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Abstract. In this article we introduce some new sequence spaces using I-convergence

and sequences of Orlicz functions, and study some basic topological and algebraic

properties of these spaces. Also we investigate the relations between these spaces.
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1. Introduction

The notion of I-convergence was initially introduced by Kostyrko, Salat and
Wilczynski [5]. Later on, it was further investigated from the sequence space
point of view and linked with the summability theory by Salat, Tripathy and
Ziman [13, 14], Tripathy and Hazarika [18, 19, 20] and Kumar and Kumar [7],
Subramanian [15], Rath and Tripathy [11], Altin, Et and Tripathy [1], Tripathy
and Mahanta [22], Et, et.al [3], Tripathy [16], Tripathy and Sen [24], and many
others authors.
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LetX be a non-empty set, then a family of sets I ⊂ 2X (the class of all subsets
of X) is called an ideal if and only if for each A,B ∈ I, we have A ∪B ∈ I and
for each A ∈ I and each B ⊂ A, we have B ∈ I. A non-empty family of sets
F ⊂ 2X is a filter on X if and only if � /∈ F , for each A,B ∈ F , we have
A ∩ B ∈ F and each A ∈ F and each A ⊂ B, we have B ∈ F . An ideal I is
called non-trivial ideal if I ∕= � and X /∈ I. Clearly I ⊂ 2X is a non-trivial ideal
if and only if F = F (I) = {X − A : A ∈ I} is a filter on X . A non-trivial ideal
I ⊂ 2X is called admissible if and only if {{x} : x ∈ X} ⊂ I. A non-trivial ideal
I is maximal if there cannot exists any non-trivial ideal J ∕= I containing I as a
subset. Further details on ideals of 2X can be found in [5, 23, 21, 25, 17].

Lemma 1.1. [5, Lemma 5.1] If I ⊂ 2N is a maximal ideal, then for each A ⊂ N
we have either A ∈ I or N −A ∈ I.

Example 1.2. If we take I = If = {A ⊆ N : A is a finite subset}. Then If is
a non-trivial admissible ideal of N and the corresponding convergence coincide
with the usual convergence.

Example 1.3. If we take I = I� = {A ⊆ N : �(A) = 0} where �(A) denote the
asymptotic density of the set A. Then I� is a non-trivial admissible ideal of N
and the corresponding convergence coincide with the statistical convergence.

Recall in [6] that an Orlicz function M is continuous, convex, nondecreas-
ing function define for x > 0 such that M(0) = 0 and M(x) > 0. If the
convexity of Orlicz function is replaced by sub-additivity that is M(x + y) ≤
M(x) +M(y) then this function is called the modulus function and character-
ized Nakano [9] and followed by Ruckle [12]. An Orlicz function M is said
to satisfy Δ2−condition for all values of u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Lemma 1.4. Let M be an Orlicz function which satisfies Δ2−condition and let
0 < � < 1. Then for each t ≥ �, we have M(t) < K�−1tM(2) for some constant
K > 0.

Two Orlicz functions M1 and M2 are said to be equivalent if there exist
positive constants �, � and x0 such that

M1(�) ≤ M2(x) ≤ M1(�)

for all x with 0 ≤ x < x0.

Lindenstrauss and Tzafriri [8] studied some Orlicz type sequence spaces de-
fined as follows:

ℓM =

{

(xk) ∈ w :

∞
∑

k=1

M

(

∣xk∣

�

)

< ∞, for some � > 0

}

.
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The space ℓM with the norm

∣∣x∣∣ = inf

{

� > 0 :

∞
∑

k=1

M

(

∣xk∣

�

)

≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space
ℓM is closely related to the space ℓp which is an Orlicz sequence space with
M(t) = ∣t∣p, for 1 ≤ p < ∞.

In the later stage, different classes of Orlicz sequence spaces were introduced
and studied by Parashar and Choudhury [10], Esi and Et [2] and many others.

Throughout the article N and R denote the set of positive integers and set
of real numbers respectively. The zero sequence is denoted by �.

Let A = (aki) be an infinite matrix of complex numbers. We write Ax =
(Ak (x)) if Ak (x) =

∑

i aikxk converges for each i.

A sequence space EF is said to be solid (or normal) if (yk) ∈ EF whenever
(xk) ∈ EF and ∣yk∣ ≤ ∣xk∣ for all k ∈ N .

Lemma 1.5. [4, p. 53] A sequence space EF is normal implies EF is monotone.

2. Some New Sequence Spaces

The following well-known inequality will be used throughout the article. Let
p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,
D = max{1, 2G−1} then

∣ak + bk∣
pk ≤ D (∣ak∣

pk + ∣bk∣
pk)

for all k ∈ N and ak, bk ∈ C. Also ∣ak∣
pk ≤ max

{

1, ∣a∣
G
}

for all a ∈ C.

The main aim of this article is to introduce the following sequence spaces
and examine some topological and algebraic properties of the resulting sequence
spaces. Let I be an admissible ideal of the non-empty set S and let p = (pk) be
a bounded sequence of positive real numbers for all k ∈ N . Let M = (Mk) be a
sequence of Orlicz functions and A = (aki) be an infinite matrix and x = (xk) be
a sequence of real or complex numbers. For some � > 0, we define the following
sequence spaces:

W I(M, A, p) =

{

(xk) ∈ w :

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak(x)−L∣

�

)]pk

≥ "

}

∈ I,

W I
0 (M, A, p) =

{

(xk) ∈ w :

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�

)]pk

≥ "

}

∈ I,

WF
∞(M, A, p) =

{

(xk) ∈ w : sup
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�

)]pk

< ∞,
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and

W I
∞(M, A, p) =

{

(xk) ∈ w : ∃K > 0 such that
{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�

)]pk

≥ K

}

∈ I.

3. Main Results

In this section we examine the basic topological and algebraic properties of these
spaces and obtain the inclusion relation between these spaces.

Theorem 3.1. W I(M, A, p), W I
0 (M, A, p) and W I

∞(M, A, p) are linear spaces.

Proof. We establish the result for the space W I
0 (M, A, p) only and for the other

cases, it can be proved in a similar way. Let x = (xk) and y = (yk) be two
elements in W I

0 (M, A, p). Then there exist �1 > 0 and �2 > 0 such that

A "
2
=

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�1

)]pk

≥
"

2

}

∈ I

and

B "
2
=

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (y)∣

�2

)]pk

≥
"

2

}

∈ I.

Let �, � be two scalars. By the continuity of each Orlicz function M ′
ks in the

sequence M = (Mk) the following inequality holds:

1

n

n
∑

k=1

[

Mk

(

∣Ak (�x + �y)∣

∣�∣�1 + ∣�∣�2

)]pk

≤D
1

n

n
∑

k=1

[

∣�∣

∣�∣�1 + ∣�∣�2
Mk

(

∣Ak (x)∣

�1

)]pk

+D
1

n

n
∑

k=1

[

∣�∣

∣�∣�1 + ∣�∣�2
Mk

(

∣Ak (y)∣

�2

)]pk

≤DK
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�1

)]pk

+DK
1

n

n
∑

k=1

[

Mk

(

∣Ak (y)∣

�2

)]pk

,

where K = max
{

1, ∣�∣
∣�∣�1+∣�∣�2

, ∣�∣
�∣�1+∣�∣�2

}

.
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From the above relation we obtain the following:

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (�x+ �y)∣

∣�∣�1 + ∣�∣�2

)]pk

≥ "

}

⊆

{

n ∈ N : DK
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�1

)]pk

≥
"

2

}

∪

{

n ∈ N : DK
1

n

n
∑

k=1

[

Mk

(

∣Ak (y)∣

�2

)]pk

≥
"

2

}

∈ I.

This completes the proof.

Remark 3.2. It is easy to verify that the space WF
∞(M, A, p) is a linear space.

Theorem 3.3. The space WF
∞(M, A, p) is a paranormed space (not totally para-

normed) with the paranorm g defined by

g(x) = inf

{

�
pk
H : sup

k

Mk

(

∣Ak (x)∣

�

)

≤ 1, for some � > 0

}

,

where H = max {1, supk pk}.

Proof. Clearly g(−x) = g(x) and g(�) = 0. Let x = (xk) and y = (yk) be two
elements in WF

∞(M, A, p). Then for � > 0 we put

A1 =

{

�1 > 0 : sup
k

Mk

(

∣Ak (x)∣

�1

)

≤ 1

}

and

A2 =

{

�2 > 0 : sup
k

Mk

(

∣Ak (y)∣

�2

)

≤ 1

}

.

Let �1 ∈ A1 and �2 ∈ A2. If � = �1 + �2 then we obtain the following

Mk

(

∣Ak (x+ y)∣)

�

)

≤
�1

�1 + �2
Mk

(

∣Ak (x)∣)

�1

)

+
�2

�1 + �2
Mk

(

∣Ak (y)∣

�2

)

.

Thus we have

sup
k

[

Mk

(

∣Ak (x+ y)∣

�

)]pk

≤ 1

and

g(x+ y) = inf
{

(�1 + �2)
pk
H : �1 ∈ A1, �2 ∈ A2

}

= g(x) + g(y)

≤ inf
{

�
pk
H

1 : �1 ∈ A1

}

+ inf
{

�
pk
H

2 : �2 ∈ A2

}
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Let tm → L where tm, L ∈ C and let g(xm − x) → 0 as m → ∞. To prove that
g(tmxm − Lx) → 0 as m → ∞. We put

A3 =

{

�m > 0 : sup
k

[

Mk

(

∣Ak (x
m)∣

�m

)]pk

≤ 1

}

and

A4 =

{

�l > 0 : sup
k

[

Mk

(

∣Ak (x
m − x)∣

�s

)]pk

≤ 1

}

.

By the continuity of the sequence M = (Mk) we observe that

Mk

(

∣Ak (t
mxm − Lx)∣

∣tm − L∣ �m + ∣L∣ �s

)

≤ Mk

(

∣Ak (t
mxm − Lxm)∣

∣tm − L∣ �m + ∣L∣ �s

)

+Mk

(

∣Ak (Lx
m − Lx)∣

∣tm − L∣ �m + ∣L∣ �s

)

≤
∣tmk − L∣�m

∣tm − L∣ �m + ∣L∣ �s
Mk

(

∣Ak (x
m)∣

�m

)

+
∣L∣�s

∣tm − L∣ �m + ∣L∣ �s
Mk

(

∣Ak (x
m − x)∣

�s

)

.

From the above inequality it follows that

sup
k

[

Mk

(

∣Ak (t
mxm − Lx)∣

∣tm − L∣ �m + ∣L∣ �s

)]pk

≤ 1

and consequently

g (tmxm − Lx)

= inf
{

(∣tm − L∣�m + ∣L∣�s)
pk
H : �m ∈ A3, �s ∈ A4

}

≤∣tm − L∣
pk
H inf

{

(�m)
pk
H : �m ∈ A3

}

+ ∣L∣
pk
H inf

{

(�s)
pk
H : �s ∈ A4

}

≤max
{

∣tm − L∣, ∣tm − L∣
pk
H

}

g(xm) + max
{

∣L∣, ∣L∣
pk
H

}

g(xm − x). (1)

Note that g (xm) ≤ g(x) + g (xm − x) for all m ∈ N . Hence by our assumption
the right hand side of the relation (1) tends to 0 as m → ∞ and the result
follows. This completes the proof.

Theorem 3.4. Let M = (Mk) and S = (Sk) be sequences of Orlicz functions.
Then the following hold:

(i) W I
0 (S, A, p) ⊆ W I

0 (M ∘ S, A, p), provided p = (pk) be such that G0 =
inf pk > 0.

(ii) W I
0 (M, A, p) ∩W I

0 (S, A, p) ⊆ W I
0 (M + S, A, p).
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Proof. (i) Let " > 0 be given. Choose "1 > 0 such that max
{

"G1 , "
G0

1

}

< ".

Choose 0 < � < 1 such that 0 < t < � implies that Mk(t) < "1 for each k ∈ N .
Let x = (xk) be any element in W I

0 (S, A, p). Put

A� =

{

n ∈ N :
1

n

n
∑

k=1

[

Sk

(

∣Ak (x)∣

�

)]pk

≥ �G

}

.

Then by the definition of ideal we have A� ∈ I. If n /∈ A� we have

1

n

n
∑

k=1

[

Sk

(

∣Ak (x)∣

�

)]pk

< �G

⇒

n
∑

k=1

[

Sk

(

∣Ak (x)∣

�

)]pk

< n�G

⇒

[

Sk

(

∣Ak (x)∣

�

)]pk

< �G, for k = 1, 2, 3, ..., n

⇒Sk

(

∣Ak (x)∣

�

)

< �, (2)

Using the continuity of the sequence M = (Mk) from the relation (2) we have

Mk

(

Sk

(

∣Ak (x)∣

�

))

< "1, for k = 1, 2, 3, ..., n.

Consequently we get

n
∑

k=1

[

Mk

(

Sk

(

∣Ak (x)∣

�

))]pk

< n.max
{

"G1 , "
G0

1

}

< n"

⇒
1

n

n
∑

k=1

[

Mk

(

Sk

(

∣Ak (x)∣

�

))]pk

< ".

This implies that

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

Sk

(

∣Ak (x)∣

�

))]pk

≥ "

}

⊆ A� ∈ I.

This completes the proof.

(ii) Let x = (xk) ∈ W I
0 (M, A, p) ∩ W I

0 (S, A, p). Then by the following in-
equality the result follows:

1

n

n
∑

k=1

[

(Mk + Sk)

(

∣Ak (x)∣

�

)]pk

≤ D
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�

)]pk

+D
1

n

n
∑

k=1

[

Sk

(

∣Ak (x)∣

�

)]pk

.



484 A. Esi and M.K. Ozdemir

The proof of the following theorems can be established using standard tech-
niques, so omitted.

Theorem 3.5. Let 0 < pk ≤ qk and
(

qk
pk

)

is bounded, then

W I
0 (M, A, q) ⊆ W I

0 (M, A, p).

Theorem 3.6. For any two sequences p = (pk) and q = (qk) of positive real
numbers, then the following holds:

Z(M, A, p) ∩ Z(M, A, q) ∕= �, for Z = W I ,W I
0 ,W

I
∞ and WF

∞.

Proposition 3.7. The sequence spaces Z(M, A, p) are normal as well as monotone
for the space Z = W I

0 and W I
∞.

Proof. We give the prove of the proposition for W I
0 (M, A, p) only. Let x =

(xk) ∈ W I
0 (M, A, p) and y = (yk) be such that ∣yk∣ ≤ ∣xk∣ for all k ∈ N. Then

for given " > 0 we have

B =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (x)∣

�

)]pk

≥ "

}

∈ I.

Again the set

E =

{

n ∈ N :
1

n

n
∑

k=1

[

Mk

(

∣Ak (y)∣

�

)]pk

≥ "

}

⊆ B.

Hence E ∈ I and so y = (yk) ∈ W I
0 (M, A, p). Thus the space W I

0 (M, A, p) is
normal. Also from the Lemma 1.5, it follows that W I

0 (M, A, p) is monotone.
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[5] P. Kostyrko, T. S̆alàt, W. Wilczyński, I-convergence, Real Anal. Exch. 26 (2)
(2000-2001) 669–685.



On Real Valued I-Convergent A-Summable Sequence Spaces 485

[6] M.A. Krasnoselski, Y.B. Rutitskii, Convex Functions and Orlicz Functions, P.
Noordhoff Ltd., Groningen, 1961.

[7] V. Kumar, K. Kumar, On the ideal convergence of sequences of fuzzy numbers,
Inf. Sci. 178 (24) (2008) 4670–4678.

[8] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Isr. J. Math. 10 (1971)
379–390.

[9] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953) 29–49.

[10] S.D. Parashar, B. Choudhury, Sequence space defined by Orlicz functions, Indian
J. Pure Appl. Math. 25 (4) (1994) 419–428.

[11] D. Rath and B.C. Tripathy, Matrix maps on sequence spaces associated with sets
of integers, Indian J. Pure Appl. Math. 27 (2) (1996) 197–206.

[12] W.H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded,
Can. J. Math. 25 (1973) 973–978.
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