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Abstract. In this article we introduce some new sequence spaces using I-convergence
and sequences of Orlicz functions, and study some basic topological and algebraic
properties of these spaces. Also we investigate the relations between these spaces.
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1. Introduction

The notion of I-convergence was initially introduced by Kostyrko, Salat and
Wilczynski [5]. Later on, it was further investigated from the sequence space
point of view and linked with the summability theory by Salat, Tripathy and
Ziman [13, 14], Tripathy and Hazarika [18, 19, 20] and Kumar and Kumar [7],
Subramanian [15], Rath and Tripathy [11], Altin, Et and Tripathy [1], Tripathy
and Mahanta [22], Et, et.al [3], Tripathy [16], Tripathy and Sen [24], and many
others authors.
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Let X be a non-empty set, then a family of sets I C 2% (the class of all subsets
of X) is called an ideal if and only if for each A, B € I, we have AU B € I and
for each A € I and each B C A, we have B € I. A non-empty family of sets
F c 2% is a filter on X if and only if ¢ ¢ F, for each A, B € F, we have
ANB € F and each A € F and each A C B, we have B € F. An ideal I is
called non-trivial ideal if I # ¢ and X ¢ I. Clearly I C 2% is a non-trivial ideal
ifand only if F = F(I) ={X — A: A € I} is a filter on X. A non-trivial ideal
I € 2% is called admissible if and only if {{z}: 2 € X} C I. A non-trivial ideal
I is mazimal if there cannot exists any non-trivial ideal J # I containing I as a
subset. Further details on ideals of 2% can be found in [5, 23, 21, 25, 17].

Lemma 1.1. [5, Lemma 5.1] If I C 2V is a mazimal ideal, then for each A C N
we have either Ae I or N—Ael.

Ezxample 1.2. If we take I = Iy = {A C N : Ais a finite subset}. Then Iy is
a non-trivial admissible ideal of N and the corresponding convergence coincide
with the usual convergence.

Ezample 1.3. If we take I = Is = {A C N :0(A) =0} where §(A) denote the
asymptotic density of the set A. Then Is is a non-trivial admissible ideal of N
and the corresponding convergence coincide with the statistical convergence.

Recall in [6] that an Orlicz function M is continuous, convex, nondecreas-
ing function define for > 0 such that M(0) = 0 and M(z) > 0. If the
convexity of Orlicz function is replaced by sub-additivity that is M(z + y) <
M(z) + M (y) then this function is called the modulus function and character-
ized Nakano [9] and followed by Ruckle [12]. An Orlicz function M is said
to satisfy As—condition for all values of wu, if there exists K > 0 such that
M(2u) < KM (u), u> 0.

Lemma 1.4. Let M be an Orlicz function which satisfies As—condition and let
0 <3 < 1. Then for each t > §, we have M(t) < K§~1tM(2) for some constant
K >0.

Two Orlicz functions M; and My are said to be equivalent if there exist
positive constants «, 8 and g such that

M (a) < My(x) < My(B)

for all x with 0 < z < zg.
Lindenstrauss and Tzafriri [8] studied some Orlicz type sequence spaces de-
fined as follows:

EM:{(xk)Gw:ZM(%) < 00, forsomep>0}.

k=1
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The space £3; with the norm

]| :mf{p>o:§:M(%) < 1}

k=1

becomes a Banach space which is called an Orlicz sequence space. The space
lyr is closely related to the space £, which is an Orlicz sequence space with
M(t) = |t|P, for 1 < p < 0.

In the later stage, different classes of Orlicz sequence spaces were introduced
and studied by Parashar and Choudhury [10], Esi and Et [2] and many others.

Throughout the article N and R denote the set of positive integers and set
of real numbers respectively. The zero sequence is denoted by 6.

Let A = (ax;) be an infinite matrix of complex numbers. We write Az =
(Ak (2)) if A (z) =Y, aixxi converges for each i.

A sequence space Er is said to be solid (or normal) if (y;) € Er whenever
(xr) € Ep and |yg| < |xg| for all k € N.

Lemma 1.5. [4, p. 53] A sequence space Er is normal implies Er is monotone.

2. Some New Sequence Spaces

The following well-known inequality will be used throughout the article. Let
p = (pr) be any sequence of positive real numbers with 0 < py < sup, pr = G,
D = max{1,29~!} then

|ak -+ bk|pk <D (|ak|p’“ + |bk|pk)

for all k € N and ag, by € C. Also |ax|["* < max {1, |a|G} for all a € C.

The main aim of this article is to introduce the following sequence spaces
and examine some topological and algebraic properties of the resulting sequence
spaces. Let I be an admissible ideal of the non-empty set S and let p = (pi) be
a bounded sequence of positive real numbers for all k € N. Let M = (M) be a
sequence of Orlicz functions and A = (ay;) be an infinite matrix and = = () be
a sequence of real or complex numbers. For some p > 0, we define the following
sequence spaces:

WM, A, p) = {(zk) cw: {neN:%é [Mk <|A"“(i#)rk 25} el,

Wa(M, A, p) = {(ack) ew:{neN: %zn: [Mk ('A’“Pﬂ)rk zg} el,

k=1

WL(M, A,p) = {(%) Ew: Sup%k; |:Mk (M)]pk < 00,
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and

Wi (M, A p) = {(:L'k) € w: 3K > 0 such that

fren: 13 [ ()" i) s

k=1

3. Main Results

In this section we examine the basic topological and algebraic properties of these
spaces and obtain the inclusion relation between these spaces.

Theorem 3.1. W (M, A,p), WS (M, A, p) and WL (M, A,p) are linear spaces.

Proof. We establish the result for the space W{ (M, A, p) only and for the other
cases, it can be proved in a similar way. Let z = (z3) and y = (yx) be two
elements in W{ (M, A, p). Then there exist p; > 0 and ps > 0 such that

A%:{neN:%é{Mk(M;&)rkz }e[

frex 3 [ ()] 2l s

Let a, B be two scalars. By the continuity of each Orlicz function Mjs in the
sequence M = (M) the following inequality holds:

el

1y |Ak<x>|)]“
SDnZLamwwsz’“( o

k=1

i Z[|a|p1+|ﬂ|pz (Mk l)]
ont o (S st £ (5]

_ ol 181
where K = max {1’ el + 187 alpi+1B17s }

| ™

and

B

wlo

(\o}
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From the above relation we obtain the following:
1 n A Pk
nEN:—E:Ph<L£@£i&m>] > e
n &= lafp1 + |B]p2
1y Ak ()]
- N:DK-— My | ———— >
c {oeeont 3 >

P1
€
- 1.
3

U{nEN:DK%Zn: |:Mk (@)]m

This completes the proof. [

| ™

v

Remark 3.2. Tt is easy to verify that the space W (M, A, p) is a linear space.

Theorem 3.3. The space WE (M, A, p) is a paranormed space (not totally para-
normed) with the paranorm g defined by

g(z) = inf {pz;;; : sup My, (M> <1, for some p > 0} ,
K p

where H = max {1,sup, px}-

Proof. Clearly g(—z) = g(x) and ¢g(f) = 0. Let « = (xx) and y = (yx) be two
elements in WX (M, A, p). Then for p > 0 we put

T

P1

Ay = {pg > 0 : sup My <M) < 1}.
k P2

Let p1 € Ay and po € As. If p = p1 + p2 then we obtain the following

(Ml i) g (M) ey ()

and

Thus we have

Pk
sup |:Mk (IAk (»Hy)l)] <1
k P
and

g(x+y) = inf{(ﬂl + ) ipreAipae Az}
=g(z) +9(y)
P P

< inf {pl_H& 1p1 € Al} +inf{p2H D pg € AQ}
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Let t™ — L where t™, L € C and let g(z™ — ) — 0 as m — oo. To prove that
g(tmax™ — Lz) — 0 as m — co. We put

v i (1)

o fo gl (B2 )

By the continuity of the sequence M = (M},) we observe that

( |Ag (tma™ — Lz)| >
My,
|tm - L|pm + |L|ps

< M, <|Ak (tmz™ L:cm)|> LM ( |A (Lz™ — Lax)] >
B [t™ — L] pm + |L]| ps [t™ — L] pm + |L]| ps
=y (a7
= Q" = Llpm +Llpa P
Loy, (el =)
[t™ — L| pm + L] ps Ps

and

From the above inequality it follows that

A (tmae™ — [ Pk
Sup[Mk<| k(" z)| )] <1
k |tm—L|pm+|L|ps

and consequently
g (t"x™ — Lx)
=inf { (|t = Llpw +|Llps) # : pu € As,p, € As}
<™~ L% inf { (o) # : p € A3} + LT inf { () : s € A}
<max {|t" ~ LI, ]¢" ~ LI } g(@™) + max {|LL |L|% g™ — ). (1)
Note that g (z™) < g(z) + g (™ — z) for all m € N. Hence by our assumption

the right hand side of the relation (1) tends to 0 as m — oo and the result
follows. This completes the proof. ]

Theorem 3.4. Let M = (M) and S = (Sk) be sequences of Orlicz functions.
Then the following hold:

(1) WE(S,A,p) € WI(M oS, A,p), provided p = (px) be such that Gy =
inf pg, > 0.
(i) WI(M, A, p) N WE(S,A,p) CWI(M+S, A, p).
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Proof. (i) Let € > 0 be given. Choose £; > 0 such that max {5?,5?0} < e.

Choose 0 < § < 1 such that 0 < ¢ < ¢ implies that M (t) < ; for each k € N.
Let = (z) be any element in W{ (S, 4,p). Put

1 n A Pk
Ag{neN:—E:{Sk (Mﬂ zaG}.
n p

k=1
Then by the definition of ideal we have As € I. If n ¢ As we have

(42 <

k=1

-y [ ()] e

[ (LY < =128
S(|Ak()|) 5 )

Using the continuity of the sequence M = (M},) from the relation (2) we have

A
My, <Sk <%)) <ep, fork=1,2,3,...n

Consequently we get

- [ (s (M) e <

S (2]

This implies that

{n eEN: %zn: [Mk (Sk ('A’“p(x”))rk > g} CAyel

k=1

This completes the proof.
(i) Let = = (xx) € W{(M, A,p) N WL(S, A, p). Then by the following in-
equality the result follows:
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The proof of the following theorems can be established using standard tech-
niques, so omitted.

Theorem 3.5. Let 0 < pix < g, and (Z—Z) is bounded, then

WI(M, A, q) € WI(M, A, p).

Theorem 3.6. For any two sequences p = (pr) and q¢ = (qi) of positive real
numbers, then the following holds:

Z(M, A,p) N Z(M, A, q) # ¢, for Z=W' Wi, WL and WZ.

Proposition 3.7. The sequence spaces Z(M, A, p) are normal as well as monotone
for the space Z = W{ and WL .

Proof. We give the prove of the proposition for W{ (M, A,p) only. Let x =
() € WI(M, A, p) and y = (yx) be such that |yx| < |zx| for all kK € N. Then
for given € > 0 we have

p{nen:dy i (W) e

k=1

Again the set

| e

k=1

Hence E € I and so y = (yx) € W (M, A, p). Thus the space W (M, A, p) is
normal. Also from the Lemma 1.5, it follows that W{ (M, 4, p) is monotone. m
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