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1. Introduction

The approximation of functions by linear positive operators is an important
research topic in general mathematics and it also provides powerful tools to
application areas such as computer-aided geometric design, numerical analysis,
and solutions of differential equations. q-Calculus is a generalization of many
subjects, such as hypergeometric series, complex analysis and particle physics.
Currently it continues being an important subject of study. It has been shown
that linear positive operators constructed by q-numbers are quite effective as
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far as the rate of convergence is concerned and we can have some unexpected
results, which are not observed for classical case. This type of construction
was first used to generate Bernstein operators. In 1987, Lupaş [13] defined a
q-analogue of Bernstein operators and studied some approximation properties
of them. In 1997, Phillips [25] introduced another generalization of Bernstein
operators based on the q-integers called q-Bernstein operators. Research results
show that q-Bernstein operators possess good convergence and approximation
properties in C[0, 1]. Very recently Aral [1] introduced the q-Szász-Mirakyan
operators. Aral and Gupta [2] extended the study and established some approx-
imation properties for q-Szász Mirakyan operators.

After the paper of Phillips [25] who generalized the classical Bernstein poly-
nomials based on q-integers, many generalizations of well-known positive linear
operators, based on q-integers were introduced and studied by several authors.

For f ∈ C[0,∞), a new type of Baskakov-Szász type operators proposed by
Gupta and Srivastava [8] which is defined as

Dn(f, x) = n

∞∑

k=0

pn,k(x)

∫ ∞

0

sn,k(t)f(t)dt, x ∈ [0,∞) (1)

where pn,k(x) =
(
n+k−1

k

)
xk

(1+x)n+k and sn,k(t) = e−nt (nt)
k

k! .

It is observed from [8] that these operators reproduce only the constant functions.
In the last decade lots of work has been done on q-operators and approximation
by different types of summability operators. We refer the recent work in this
direction due to Aral[1], Khan [11], Beg [3, 32], Mursaleen [15, 16, 17], Wafi [33],
H.M. Srivastava [26]-[30], Mishra et al. [18]-[24] etc.

In 2010, Ibrahim [9] introduced Stancu-Chlodowsky polynomials and inves-
tigated convergence and approximation properties of operators

S�
n (f, x) =

n∑

k=0

p′n,k(x)f
(

k+�
n+�

)
, 0 ≤ x ≤ 1, (2)

where p′n,k(x) is the Bernstein basis function.

In [7] Gupta introduced the q-Baskakov-Szász type operators Dq
n(f, x), which

was generalization of (1).

Dq
n(f, x) = [n]q

∞∑

k=0

pqn,k(x)

∫ q/1−qn

0

q−k−1sqn,k(t)f
(
t q−k

)
dqt, (3)

where x ∈ [0,∞) and

pqn,k(x) =

[
n+ k − 1

k

]

q

qk(k−1)/2 xk

(1+x)n+k
q

, (4)

and
sqn,k(t) = E(−[n]qt)

([n]qt)
k

[k]q !
. (5)
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In case q = 1, the above operators reduce to the operators (1). Motivated by such
types of operators, we generalize Stancu type generalization of the Baskakov-
Szász type operators as follows

D(�,�)
n,q (f, x) = [n]q

∞∑

k=0

pqn,k(x)

∫ q/1−qn

0

q−k−1sqn,k(t)f
( [n]qtq

−k+�
[n]q+�

)
dqt (6)

where pqn,k(x) and sqn,k(t) are defined as above. The operators D(�,�)
n,q (f, x) in (6)

are called q-Baskakov-Szász-Stancu operators. For � = 0, � = 0 the operators
(6) reduce to the operators (3).

During last decade, q-Calculus was extensively used for constructing various
generalization of many classical approximation operators.

The aim of this paper is to study the approximation properties of a new
generalization of the Baskakov-Szász-Stancu operators based on q-integers. We
estimate moments for these operators. Also, we study asymptotic formula for

these operators. Finally, we give better error estimations for operators D(�,�)
n,q .

First, we recall some definitions and notations of q-calculus. Such notations
can be found in ([5],[10]). We consider q as a real number satisfying 0 < q < 1.

For

[n]q =

{ 1−qn

1−q , q ∕= 1,

n, q = 1,

and

[n]q! =

{
[n]q[n− 1]q[n− 2]q...[1]q, n = 1, 2, ...,
1, n = 0.

We observe that

(1 + x)nq = (−x; q)n =

{
(1 + x)(1 + qx)(1 + q2x)...(1 + qn−1x), n = 1, 2, ...,
1, n = 0.

Also, for any real number �, we have

(1 + x)�q =
(1+x)∞q

(1+q�x)∞q
.

In special case, when � is a whole number, this definition coincides with the
above definition.
The q-binomial coefficients are given by

(
n

k

)

q

=
[n]q!

[k]q ![n−k]q !
, 0 ≤ k ≤ n.

The q-derivative Dqf of a function f is given by

Dq(f(x)) =
f(x)−f(qx)

(1−q)x .

The q-Jackson integral and q-improper integral defined as
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∫ a

0

f(x)dqx = (1− q)a

∞∑

n=0

f(aqn)qn

and

∫ ∞/A

0

f(x)dqx = (1− q)a

∞∑

n=0

f
(

qn

A

)
qn

A ,

provided sum converges absolutely.
The q-analogues of the exponential function ex (see [10]), used here is defined as

Eq(z) =

∞∏

j=0

(1 + (1− q)qjz) =

∞∑

k=0

qk(k−1)/2 zk

[k]q !
= (1 + (1− q)z)∞q , ∣q∣ < 1,

where (1 − x)∞q =
∏∞

j=0(1− qjx).
De Sole and Kac [31] define q-analogue of beta function of second kind

B(t, s) =

∫ ∞

0

xt−1

(1+x)t+s dx

as follows

B(t, s) = K(A, t)

∫ ∞/A

0

xt−1

(1+x)t+s
q

dqx,

where K(x, t) = 1
1+xx

t
(
1 + 1

x

)t
q
(1 + x)

1−t
q . This function is q-constant in x i.e.

K(qx, t) = K(x, t).

In particular for any positive integer n, we have

K(x, n) = q
n(n−1)

2 , K(x, 0) = 1, Bq(t, s) =
[t−1]q ![s−1]q!

[t+s−1]q !
.

2. Moment estimates

Lemma 2.1. [7] The following hold:

1. Dq
n(1, x) = 1,

2. Dq
n(t, x) = x+ q

[n]q
,

3. Dq
n(t

2, x) =
(
1 + 1

q[n]q

)
x2 + x

[n]q
(1 + q(q + 2)) + q2(1+q)

[n]2q
.

Lemma 2.2. The following hold:

1. D(�,�)
n,q (1, x) = 1,
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2. D(�,�)
n,q (t, x) =

[n]qx+q+�
[n]q+� ,

3. D(�,�)
n,q (t2, x) =

( [n]q(q[n]q+1)
q([n]q+�)2

)
x2 +

(
(1+q(q+2))[n]q+2�[n]q

([n]q+�)2

)
x +

q2(1+q)+2q�+�2

([n]q+�)2 .

Proof. The operator D(�,�)
n,q is well defined for 1, t, t2 by Lemma 2.1, and x ∈

[0,∞), we have
D(�,�)

n,q (1, x) = Dq
n(1, x) = 1,

D(�,�)
n,q (t, x) =

[n]q
[n]q+�D

q
n(t, x) +

�
[n]q+�D

q
n(1, x) =

[n]qx+q+�
[n]q+� .

Finally,

D(�,�)
n,q (t2, x) =

[n]2q
([n]q+�)2D

q
n(t

2, x) +
2[n]q�

([n]q+�)2D
q
n(t, x) +

�2

([n]q+�)2D
q
n(1, x)

=
[n]q(q[n]q+1)
q([n]q+�)2 x2 +

(
(1+q(q+2))[n]q+2�[n]q)

([n]q+�)2

)
x

+ q2(1+q)+2q�+�2

([n]q+�)2 .

Remark 2.3. If we put q = 1 and � = � = 0, we get the moments of Baskakov-
Szász operators (1) as Dn(t, x) =

nx+1
n and Dn(t

2, x) = 1
n2 [n(n+1)x2+4nx+2].

Lemma 2.4. If we define the central moments as �q
n,m(x) = D(�,�)

n,q ((t− x)m, x),
m ∈ ℕ. Then

�q
n,1(x) = D(�,�)

n,q (t− x, x) = q+�−�x
[n]q+� ,

�n(q;x) = �q
n,2(x) = D(�,�)

n,q ((t− x)2, x) =
(

[n]q(q[n]q+1)
q([n]q+�)2 + 1− 2[n]q

[n]q+�

)
x2

+
(

[n]q+q2[n]q−2��−2q�
([n]q+�)2

)
x+ q2(1+q)+2q�+�2

([n]q+�)2 .

Proof. Notice that

�q
n,1(x) = D(�,�)

n,q ((t− x), x)

= D(�,�)
n,q (t, x)− xD(�,�)

n,q (1, x) =
q+[n]qx+�

[n]q+� − x = q+�−�x
[n]q+� .

�q
n,2(x) = D(�,�)

n,q ((t− x)2, x) = D(�,�)
n,q (t2, x)− 2xD(�,�)

n,q (t, x) + x2D(�,�)
n,q (1, x)

=
[n]q(q[n]q+1)
q([n]q+�)2 x2 +

(
(1+q(q+2))[n]q+2�[n]q

([n]q+�)2

)
x

+ q2(1+q)+2q�+�2

([n]q+�)2 − 2x
(

[n]qx+�+q
[n]q+�

)
+ x2

=
(

[n]q(q[n]q+1)
q([n]q+�)2 + 1− 2[n]q

[n]q+�

)
x2

+
(

[n]q+q2[n]q−2��−2q�
([n]q+�)2

)
x+ q2(1+q)+2q�+�2

([n]q+�)2 .
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Remark 2.5. For all m ∈ ℕ, 0 ≤ � ≤ �; we have the following recursive relation
for the images of the monomials tm under D�,�

n,q (t
m, x) in terms of Dq

n(t
j , x), j =

0, 1, 2, ...,m as

D(�,�)
n,q (tm, x) =

m∑

j=0

(
m

j

)
[n]jq�

m−j

([n]q+�)mDq
n(t

j , x).

3. Direct result and asymptotic formula

Let the space CB[0,∞) of all continuous and bounded functions be endowed with
the norm ∥f∥ = sup{∣f(x)∣ : x ∈ [0,∞)}. Further let us consider the following
K-functional:

K2(f, �) = inf
g∈W 2

∞

{∥f − g∥+ �∥g′′∥}, (7)

where � > 0 and W 2
∞ = {g ∈ CB[0,∞) : g′, g′′ ∈ CB [0,∞)}.

By the method as given in ([4], p.177, Theorem 2.4), there exists an absolute
constant C > 0 such that

K2(f, �) ≤ C!2(f,
√
�), (8)

where

!2(f,
√
�) = sup

0<ℎ<
√
�

sup
x∈[0,∞)

∣f(x+ 2ℎ)− 2f(x+ ℎ) + f(x)∣ (9)

is the second order modulus of smoothness of f ∈ CB[0,∞). Also we set

!(f,
√
�) = sup

0<ℎ<
√
�

sup
x∈[0,∞)

∣f(x+ ℎ)− f(x)∣. (10)

Theorem 3.1. Let f ∈ CB [0,∞) and 0 < q < 1. Then for all x ∈ [0,∞), there
exists an absolute constant M > 0 such that

∣D�,�
n,q (f, x)− f(x)∣ ≤ M!2

(
f,
√
�q
n,2 + (�q

n,1)
2
)
+ !(f, �q

n,1). (11)

Proof. Let g ∈ W 2
∞ and x, t ∈ [0,∞). By Taylor’s expansion, we have

g(t) = g(x) + g′(x)(t − x) +

∫ t

x

(t− u)g′′(u)du. (12)

Define

D̃(�,�)
n,q (f, x) = D(�,�)

n,q (f, x) + f(x)− f
(

[n]qx+q+�
[n]q+�

)
. (13)
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Now, we have D̃(�,�)
n,q (t − x, x) = 0, t ∈ [0,∞). Applying D̃�,�

n,q on both sides of
(12), we get

D̃(�,�)
n,q (g, x)− g(x) = g′(x)D̃(�,�)

n,q ((t− x), x) + D̃(�,�)
n,q

(∫ t

x

(t− u)g′′(u)du, x

)

= D(�,�)
n,q

(∫ t

x

(t− u)g′′(u)du, x

)

+

∫ x+
�−�x+q
[n]q+�

x

(
x+ �−�x+q

[n]q+� − u
)
g′′(u)du,

on the other hand
∣∣ ∫ t

x
(x− u)g′′(u)du

∣∣ ≤ ∥g′′∥(t− x)2 and

∫ x+
�−�x+q
[n]q+�

x

(
x+ �−�x+q

[n]q+� − u
)
g′′(u)du ≤

(
x+ �−�x+q

[n]q+� − x
)2

∥g′′∥

= ∥g′′∥
(
D(�,�)

n,q (t− x, x)
)2

= ∥g′′∥
(
�q
n,1(x)

)2
.

One can do this

∣∣D̃(�,�)
n,q (g, x)− g(x)

∣∣ ≤
∣∣D(�,�)

n,q

(∫ t

x

(t− u)g′′(u)du, x

) ∣∣

+
∣∣
∫ x+

�−�x+q
[n]q+�

x

(
x+ �−�x+q

[n]q+� − u
)
g′′(u)du

∣∣

≤ ∥g′′∥D(�,�)
n,q

(
(t− x)2, x

)
+ ∥g′′∥

(
�q
n,1(x)

)2

≤ ∥g′′∥
[
�q
n,2(x) +

(
�q
n,1(x)

)2 ]
.

We observe that,

∣∣D(�,�)
n,q (f, x) − f(x)

∣∣ ≤
∣∣D̃(�,�)

n,q (f − g, x)− (f − g)(x)
∣∣

+
∣∣D̃(�,�)

n,q (g, x)− g(x)
∣∣ +

∣∣f(x)− f
(
x+ �−�x+q

[n]q+�

) ∣∣

≤ 4∥f − g∥+ ∥g′′∥
[
�q
n,2(x) +

(
�q
n,1(x)

)2 ]
+ !(f, �q

n,1(x)).

Now, taking infimum on the right-hand side over all g ∈ C2
B[0,∞) and from (8),

we get

∣∣D(�,�)
n,q (f, x)− f(x)

∣∣ ≤ 4K2

(
f, �q

n,2(x) +
(
�q
n,1(x)

)2)
+ !(f, �q

n,1(x))

≤ M!2

(
f,

√
�q
n,2(x) +

(
�q
n,1(x)

)2
)
+ !(f, �q

n,1(x)),

which proves the theorem.
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Theorem 3.2. Let q = qn satisfies 0 < qn < 1 and let qn → 1 as n → ∞. For
each f ∈ C2

x[0,∞) and 
 > 0, we have

lim
n→∞

sup
x∈[0,∞)

∣D(�,�)
n,qn

(f,x)−f(x)∣
(1+x2)1+
 = 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

∣D(�,�)
n,qn

(f,x)−f(x)∣
(1+x2)1+
 ≤ sup

x≤x0

∣D(�,�)
n,qn

(f,x)−f(x)∣
(1+x2)1+
 + sup

x≥x0

∣D(�,�)
n,qn

(f,x)−f(x)∣
(1+x2)1+


≤ ∥D(�,�)
n,qn (f)− f∥C[0,x0] + ∥f∥x2 sup

x≥x0

∣D(�,�)
n,qn

(1+t2,x)∣
(1+x2)1+


+ sup
x≥x0

∣f(x)∣
(1+x2)1+
 .

The first term of the above inequality tends to zero from Theorem 3.1. For some

calculation, it is easily seen that for any fixed x0 > 0 and supx≥x0

∣D(�,�)
n,qn

(1+t2,x)∣
(1+x2)1+


tends to zero as n → ∞. We can choose x0 > 0 so large that the last part of the
above inequality can be made small enough. Thus the proof is completed.

4. Voronovskaja type theorem

Our Next Result in this section is the Voronovskaja type asymptotic formula:
Let Bx2 [0,∞) = {f : for every x ∈ [0,∞), ∣f(x)∣ ≤ Mf (1 + x2)}, Mf being a
constant depending on f . By Cx2 [0,∞), we denote the subspace of all continuous
function belonging to Bx2 [0,∞). Also, C∗

x2 [0,∞) is subspace of all function f ∈
Cx2 [0,∞) for which limx→∞

f(x)
1+x2 is finite. The norm on C∗

x2 [0,∞) is ∥f∥x2 =

supx∈[0,∞)
∣f(x)∣
1+x2 .

Lemma 4.1. Assume that qn ∈ (0, 1), q → 1 as n → ∞. Then, for every x ∈
[0,∞), we have

lim
n→∞

[n]qnD(�,�)
n,qn (t− x, x) = �− �x+ 1,

and

lim
n→∞

[n]qnD(�,�)
n,qn ((t− x)2, x) = x(x+ 2).

Theorem 4.2. Let f be bounded and integrable on the interval [0,∞). First and
second derivatives of f exists at a fixed point x ∈ [0,∞) and q = qn ∈ (0, 1) such
that q = qn → 1 as n → ∞, then

lim
n→∞

[n]qn
[
D(�,�)

n,qn (f, x)− f(x)
]
= (�− �x+ 1)f ′(x) + x(x + 2)/2f ′′(x).
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Proof. Using Taylor’s expansion of f , we can write

f(t)− f(x) = (t− x)f ′(x) + (t−x)2

2! f ′′(x) + r(t, x)(t − x)2,

where r(t, x) is Peano form of the remainder and limt→x r(t, x) = 0. Applying

the operator D(�,�)
n,qn to above relation, we get

D(�,�)
n,qn (f, x)− f(x) = f ′(x)D(�,�)

n,qn (t− x, x) + f ′′(x)
2 D(�,�)

n,qn ((t− x)2, x)

+D(�,�)
n,qn (r(t, x)(t − x)2, x)

= f ′(x)�qn
n,1(x) +

f ′′(x)
2 �qn

n,2(x) +D(�,�)
n,qn (r(t, x)(t − x)2, x),

where �qn
n,1 and �qn

n,2 are defined in Lemma 2.4.
Using Cauchy-Schwarz inequality, we have

D(�,�)
n,qn (r(t, x)(t − x)2, x) ≤

√
D(�,�)

n,qn (r2(t, x), x)

√
D(�,�)

n,qn ((t− x)4, x). (14)

We observe that r2(x, x) = 0 and r2(⋅, x) ∈ C∗
x2 [0,∞). Then it follows that

lim
n→∞

[n]qnD(�,�)
n,qn (r2(t, x), x) = r2(x, x) = 0, (15)

uniformly with respect to x ∈ [0, A], where A > 0. Now from (15) and (14), we
obtain

lim
n→∞

[n]qnD(�,�)
n,qn (r(t, x)(t − x)2, x) = 0.

Thus, we have

lim
n→∞

[n]qn(D(�,�)
n,qn (f, x)− f(x)) = lim

n→∞
[n]qnf

′(x)D(�,�)
n,qn (t− x, x)

+ lim
n→∞

[n]qn
f ′′(x)

2 D(�,�)
n,qn ((t− x)2, x).

Using Lemma 4.1, we get

lim
n→∞

[n]qn(D(�,�)
n,qn (f, x)− f(x)) = (� − �x+ 1)f ′(x) + x(2 + x)/2f ′′(x),

which completes the proof.

Now we discuss the weighted approximation theorem, when the approxima-
tion formula holds true on the interval [0,∞).

Theorem 4.3. Let q = qn satisfies 0 < qn < 1 and let qn → 1 as n → ∞. For

each f ∈ C∗
x2 [0,∞), we have

lim
n→∞

∥D(�,�)
n,qn (f, x)− f(x)∥x2 = 0.
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Proof. Using the theorem in [6] and [14], we see that it is sufficient to verify that
the following three conditions

lim
n→∞

∥D(�,�)
n,qn (tr, x)− xr∥x2 = 0, r = 0, 1, 2. (16)

Since, D(�,�)
n,qn (1, x) = 1, the first condition of (16) is satisfied for r = 0. Now,

∥D(�,�)
n,qn (t, x) − x∥x2 = sup

x∈[0,∞)

∣D(�,�)
n,qn

(t,x)−x∣
1+x2

≤ sup
x∈[0,∞)

∣∣ [n]qx+q+�
[n]q+� − x

∣∣ × 1
1+x2

≤
∣∣ [n]q
([n]q+�)

∣∣ sup
x∈[0,∞)

x
1+x2 +

∣∣ q+�
([n]q+�)

∣∣ sup
x∈[0,∞)

1
1+x2

− sup
x∈[0,∞)

x
1+x2

→ 0 as [n]q → ∞.

Therefore, condition (16) holds for r = 1. Similarly, we can write

∥D(�,�)
n,qn (t2, x)− x2∥x2 = sup

x∈[0,∞)

∣D(�,�)
n,qn

(t2,x)−x2∣
1+x2

≤
∣∣
(

[n]q(q[n]q+1)
q([n]q+�)2 − 1

) ∣∣ sup
x∈[0,∞)

x2

1+x2

+
∣∣ (1+q(q+2))[n]q+2�[n]q)

([n]q+�)2

∣∣ sup
x∈[0,∞)

x
1+x2 +

∣∣ q2(1+q)+2q�+�2

([n]q+�)2

∣∣ sup
x∈[0,∞)

1
1+x2

which implies that ∥D(�,�)
n,qn (t2, x) − x2∥x2 → 0 as n → ∞. Thus the proof is

completed.

5. Rate of convergence

Now we give a rate of convergence theorem for the operator D(�,�)
n,q .

Theorem 5.1. Let f ∈ Cx2 [0,∞), q = qn ∈ (0, 1) such that qn → 1 as n → ∞ and

!a+1(f, �) be its modulus of continuity on the finite interval [0, a+ 1] ⊂ [0,∞),
where a > 0. Then, we have

∣D(�,�)
n,qn (f)− f ∣ ≤ 6Mf(1 + a2)�n(qn, x) + 2!a+1

(
f,
√
�n(qn, x)

)
.
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Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

∣f(t)− f(x)∣ ≤ Mf (2 + x2 + t2)

≤ Mf (2 + 3x2 + 2(t− x)2)

≤ 3Mf(1 + x2 + (t− x)2)

∣f(t)− f(x)∣ ≤ 6Mf(1 + a2)(t− x)2. (17)

For x ∈ [0, a] and t ≤ a+ 1, we have

∣f(t)− f(x)∣ ≤ !a+1(f, ∣t− x∣) ≤
(
1 + ∣t−x∣

�

)
!a+1(f, �) (18)

with � > 0.
From (17) and (18), we get

∣f(t)− f(x)∣ ≤ 6Mf (1 + a2)(t− x)2 +
(
1 + ∣t−x∣

�

)
!a+1(f, �).

For x ∈ [0, a] and t ≥ 0,

∣D(�,�)
n,qn (f, x)− f(x)∣ ≤ D(�,�)

n,qn (∣f(x)− f(t)∣, x)
≤ 6Mf(1 + a2)D(�,�)

n,qn ((t− x)2, x)

+!a+1(f, �)

(
1 + 1

� [D
(�,�)
n,qn ((t− x)2, x)]

1
2

)
.

Hence, by Schwarz’s inequality and Lemma 2.4, for every qn ∈ (0, 1) and x ∈
[0, a]

∣D(�,�)
n,qn (f, x) − f(x)∣ ≤ 6Mf(1 + a2)�n(qn, x) + !a+1(f, �)

(
1 + 1

�

√
�n(qn, x)

)
.

By taking � =
√
�n(qn, x), we get the assertion of our theorem.

6. Better estimation

It is well know that the operators preserve constant as well as linear functions.
To make the convergence faster, King [12] proposed an approach to modify
the classical Bernstein polynomials, so that this sequence preserves two test
functions e0 and e1. After this several researchers have studied that many ap-
proximating operators L, possess these properties i.e. L(ei, x) = ei(x) where
ei(x) = xi(i = 0, 1), for examples Bernstein, Baskakov and Baskakov-Durrmeyer-
Stancu operators.

As the operators D(�,�)
n,q introduced in (6) preserve only the constant func-

tions so further modification of these operators is proposed to be made so that
the modified operators preserve the constant as well as linear functions, for this

purpose the modification of D(�,�)
n,q as follows:

D∗(�,�)
n,q (f, x) = = [n]q

∞∑

k=0

pqn,k(rn(x))

∫ q/1−qn

0

q−k−1sqn,k(t)f
( [n]qtq

−k+�
[n]q+�

)
dqt
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where rn(x) =
([n]q+�)x−(�+q)

[n]q
and x ∈ In =

[
�+q

[n]q+� ,∞
)
.

Lemma 6.1. For each x ∈ In, we have

D∗(�,�)
n,q (1, x) = 1, D∗(�,�)

n,q (t, x) = x,

D∗(�,�)
n,q (t2, x) =

[
[n]q

q([n]q+�)2 + 1
]
x2 +

[
[n]q(1+q2)
([n]q+�)2

]
x+

[
q3

([n]q+�)2

]
.

Lemma 6.2. For x ∈ In, the following holds,

�̃q
n,1(x) = D∗(�,�)

n,q (t− x, x) = 0,

�̃q
n,2(x) = D∗(�,�)

n,q ((t− x)2, x) =
[n]q

q([n]q+�)2x
2 +

[
[n]q(1+q2)
([n]q+�)2

]
x+

[
q3

([n]q+�)2

]
.

Theorem 6.3. Let f ∈ CB(In), x ∈ In and 0 < q < 1. Then, for n > 1, there
exist an absolute constant C > 0 such that

∣∣D∗(�,�)
n,q (f, x)− f(x)

∣∣ ≤ C!2

(
f,
√
�̃q
n,2(x)

)
.

Proof. Let g ∈ CB(In) and x, t ∈ In. By Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du. (19)

Applying D∗(�,�)
n,q , we get

D∗(�,�)
n,q (g, x)− g(x) = g′(x)D∗(�,�)

n,q ((t− x), x) +D∗(�,�)
n,q

(∫ t

x

(t− u)g′′(u)du, x

)
.

Obviously we have
∣∣ ∫ t

x(t− x)g′′(u)du
∣∣ ≤ (t− x)2∥g′′∥,

∣∣D∗(�,�)
n,q (g, x)− g(x)

∣∣ ≤ D∗(�,�)
n,q ((t− x)2, x)∥g′′∥ = �̃q

n,2∥g′′∥.

Since
∣∣D∗(�,�)

n,q (f, x)
∣∣ ≤ ∥f∥,

∣∣D∗(�,�)
n,q (f, x)− f(x)

∣∣ ≤
∣∣D∗(�,�)

n,q (f − g, x)− (f − g)(x)
∣∣ +

∣∣D∗(�,�)
n,q (g, x)− g(x)

∣∣
≤ 2∥f − g∥+ �̃q

n,2∥g′′∥.

Taking infimum overall g ∈ C2(In), we obtain

∣∣D∗(�,�)
n,q (f, x)− f(x)

∣∣ ≤ K2(f, �̃
q
n,2).
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In view of (8), we have

∣∣D∗(�,�)
n,q (f, x)− f(x)

∣∣ ≤ C!2

(
f,
√
�̃q
n,2

)
,

which proves the theorem.

Theorem 6.4. Assume that qn ∈ (0, 1), qn → 1 as n → ∞. Then for any

f ∈ C∗
x2(In) such that f ′, f ′′ ∈ C∗

x2(In), we have

lim
n→∞

[n]qn
[
D∗(�,�)

n,qn (f, x)− f(x)
]
= x(1 + x)/2f ′′(x)

for every x ∈ In.

Proof. The proof of above Theorem is in similar manner as Theorem 4.2.

7. Conclusion

The results of our lemmas and theorems are more general rather than the results
of any other previous proved lemmas and theorems, which will be enrich the
literate of Applications of quantum calculus in operator theory and convergence
estimates in the theory of approximations by linear positive operators. The
researchers and professionals working or intend to work in areas of analysis and
its applications will find this research article to be quite useful. Consequently,
the results so established may be found useful in several interesting situation
appearing in the literature on Mathematical Analysis, Applied Mathematics and
Mathematical Physics.
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