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Abstract. Hopkin-Levitzki theorem said that every right Artinian ring is right Noethe-
rian. It is well-knnown that not every Artinian is Noetherian, for example the Prüfer
group ℤp∞ is Artinian but not Noetherian. In this paper, we prove that if M is an Ar-
tinian quasi-projective finitely generated right R-module which is a self-generator, then
it is Noetherian. This result can be considered as a generalization of Hopkins-Levitzki
Theorem.
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1. Introduction and Preliminaries

Throughout this paper, all rings are associative with identity and all modules
are unitary right R-modules. Let M be a right R-module and S = End(MR),
its endomorphism ring. We denote �[M ] the full subcategory of Mod-R whose
objects are submodules of M -generated modules. M is called a subgenerator if
it generates �[M ] and a self-generator if it generates all its submodules only. A
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right R-module M is retractable if every non-zero submodule contains a non-
zero M -generated submodules. It is clear that if M is a subgenerator, then it
is a self-generator and every self-generator module is retractable. A submodule
X of M is called a fully invariant submodule of M if for any s ∈ S, we have
s(X) ⊂ X. By the definition, the class of all fully invariant submodules of M is
non-empty and closed under intersections and sums. Especially, a right ideal of
R is a fully invariant submodule of RR if it is a two-sided ideal of R.

Let M be a right R-module and X, a fully invariant proper submodule of
M. Following [15], the submodule X is called a prime submodule of M if for
any ideal I of S, and any fully invariant submodule U of M, I(U) ⊂ X implies
that either I(M) ⊂ X or U ⊂ X. Especially, an ideal P of R is a prime ideal
if for any ideals I, J of R, if IJ ⊂ P then either I ⊂ P or J ⊂ P. A fully
invariant submodule X of a right R-module M is called a semiprime submodule
if it is an intersection of prime submodules of M. A right R-module M is called
a prime module if 0 is a prime submodule of M. A ring R is a prime ring if RR

is a prime module. A right R-module M is called a semiprime module if 0 is a
semiprime submodule of M. Especially, the ring R is a semiprime ring if RR is
a semiprime module. By symmetry, the ring R is a semiprime ring if RR is a
semiprime left R-module. From now on, for a submodule X of M, we denote
IX = {f ∈ S ∣ f(M) ⊂ X}, the right ideal of S related to X. A submodule X of
M is called an M -annihilator if it is of the form X = kerA for some subset A of
S.

Let M be a right R-module. We denote P (M) to be the intersection of all
prime submodules of M. It was shown in [15] that for a quasi-projective module
M, we have P (M/P (M)) = 0, (see [15, Theorem 2.7]) and we call roughly P (M)
the prime radical of the module M by modifying the notion of the prime radical
P (R) of a ring R as the intersection of all prime ideals of R. Following [14,
Theorem 1.10], if X is a prime submodule of a right R-module M, then the set
IX is a prime ideal of the endomorphism ring S, and the converse is true if M is
a self-generator. Motivating this idea, we will introduce the notions of nilpotent
submodules of a given right R-module. We investigate the prime radical and
nilpotent submodules of a given right R-module and give a generalization of
Hopkins-Levitzki Theorem.

A prime submodule X of a right R-module M is called a minimal prime
submodule if there are no prime submodules of M properly contained in X. The
following results had been appeared in [17] and we propose them here to use
later on.

Proposition 1.1. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then we have the following:

(1) If X is a minimal prime submodule of M, then IX is a minimal prime
ideal of S.

(2) If P is a minimal prime ideal of S, then X := P (M) is a minimal prime
submodule of M and IX = P.
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Theorem 1.2. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Let X be a fully invariant submodule of M. Then the
following conditions are equivalent:

(1) X is a semiprime submodule of M ;

(2) If J is any ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X ;

(3) If J is any ideal of S properly containing X, then J2(M) ∕⊂ X ;

(4) If J is any right ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X ;

(5) If J is any left ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X.

From Theorem 1.2, we have the following lemma:

Proposition 1.3. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and X, a semiprime submodule of M. If I is a right or
left ideal of S such that In(M) ⊂ X for some positive integer n, then I(M) ⊂ X.

2. Prime Submodules and Semiprime Submodules

It was shown in [8, Theorem 2.4] that there exist only finitely many minimal
prime ideals in a right Noetherian ring R. Using this result we can prove the
following theorem.

Theorem 2.1. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is a Noetherian module, then there exist only
finitely many minimal prime submodules.

Proof. SinceM is a quasi-projective Noetherian module which is a self-generator,
it would imply that S is a right Noetherian ring. Indeed, suppose that we have an
ascending chain of right ideals of S, I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ says. Then we have I1(M) ⊂
I2(M) ⊂ ⋅ ⋅ ⋅ is an ascending chain of submodules of M. Since M is a Noetherian
module, there is an integer n such that In(M) = Ik(M) , for all k > n. Then
by [18, 18.4], we have In = Hom(M, In(M)) = Hom(M, Ik(M)) = Ik. Thus
the chain I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ is stationary, so S is a right Noetherian ring. By [8,
Theorem 2.4], S has only finitely many minimal prime ideals, P1, . . . , Pt says.
By Proposition 1.1, P1(M), . . . , Pt(M) are the only minimal prime submodules
of M.

Lemma 2.2. Let M be a quasi-projective, finitely generated right R-module which
is a self-generator and X, a simple submodule of M. Then IX is a minimal right
ideal of S.

Proof. Let I be a right ideal of S such that 0 ∕= I ⊂ IX . Then I(M) is a nonzero
submodule of M and I(M) ⊂ X. Thus I(M) = X and it follows from [18. 18.4]
that I = IX since M is a self-generator.
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Proposition 2.3. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Let X be a simple submodule of M . Then either
I2X = 0 or X = f(M) for some idempotent f ∈ IX .

Proof. Since X is a simple submodule ofM, by Lemma 2.2, IX is a minimal right
ideal of S. Suppose that I2X ∕= 0. Then there is a g ∈ IX such that gIX ∕= 0. Since
gIX is a right ideal of S and gIX ⊂ IX , we have gIX = IX by the minimality of
IX . Hence there exists f ∈ IX such that gf = g. The set I = {ℎ ∈ IX ∣ gℎ = 0} is
a right ideal of S and I is properly contained in IX since f ∕∈ I. By the minimality
of IX , we must have I = 0. It follows that f2 − f ∈ IX and g(f2 − f) = 0, and
hence f2 = f. Note that f(M) ⊂ X and f(M) ∕= 0, and from this we have
f(M) = X.

Corollary 2.4. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and X, a simple submodule of M. If M is a semiprime
module, then X = f(M) for some idempotent f ∈ IX .

Proof. Since M is a semiprime module, it follows from [14, Theorem 2.9] that
S is a semiprime ring and hence I2X ∕= 0. Thus X = f(M) for some idempotent
f ∈ IX by Proposition 2.3, proving our corollary.

Proposition 2.5. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then Zr(S)(M) ⊂ Z(M) where Zr(S) is the singular
right ideal of S and Z(M) is a singular submodule of M.

Proof. Let f ∈ Zr(S) and x ∈ M. We will show that f(x) ∈ Z(M). Since
f ∈ Zr(S), there exists an essential right ideal K of S such that fK = 0.
It would imply that fK(M) = 0. Note that K is an essential right ideal of
S, we can see that K(M) is an essential submodule of M, and hence the set
x−1K(M) = {r ∈ R ∣ xr ∈ K(M)} is an essential right ideal of R, and therefore
f(x)(x−1K(M)) = f(x(x−1K(M)) ⊂ fK(M) = 0, proving that f(x) ∈ Z(M).

The following Corollary is a direct consequence of the above proposition.

Corollary 2.6. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is a nonsingular module, then S is a right
nonsingular ring.

Following [4, Lemma 1.16], for a semiprime ring R with ACC on annihilators,
there are a finite number of minimal prime ideals and moreover, a prime ideal is
minimal if and only if it is an annihilator ideal, we generalize this result to right
R-module as in the following proposition.
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Proposition 2.7. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is a semiprime module with the ACC for M -
annihilators, then M has only a finite number of minimal prime submodules. If
P1, . . . , Pn are minimal prime submodules of M , then P1 ∩ ⋅ ⋅ ⋅ ∩ Pn = 0. Also a
prime submodule P of M is minimal if and only if IP is an annihilator ideal of
S.

Proof. It follows from [14, Theorem 2.9] that S is a semiprime ring. Since M
satisfies the ACC for M -annihilators, we can see that S satisfies the ACC for
right annihilators (cf. [16, Lemma 3.2]). By [4, Lemma 1.16], S has only a
finite number of minimal prime ideals. Therefore M has only finite number
of minimal prime submodules, by Proposition 1.1. If P1, . . . , Pn are minimal
prime submodules of M, then IP1

, . . . , IPn
are minimal prime ideals of S. Thus

IP1
∩ ⋅ ⋅ ⋅ ∩ IPn

= 0, by [4, Lemma 1.16]. From IP1
∩ ⋅ ⋅ ⋅ ∩ IPn

= IP1∩⋅⋅⋅∩Pn
, we

have P1 ∩ ⋅ ⋅ ⋅ ∩ Pn = 0. Finally, a prime submodule P of M is minimal if and
only if IP is a minimal prime ideal of S. It is equivalent to that fact that IP is
an annihilator ideal of S.

Proposition 2.8. Let M be a quasi-projective right R-module and X be a fully
invariant submodule of M. Then the following are equivalent:

(1) X is a semiprime submodule of M;

(2) M/X is a semiprime module.

Proof. (1) ⇒ (2). Let X =
∩

Pi∈ℱ Pi be a semiprime submodule of M, where
each Pi is a prime submodule of M. It follows from [14, Lemma 2.5] that each
Pi/X is a prime submodule of M/X. Thus,

∩
Pi∈ℱ (Pi/X) = 0, proving that

M/X is semiprime.

(2) ⇒ (1). Suppose that 0 is a semiprime submodule of M/X. Then we
can write 0 =

∩
Qi∈KQi, where each Qi is a prime submodule of M/X. Then

X = �−1(0) = �−1(
∩

Qi∈K Qi) =
∩

Qi∈K �−1(Qi). Since each Qi is a prime

submodule of M/X, we see that �−1(Qi) is a prime submodule of M by [14,
Lemma 2.6]. Therefore X is a semiprime submodule of M.

3. A Generalization of Hopkins-Levitzki Theorem

In this section, we introduce the notion of nilpotent submodules and study the
properties of prime radical together with nilpotent submodules of a given right
R-module M.

Definition 3.1. Let M be a right R-module and X, a submodule of M. We say
that X is a nilpotent submodule of M if IX is a nilpotent right ideal of S.

From the definition we see that X is a nilpotent fully invariant submodule of
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M if and only if IX is a nilpotent two-sided ideal of S. First, we get a property
of semiprime submodules similar to that of semiprime ideals.

Proposition 3.2. Let M be a quasi-projective finitely generated right R-module
which is a self-generator and N be a semiprime submodule of M. Then N con-
tains all nilpotent submodules of M.

Proof. LetX be a nilpotent submodule ofM. Then IX is a nilpotent right ideal of
S. Thus, InX = 0 for some positive integer n, and therefore InX(M) = 0 ⊂ N. Since
N is a semiprime submodule of M which is a self-generator, X = IX(M) ⊂ N,
proving our proposition.

Corollary 3.3. Let M be a quasi-projective finitely generated right R-module
which is a self-generator. Let P (M) be the prime radical of M. Then P (M)
contains all nilpotent submodules of M.

Proposition 3.4. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M satisfies the ACC on fully invariant submodules,
then P (M) is nilpotent.

Proof. We first claim that if M satisfies the ACC on fully invariant submodules,
then S satisfies the ACC for two-sided ideals. Indeed, if I1 ⊂ I2 ⊂ ⋅ ⋅ ⋅ is an
ascending chain of two-sided ideals of S, then I1(M) ⊂ I2(M) ⊂ ⋅ ⋅ ⋅ is an
ascending chain of fully invariant submodules of M. By assumption, there exists
a positive integer n such that In(M) = Ik(M) for all k > n. Thus In = Ik for
all k > n, showing that S satisfies the ACC for two-sided ideals. It follows from
[18, Proposition XV.1.4] that P (S) is nilpotent. Since M is a self-generator,
P (S) = IP (M), showing that P (M) is a nilpotent submodule of M.

It is well-known that a semiprime ring contains no nilpotent right ideals, the
following theorem gives us a similar result for semiprime modules.

Theorem 3.5. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then M is a semiprime module if and only if M
contains no nonzero nilpotent submodules.

Proof. By hypothesis, 0 is a semiprime submodule of M. If X is a nilpotent
submodule ofM, then InX = 0 for some positive integer n, and hence InX(M) = 0.
Note that IX(M) = 0 by Corollary 1.3, we can see that X = 0.

Conversely, suppose that M contains no nonzero nilpotent submodules. Let
I be an ideal of S such that I2(M) = 0. Then we can write I = II(M) and
hence I2I(M) = 0. It follows that I(M) is a nilpotent submodule of M and we

get I(M) = 0. Thus 0 is a semiprime submodule of M by Theorem 1.2, showing
that M is a semiprime module.
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Proposition 3.6. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and P (M) be the prime radical of M. If M is a Noethe-
rian module, then P (M) is the largest nilpotent submodule of M.

Proof. Let ℱ be the family of all minimal submodules of M. Then we can we
write P (M) =

∩
X∈ℱ X. By Corollary 3.3, P (M) contains all nilpotent submod-

ules of M. By Proposition 1.1, IP (M) =
∩

X∈ℱ IX = P (S). Note that from our
assumption we can see that S is a right Noetherian ring. By [8, Theorem 2.4],
there exist only finitely many minimal prime ideals of S and there is a finite
product of them which is 0, says P1 ⋅ ⋅ ⋅Pn = 0. Since IP (M) is contained in each
Pi, i = 1, . . . , n, we have In

P (M) = 0. Thus P (M) is nilpotent.

In the following, we write X ⊂∗
>M to indicate that X is essential in M.

Lemma 3.7. Let M be a right R-module and X, a fully invariant submodule of
M. Then the following statements hold:

(1) lS(IX) ⊂∗
>SS if and only if lS(I

n
X) ⊂∗

>SS for any n ≥ 1.

(2) If X is nilpotent, then lS(IX) ⊂∗
>SS .

Proof. (1) Note that lS(IX) ⊂ lS(I
n
X). It follows that if lS(IX) ⊂∗

>SS then
lS(I

n
X) ⊂ ∗

>SS . Conversely, it suffices to show that if lS(I
2
X) ⊂ ∗

>SS , then
lS(IX) ⊂∗

>SS . Indeed, let f be any nonzero element of S. Since lS(I
2
X) ⊂∗

>SS ,
there exists an element g ∈ S such that 0 ∕= fg ∈ lS(I

2
X). If fgIX = 0, then

fg ∈ lS(IX), and hence fS ∩ lS(IX) ∕= 0 and we are done. If fgIX ∕= 0, there
is an element ℎ ∈ IX such that fgℎ ∕= 0. Then fgℎIX ⊂ fgI2X = 0. This shows
that fgℎ ∈ lS(IX) and hence fS ∩ lS(IX) ∕= 0. Thus lS(IX) ⊂∗

>SS .

(2) If X is nilpotent, then InX = 0 for some positive integer n. We have
lS(I

n
X) = lS(0) = S ⊂∗

>SS . By (1), we can see that lS(IX) ⊂∗
>SS , proving our

lemma.

Proposition 3.8. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and assume that every ideal right essential in S contains
a right regular element of S. Then M is a semiprime module.

Proof. Let K be any ideal of S such that K2(M) = 0. We wish to show that
K(M) = 0. Since K2(M) = 0 and K = IK(M) we see that X := K(M) is
nilpotent. Thus lS(IX) = lS(K) is an ideal which is right essential in S by
Lemma 2.7. By assumption, lS(J) contains a right regular element f of S. Now
from fK = 0 and f is right regular, we have K = 0. Thus K(M) = 0, proving
that 0 is a semiprime submodule of M.

Proposition 3.9. Let M be a right R-module and X, a nilpotent submodule of M.
If N is a fully invariant submodule of M with M = N + IX(M), then M = N.
In particular, if M ∕= 0, then M ∕= IX(M).
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Proof. We show by induction on i ≥ 1 that M = N + IiX(M). The case i = 1 is
true by the hypothesis. Suppose that M = N+IiX(M). Then IX(M) = IX(N)+
Ii+1
X (M). Thus M = N+IX(M) = N+IX(N)+Ii+1

X (M) = N+Ii+1
X (M). Since

X is nilpotent, IX is nilpotent by definition. Then InX = 0 for some positive
integer n, and so InX(M) = 0. Thus M = N. In particular, 0 is fully invariant
submodule of M and if M = IX(M), then M = 0, proving our proposition.

Lemma 3.10. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Then the following statements hold:

(1) If X is a maximal submodule of M, then IX is a maximal right ideal of S;

(2) If P is a maximal right ideal of S, then X := P (M) is a maximal submodule
of M and P = IX .

Proof. (1) Let K be a right ideal of S and suppose that IX is properly con-
tained in K. Then X is properly contained in K(M). Thus K(M) = M by the
maximality of X, proving that IX is maximal in S.

(2) Since M is a self-generator, we have P = IX , where X = P (M). If N is a
submodule of M and properly contains X, then IX is properly contained in IN .
Therefore IN = S by the maximality of P. Thus N = M, showing that P (M) is
a maximal submodule of M.

Let M be a right R-module. The radical of M , denote by Rad(M) or J(M),
is the intersection of all maximal submodules of M. The Jacobson radical J(R)
of the ring R is the intersection of all maximal right (left) ideals of R.

Recall that if R is right Artinian, then Rad(R) is the unique largest nilpotent
right, left or two-sided ideal of R, (see [9, Corollary 9.3.10]). Hopkins-Levitzki
Theorem says that if the ring R is right Artinian, then R is right Noetherian
and the Jacobson radical J(R) is nilpotent (cf. [8, Theorem 3.15]). Note that
not every Artinian module is Noetherian, for example, the Prüfer group ℤp∞ is
Artinian but not Noetherian. Therefore, it is natural to ask a question that when
is an Artinian module Noetherian? The following theorem can be considered as
a generalization of Hopkins-Levitzki Theorem.

Theorem 3.11. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is Artinian, then M is Noetherian, Rad(M) is
nilpotent and Rad(M) = P (M).

Proof. By Lemma 3.10, a submodule X of M is maximal if and only if IX is
a maximal right ideals of S, it is easy to see that Rad(S) = IRad(M). Since
M is Artinian, from our hypothesis, the ring S is a right Artinian ring. Thus
S is right Noetherian and Rad(S) is nilpotent (by [8, Theorem 3.15]). Let
N1 ⊂ N2 ⊂ ⋅ ⋅ ⋅ be an ascending chain of submodules ofM. Then IN1

⊂ IN2
⊂ ⋅ ⋅ ⋅

is an ascending chain of right ideals of S. Since S is right Noetherian, there exists
a positive integer n such that INn

= INk
for all k > n, and it would imply that
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Nn = Nk for all k > n, since M is a self-generator. This shows that M is a
Noetherian module. Since Rad(S) = IRad(M) and Rad(S) is nilpotent, Rad(M)
is a nilpotent submodule of M.

Note that S is a right Artinian ring, we haveRad(S) = P (S) (see [8, Corollary
3.16]). But Rad(S) = IRad(M) and P (S) = IP (M), proving that Rad(M) =
P (M).

We remark here that the concept of quasi-projectivity on a finitely gener-
ated right R-module has been generalized to the quasi-rp-injectivity of a Kasch
module in [10], it is natural to ask whether the above results related to quasi-
projectivity on a finitely generated R-module can be extended to a Kasch mod-
ule? As we have mentioned in the Introduction that every self-generator right
R-module is retractble. We now propose the question. Can we replace the
condition of self-generator by retractable property in almost all of our results?
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