.

A prime submodule X of a right R-module M is called a minimal prime submodule if there are no prime submodules of M properly contained in X. The following results had been appeared in [17] and we propose them here to use later on.

Proposition 1.1. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then we have the following:
(1) If X is a minimal prime submodule of M, then I_{X} is a minimal prime ideal of S.
(2) If P is a minimal prime ideal of S, then $X:=P(M)$ is a minimal prime submodule of M and $I_{X}=P$.

Theorem 1.2. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Let X be a fully invariant submodule of M. Then the following conditions are equivalent:
(1) X is a semiprime submodule of M;
(2) If J is any ideal of S such that $J^{2}(M) \subset X$, then $J(M) \subset X$;
(3) If J is any ideal of S properly containing X, then $J^{2}(M) \not \subset X$;
(4) If J is any right ideal of S such that $J^{2}(M) \subset X$, then $J(M) \subset X$;
(5) If J is any left ideal of S such that $J^{2}(M) \subset X$, then $J(M) \subset X$.

From Theorem 1.2, we have the following lemma:

Proposition 1.3. Let M be a quasi-projective, finitely generated right R-module which is a self-generator and X, a semiprime submodule of M. If I is a right or left ideal of S such that $I^{n}(M) \subset X$ for some positive integer n, then $I(M) \subset X$.

2. Prime Submodules and Semiprime Submodules

It was shown in [8, Theorem 2.4] that there exist only finitely many minimal prime ideals in a right Noetherian ring R. Using this result we can prove the following theorem.

Theorem 2.1. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If M is a Noetherian module, then there exist only finitely many minimal prime submodules.

Proof. Since M is a quasi-projective Noetherian module which is a self-generator, it would imply that S is a right Noetherian ring. Indeed, suppose that we have an ascending chain of right ideals of $S, I_{1} \subset I_{2} \subset \cdots$ says. Then we have $I_{1}(M) \subset$ $I_{2}(M) \subset \cdots$ is an ascending chain of submodules of M. Since M is a Noetherian module, there is an integer n such that $I_{n}(M)=I_{k}(M)$, for all $k>n$. Then by $[18,18.4]$, we have $I_{n}=\operatorname{Hom}\left(M, I_{n}(M)\right)=\operatorname{Hom}\left(M, I_{k}(M)\right)=I_{k}$. Thus the chain $I_{1} \subset I_{2} \subset \cdots$ is stationary, so S is a right Noetherian ring. By [8, Theorem 2.4], S has only finitely many minimal prime ideals, P_{1}, \ldots, P_{t} says. By Proposition 1.1, $P_{1}(M), \ldots, P_{t}(M)$ are the only minimal prime submodules of M.

Lemma 2.2. Let M be a quasi-projective, finitely generated right R-module which is a self-generator and X, a simple submodule of M. Then I_{X} is a minimal right ideal of S.

Proof. Let I be a right ideal of S such that $0 \neq I \subset I_{X}$. Then $I(M)$ is a nonzero submodule of M and $I(M) \subset X$. Thus $I(M)=X$ and it follows from [18. 18.4] that $I=I_{X}$ since M is a self-generator.

Proposition 2.3. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Let X be a simple submodule of M. Then either $I_{X}^{2}=0$ or $X=f(M)$ for some idempotent $f \in I_{X}$.

Proof. Since X is a simple submodule of M, by Lemma 2.2, I_{X} is a minimal right ideal of S. Suppose that $I_{X}^{2} \neq 0$. Then there is a $g \in I_{X}$ such that $g I_{X} \neq 0$. Since $g I_{X}$ is a right ideal of S and $g I_{X} \subset I_{X}$, we have $g I_{X}=I_{X}$ by the minimality of I_{X}. Hence there exists $f \in I_{X}$ such that $g f=g$. The set $I=\left\{h \in I_{X} \mid g h=0\right\}$ is a right ideal of S and I is properly contained in I_{X} since $f \notin I$. By the minimality of I_{X}, we must have $I=0$. It follows that $f^{2}-f \in I_{X}$ and $g\left(f^{2}-f\right)=0$, and hence $f^{2}=f$. Note that $f(M) \subset X$ and $f(M) \neq 0$, and from this we have $f(M)=X$.

Corollary 2.4. Let M be a quasi-projective, finitely generated right R-module which is a self-generator and X, a simple submodule of M. If M is a semiprime module, then $X=f(M)$ for some idempotent $f \in I_{X}$.

Proof. Since M is a semiprime module, it follows from [14, Theorem 2.9] that S is a semiprime ring and hence $I_{X}^{2} \neq 0$. Thus $X=f(M)$ for some idempotent $f \in I_{X}$ by Proposition 2.3, proving our corollary.

Proposition 2.5. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then $Z_{r}(S)(M) \subset Z(M)$ where $Z_{r}(S)$ is the singular right ideal of S and $Z(M)$ is a singular submodule of M.

Proof. Let $f \in Z_{r}(S)$ and $x \in M$. We will show that $f(x) \in Z(M)$. Since $f \in Z_{r}(S)$, there exists an essential right ideal K of S such that $f K=0$. It would imply that $f K(M)=0$. Note that K is an essential right ideal of S, we can see that $K(M)$ is an essential submodule of M, and hence the set $x^{-1} K(M)=\{r \in R \mid x r \in K(M)\}$ is an essential right ideal of R, and therefore $f(x)\left(x^{-1} K(M)\right)=f\left(x\left(x^{-1} K(M)\right) \subset f K(M)=0\right.$, proving that $f(x) \in Z(M)$.

The following Corollary is a direct consequence of the above proposition.

Corollary 2.6. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If M is a nonsingular module, then S is a right nonsingular ring.

Following [4, Lemma 1.16], for a semiprime ring R with ACC on annihilators, there are a finite number of minimal prime ideals and moreover, a prime ideal is minimal if and only if it is an annihilator ideal, we generalize this result to right R-module as in the following proposition.

Proposition 2.7. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If M is a semiprime module with the ACC for M annihilators, then M has only a finite number of minimal prime submodules. If P_{1}, \ldots, P_{n} are minimal prime submodules of M, then $P_{1} \cap \cdots \cap P_{n}=0$. Also a prime submodule P of M is minimal if and only if I_{P} is an annihilator ideal of S.

Proof. It follows from [14, Theorem 2.9] that S is a semiprime ring. Since M satisfies the ACC for M-annihilators, we can see that S satisfies the ACC for right annihilators (cf. [16, Lemma 3.2]). By [4, Lemma 1.16], S has only a finite number of minimal prime ideals. Therefore M has only finite number of minimal prime submodules, by Proposition 1.1. If P_{1}, \ldots, P_{n} are minimal prime submodules of M, then $I_{P_{1}}, \ldots, I_{P_{n}}$ are minimal prime ideals of S. Thus $I_{P_{1}} \cap \cdots \cap I_{P_{n}}=0$, by [4, Lemma 1.16]. From $I_{P_{1}} \cap \cdots \cap I_{P_{n}}=I_{P_{1} \cap \cdots \cap P_{n}}$, we have $P_{1} \cap \cdots \cap P_{n}=0$. Finally, a prime submodule P of M is minimal if and only if I_{P} is a minimal prime ideal of S. It is equivalent to that fact that I_{P} is an annihilator ideal of S.

Proposition 2.8. Let M be a quasi-projective right R-module and X be a fully invariant submodule of M. Then the following are equivalent:
(1) X is a semiprime submodule of M;
(2) M / X is a semiprime module.

Proof. (1) \Rightarrow (2). Let $X=\bigcap_{P_{i} \in \mathcal{F}} P_{i}$ be a semiprime submodule of M, where each P_{i} is a prime submodule of M. It follows from [14, Lemma 2.5] that each P_{i} / X is a prime submodule of M / X. Thus, $\bigcap_{P_{i} \in \mathcal{F}}\left(P_{i} / X\right)=0$, proving that M / X is semiprime.
$(2) \Rightarrow(1)$. Suppose that 0 is a semiprime submodule of M / X. Then we can write $0=\bigcap_{Q_{i} \in \mathcal{K}} Q_{i}$, where each Q_{i} is a prime submodule of M / X. Then $X=\nu^{-1}(0)=\nu^{-1}\left(\bigcap_{Q_{i} \in \mathcal{K}} Q_{i}\right)=\bigcap_{Q_{i} \in \mathcal{K}} \nu^{-1}\left(Q_{i}\right)$. Since each Q_{i} is a prime submodule of M / X, we see that $\nu^{-1}\left(Q_{i}\right)$ is a prime submodule of M by [14, Lemma 2.6]. Therefore X is a semiprime submodule of M.

3. A Generalization of Hopkins-Levitzki Theorem

In this section, we introduce the notion of nilpotent submodules and study the properties of prime radical together with nilpotent submodules of a given right R-module M.

Definition 3.1. Let M be a right R-module and X, a submodule of M. We say that X is a nilpotent submodule of M if I_{X} is a nilpotent right ideal of S.

From the definition we see that X is a nilpotent fully invariant submodule of
M if and only if I_{X} is a nilpotent two-sided ideal of S. First, we get a property of semiprime submodules similar to that of semiprime ideals.

Proposition 3.2. Let M be a quasi-projective finitely generated right R-module which is a self-generator and N be a semiprime submodule of M. Then N contains all nilpotent submodules of M.

Proof. Let X be a nilpotent submodule of M. Then I_{X} is a nilpotent right ideal of S. Thus, $I_{X}^{n}=0$ for some positive integer n, and therefore $I_{X}^{n}(M)=0 \subset N$. Since N is a semiprime submodule of M which is a self-generator, $X=I_{X}(M) \subset N$, proving our proposition.

Corollary 3.3. Let M be a quasi-projective finitely generated right R-module which is a self-generator. Let $P(M)$ be the prime radical of M. Then $P(M)$ contains all nilpotent submodules of M.

Proposition 3.4. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If M satisfies the $A C C$ on fully invariant submodules, then $P(M)$ is nilpotent.

Proof. We first claim that if M satisfies the ACC on fully invariant submodules, then S satisfies the ACC for two-sided ideals. Indeed, if $I_{1} \subset I_{2} \subset \cdots$ is an ascending chain of two-sided ideals of S, then $I_{1}(M) \subset I_{2}(M) \subset \cdots$ is an ascending chain of fully invariant submodules of M. By assumption, there exists a positive integer n such that $I_{n}(M)=I_{k}(M)$ for all $k>n$. Thus $I_{n}=I_{k}$ for all $k>n$, showing that S satisfies the ACC for two-sided ideals. It follows from [18, Proposition XV.1.4] that $P(S)$ is nilpotent. Since M is a self-generator, $P(S)=I_{P(M)}$, showing that $P(M)$ is a nilpotent submodule of M.

It is well-known that a semiprime ring contains no nilpotent right ideals, the following theorem gives us a similar result for semiprime modules.

Theorem 3.5. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then M is a semiprime module if and only if M contains no nonzero nilpotent submodules.

Proof. By hypothesis, 0 is a semiprime submodule of M. If X is a nilpotent submodule of M, then $I_{X}^{n}=0$ for some positive integer n, and hence $I_{X}^{n}(M)=0$. Note that $I_{X}(M)=0$ by Corollary 1.3 , we can see that $X=0$.

Conversely, suppose that M contains no nonzero nilpotent submodules. Let I be an ideal of S such that $I^{2}(M)=0$. Then we can write $I=I_{I(M)}$ and hence $I_{I(M)}^{2}=0$. It follows that $I(M)$ is a nilpotent submodule of M and we get $I(M)=0$. Thus 0 is a semiprime submodule of M by Theorem 1.2, showing that M is a semiprime module.

Proposition 3.6. Let M be a quasi-projective, finitely generated right R-module which is a self-generator and $P(M)$ be the prime radical of M. If M is a Noetherian module, then $P(M)$ is the largest nilpotent submodule of M.

Proof. Let \mathcal{F} be the family of all minimal submodules of M. Then we can we write $P(M)=\bigcap_{X \in \mathcal{F}} X$. By Corollary 3.3, $P(M)$ contains all nilpotent submodules of M. By Proposition 1.1, $I_{P(M)}=\bigcap_{X \in \mathcal{F}} I_{X}=P(S)$. Note that from our assumption we can see that S is a right Noetherian ring. By [8, Theorem 2.4], there exist only finitely many minimal prime ideals of S and there is a finite product of them which is 0 , says $P_{1} \cdots P_{n}=0$. Since $I_{P(M)}$ is contained in each $P_{i}, i=1, \ldots, n$, we have $I_{P(M)}^{n}=0$. Thus $P(M)$ is nilpotent.

In the following, we write $X \subseteq^{*} M$ to indicate that X is essential in M.

Lemma 3.7. Let M be a right R-module and X, a fully invariant submodule of M. Then the following statements hold:
(1) $l_{S}\left(I_{X}\right) \hookrightarrow^{*} S_{S}$ if and only if $l_{S}\left(I_{X}^{n}\right) \subseteq^{*} S_{S}$ for any $n \geq 1$.
(2) If X is nilpotent, then $l_{S}\left(I_{X}\right) \subseteq_{S}^{*} S_{S}$.

Proof. (1) Note that $l_{S}\left(I_{X}\right) \subset l_{S}\left(I_{X}^{n}\right)$. It follows that if $l_{S}\left(I_{X}\right) \subset{ }_{>}^{*} S_{S}$ then $l_{S}\left(I_{X}^{n}\right) \subset{ }_{>}^{*} S_{S}$. Conversely, it suffices to show that if $l_{S}\left(I_{X}^{2}\right) \subset{ }_{>}^{*} S_{S}$, then $l_{S}\left(I_{X}\right) \subset_{>}^{*} S_{S}$. Indeed, let f be any nonzero element of S. Since $l_{S}\left(I_{X}^{2}\right) \subset_{>}^{*} S_{S}$, there exists an element $g \in S$ such that $0 \neq f g \in l_{S}\left(I_{X}^{2}\right)$. If $f g I_{X}=0$, then $f g \in l_{S}\left(I_{X}\right)$, and hence $f S \cap l_{S}\left(I_{X}\right) \neq 0$ and we are done. If $f g I_{X} \neq 0$, there is an element $h \in I_{X}$ such that $f g h \neq 0$. Then $f g h I_{X} \subset f g I_{X}^{2}=0$. This shows that $f g h \in l_{S}\left(I_{X}\right)$ and hence $f S \cap l_{S}\left(I_{X}\right) \neq 0$. Thus $l_{S}\left(I_{X}\right) \subseteq^{*} S_{S}$.
(2) If X is nilpotent, then $I_{X}^{n}=0$ for some positive integer n. We have $l_{S}\left(I_{X}^{n}\right)=l_{S}(0)=S \subseteq_{\gtrdot}^{*} S_{S}$. By (1), we can see that $l_{S}\left(I_{X}\right) \subseteq^{*} S_{S}$, proving our lemma.

Proposition 3.8. Let M be a quasi-projective, finitely generated right R-module which is a self-generator and assume that every ideal right essential in S contains a right regular element of S. Then M is a semiprime module.

Proof. Let K be any ideal of S such that $K^{2}(M)=0$. We wish to show that $K(M)=0$. Since $K^{2}(M)=0$ and $K=I_{K(M)}$ we see that $X:=K(M)$ is nilpotent. Thus $l_{S}\left(I_{X}\right)=l_{S}(K)$ is an ideal which is right essential in S by Lemma 2.7. By assumption, $l_{S}(J)$ contains a right regular element f of S. Now from $f K=0$ and f is right regular, we have $K=0$. Thus $K(M)=0$, proving that 0 is a semiprime submodule of M.

Proposition 3.9. Let M be a right R-module and X, a nilpotent submodule of M. If N is a fully invariant submodule of M with $M=N+I_{X}(M)$, then $M=N$. In particular, if $M \neq 0$, then $M \neq I_{X}(M)$.

Proof. We show by induction on $i \geq 1$ that $M=N+I_{X}^{i}(M)$. The case $i=1$ is true by the hypothesis. Suppose that $M=N+I_{X}^{i}(M)$. Then $I_{X}(M)=I_{X}(N)+$ $I_{X}^{i+1}(M)$. Thus $M=N+I_{X}(M)=N+I_{X}(N)+I_{X}^{i+1}(M)=N+I_{X}^{i+1}(M)$. Since X is nilpotent, I_{X} is nilpotent by definition. Then $I_{X}^{n}=0$ for some positive integer n, and so $I_{X}^{n}(M)=0$. Thus $M=N$. In particular, 0 is fully invariant submodule of M and if $M=I_{X}(M)$, then $M=0$, proving our proposition.

Lemma 3.10. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. Then the following statements hold:
(1) If X is a maximal submodule of M, then I_{X} is a maximal right ideal of S;
(2) If P is a maximal right ideal of S, then $X:=P(M)$ is a maximal submodule of M and $P=I_{X}$.

Proof. (1) Let K be a right ideal of S and suppose that I_{X} is properly contained in K. Then X is properly contained in $K(M)$. Thus $K(M)=M$ by the maximality of X, proving that I_{X} is maximal in S.
(2) Since M is a self-generator, we have $P=I_{X}$, where $X=P(M)$. If N is a submodule of M and properly contains X, then I_{X} is properly contained in I_{N}. Therefore $I_{N}=S$ by the maximality of P. Thus $N=M$, showing that $P(M)$ is a maximal submodule of M.

Let M be a right R-module. The radical of M, denote by $\operatorname{Rad}(M)$ or $J(M)$, is the intersection of all maximal submodules of M. The Jacobson radical $J(R)$ of the ring R is the intersection of all maximal right (left) ideals of R.

Recall that if R is right Artinian, then $\operatorname{Rad}(R)$ is the unique largest nilpotent right, left or two-sided ideal of R, (see [9, Corollary 9.3.10]). Hopkins-Levitzki Theorem says that if the ring R is right Artinian, then R is right Noetherian and the Jacobson radical $J(R)$ is nilpotent (cf. [8, Theorem 3.15]). Note that not every Artinian module is Noetherian, for example, the Prüfer group $\mathbb{Z}_{p \infty}$ is Artinian but not Noetherian. Therefore, it is natural to ask a question that when is an Artinian module Noetherian? The following theorem can be considered as a generalization of Hopkins-Levitzki Theorem.

Theorem 3.11. Let M be a quasi-projective, finitely generated right R-module which is a self-generator. If M is Artinian, then M is Noetherian, $\operatorname{Rad}(M)$ is nilpotent and $\operatorname{Rad}(M)=P(M)$.

Proof. By Lemma 3.10, a submodule X of M is maximal if and only if I_{X} is a maximal right ideals of S, it is easy to see that $\operatorname{Rad}(S)=I_{\operatorname{Rad}(M)}$. Since M is Artinian, from our hypothesis, the ring S is a right Artinian ring. Thus S is right Noetherian and $\operatorname{Rad}(S)$ is nilpotent (by [8, Theorem 3.15]). Let $N_{1} \subset N_{2} \subset \cdots$ be an ascending chain of submodules of M. Then $I_{N_{1}} \subset I_{N_{2}} \subset \cdots$ is an ascending chain of right ideals of S. Since S is right Noetherian, there exists a positive integer n such that $I_{N_{n}}=I_{N_{k}}$ for all $k>n$, and it would imply that
$N_{n}=N_{k}$ for all $k>n$, since M is a self-generator. This shows that M is a Noetherian module. Since $\operatorname{Rad}(S)=I_{\operatorname{Rad}(M)}$ and $\operatorname{Rad}(S)$ is nilpotent, $\operatorname{Rad}(M)$ is a nilpotent submodule of M.

Note that S is a right Artinian ring, we have $\operatorname{Rad}(S)=P(S)$ (see [8, Corollary 3.16]). But $\operatorname{Rad}(S)=I_{\operatorname{Rad}(M)}$ and $P(S)=I_{P(M)}$, proving that $\operatorname{Rad}(M)=$ $P(M)$.

We remark here that the concept of quasi-projectivity on a finitely generated right R-module has been generalized to the quasi-rp-injectivity of a Kasch module in [10], it is natural to ask whether the above results related to quasiprojectivity on a finitely generated R -module can be extended to a Kasch module? As we have mentioned in the Introduction that every self-generator right R -module is retractble. We now propose the question. Can we replace the condition of self-generator by retractable property in almost all of our results?

References

[1] M.M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (12) (2008) 4620-4642.
[2] R. Ameri, On the prime submodules of multiplication modules, IJMMS 27 (2003) 1715-1724.
[3] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin, Heidelberg, New York, 1992.
[4] A.W. Chatters, C.R. Hajarnavis, Rings With Chain Conditions, Pitman Advanced Publishing Program, 1980.
[5] J. Dauns, Prime submodules, J. Reine Angrew. Math. 298 (1978) 156-187.
[6] A. Gaur, A.K. Maloo, A. Parkask, Prime submodules in multiplication modules, Inter. J. Algebra 1 (8) (2007) 375-380.
[7] A. Gaur, A. Maloo, Minimal prime submodules, Inter. J. Algebra 2 (20) (2008) 953-956.
[8] K.R. Goodearl, R.B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge Uni. Press, Cambridge, 1989.
[9] F.Kasch, Modules and Rings, London Math. Society, 1982.
[10] H.D. Hai, N.V. Sanh, A. Sudprasert, A weaker form of p-injectivity, Southeast Asian Bull. Math. 33 (6) (2009) 1063-1069.
[11] T.Y Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
[12] C.P. Lu, Prime submodules of modules, Comment. Mat. Univ. St. Pal. 33 (1) (1984) 61-69.
[13] R.L. McCasland, P.F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993) 1041-1062.
[14] D.S. Passman, A Course in Ring Theory, AMS Chelsea Publishing, Amer. Math. Society-Providence, Rhode Island, 2004.
[15] N.V. Sanh, N.A. Vu, K.F.U. Ahmed, S. Asawasamrit, L.P. Thao, Primeness in module category, Asian-Eur. J. Math. 3 (1) (2010) 145-154.
[16] N.V. Sanh, S. Asawasamrit, K.F.U. Ahmed, L.P. Thao, On prime and semiprime Goldie modules, Asian-Eur. J. Math. 4 (2) (2011) 321-334.
[17] N.V. Sanh, K.F.U. Ahmed, L.P. Thao, On semiprime modules with chain conditions, Algebra Colloq. (to appear).
[18] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
[19] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Tokyo, E.A., 1991.

[^0]: *Corresponding author, partially supported by Center of Excellence in Mathematics, CEM, Thailand, Grant no RG-53-13-1.

