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Abstract. Players A and B play a betting game. Player A starts with initial money
n. In each of k rounds, player A can wager an integer w between 0 and what he has
currently. B then decides whether A wins or loses. If A wins, he receives w money,
and if A loses, he loses w money. A total of k rounds are played, but A can only lose
r times. What strategy should A use to end with the maximum amount of money,
D(n, k, r)?

In this paper, we provide a strategy for A to maximize his money and the algorithm

to calculate D(n, k, r). We study the periodicity of D(n+1, k, r)−D(n, k, r) relative to

n. We will also extend n and w to non-negative real numbers. The maximum amount

of money that A can obtain with continuous money is C(n, k, r), and we study the

relationship between C and D.
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1. Introduction

Professor Yeong-Nan Yeh[15] proposed the following problem:

Players A and B play a betting game. Player A starts with initial money n.
In each of k rounds, player A can wager an integer w between 0 and what he
has currently. B then decides whether A wins or loses. If A wins, he receives w
money, and if A loses, he loses w money. A total of k rounds are played, but A
can only lose r times. What strategy should A use to end with the maximum
amount of money, D(n, k, r)?

The strategy of this problem looks like that of a two-player zero-sum game
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with player A having choice of n+ 1 pure strategies with the w ranging from 0
to n and player B has choice of 2 pure strategies, letting A win or lose. However,
in a zero-sum game, A’s choice and B’s choice are independent. This problem
is much more difficult because in this game, B’s decision is made in response to
A’s decision.

When I first started the question, I wrote a computer program to calcu-
late many examples of D(n, k, r). With the data, I could identify the periodic
properties of D(n + 1, k, r) − D(n, k, r), but I could not find a general equa-
tion. Because of this, I decided to look at C(n, k, r), which extends the domains
of n and wagers to non-negative real numbers. By doing so, the pattern for
C(n, k, r) became very clear and I used the information from C(n, k, r) to help
explain certain properties of D(n, k, r).

In section 2, we describe the strategy for player A and the algorithm to calcu-
late D(n, k, r). We also discuss the periodicity of D(n+1, k, r)−D(n, k, r), and
properties and some specific examples of D. In section 3, we change the domains
of n and the wagers to non-negative real numbers, giving a new maximum money
function C(n, k, r). We find A’s strategy for C and the equation for C as well as
analyze special properties. In section 4, we talk about the relationship between
C and D and the formula for calculating the period of D(n+1, k, r)−D(n, k, r).

For further information in dynamic games, combinatorial identities, and num-
ber theory, please refer to [16–18].

2. Strategy and Properties of D(n, k, r)

In the case of r = 0 or r = k, B has no choices and A will wager the maximum
allowed for r = 0 and wagers 0 for r = k at all bets. So we have:

D(n, k, 0) = n ⋅ 2k, (1)

D(n, k, k) = n. (2)

Lemma 2.1. For k > r > 0, we have:

D(n, k, r) = max
0≤w≤n

{min{D(n− w, k − 1, r − 1), D(n+ w, k − 1, r)}} (3)

Proof. First, we prove that there exists a solution. Let G be the gain matrix
for player A. Gij = D(n − (i − 1) ⋅ (−1)j , k − 1, r − j + 1), where i = w + 1
and j = 1 means player A wins and j = 2 means player A loses. When player
A chooses a pure strategy, he knows that player B will minimize his gain, so
player A checks each row for the minimum value and chooses the row that
has the highest minimum value. That is, player A chooses a row to maximize
minj{Gij}. After player A chooses a row a, player B will choose the column b,
to minimize Gaj which is minj{Gaj} = Gab. That means A’s gain is Gab.

Secondly, we prove that the gain Gab is a stable solution. If player B changes
his choice to a different column, player A’s gain will increase because Gab is the
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minimum of Ga1 and Ga2. Therefore, player B won’t change his choice unless
Ga1 = Ga2, which will not change the solution. If player A changes his choice
to row c, player B will choose the column to minimize the gain to minj{Gcj},
which will reduce player A’s gain to minj{Gcj} ≤ minj{Gaj}. Therefore, player
A will not change his choice unless minj{Gcj} = minj{Gaj}, which does not
change the gain. So Gab is a stable solution.

Lastly, we show Gab is the maximum value. Assuming there is another solu-
tion Gde > Gab. That is, player A chooses row d. Since player B chose column
e, it implies Gde = minj{Gdj} ≤ minj{Gaj} = Gab. However, this contradicts
our previous assumption that Gde > Gab. Therefore, Gab is the maximum value.
That is, D(n, k, r) = Gab = max0≤w≤n{min{D(n−w, k− 1, r− 1), D(n+w, k−
1, r)}}.

Lemma 2.2.

(a) If n ≥ m, then D(n, k, r)−D(m, k, r) ≥ n−m;

(b) If k > l, then D(n, k, r) ≥ D(n, l, r);

(c) If r > s, then D(n, k, r) ≤ D(n, k, s);

(a) If r = k or n ≤ r, then D(n, k, r) = n.

Proof. (a) D(n, k, r) is the maximum money player A can have at the end with
initial money n. If player A is required to set aside n − m and only use m

as initial money to play the game, he will have maximum amount of money,
n−m+D(m, k, r) at the end of the game. Since D(n, k, r) is the upper bound,
we have D(n, k, r) ≥ n−m+D(m, k, r).

(b) If player A wagers 0 for the initial k − l bets, player B will of course let
player A win on those bets. Player A will have equal or less money at the end
due to the constraint.

(c) By Lemma 2.1 (a) and (b), we have D(n, k, r) = max0≤w≤n{min{D(n−
w, k − 1, r − 1), D(n + w, k − 1, r)}} ≤ D(n − w, k − 1, r − 1) ≤ D(n, k, r − 1).
Hence it follows from induction that (c) holds.

(d) Since player A has less than r + 1 money, he will lose the wager if he
wagers more than 0.

Define wd(n, k, r) as the wager to maximize min{D(n−w, k−1, r−1), D(n+
w, k − 1, r)}. If there is more than one optimized wager, we will define the
smallest wager as wd(n, k, r). For simplicity, let wd or wd(n) denote wd(n, k, r).
That is, D(n, k, r) = min{D(n− wd, k − 1, r − 1), D(n+ wd, k − 1, r)}.

Lemma 2.3. D(x+ y, k, r) ≥ D(x, k, r) +D(y, k, r).

Proof. For k = 1, we have D(x + y, 1, 0) = 2(x + y) = D(x, 1, 0) + D(y, 1, 0)
and D(x + y, 1, 1) = x + y = D(x, 1, 1) + D(y, 1, 1). Assuming the statement
is true for k ≤ m, for k = m + 1, if r = m + 1, D(x + y,m + 1,m + 1) =
D(x,m + 1,m + 1) +D(y,m + 1,m + 1). If r ≤ m, we have D(x,m + 1, r) =
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min{D(x+wd(x),m, r), D(x−wd(x),m, r−1)} and D(y,m+1, r) = min(D(y+
wd(y),m, r), D(y −wd(y),m, r − 1)). From our assumption, we have D(x+ y +
wd(x) + wd(y),m, r) ≥ D(x + wd(x),m, r) + D(y + wd(y),m, r) ≥ D(x,m +
1, r) + D(y,m + 1, r). Similarly, D(x + y − wd(x) − wd(y),m, r − 1) ≥ D(x −
wd(x),m, r − 1) + D(y − wd(y),m, r − 1) ≥ D(x,m + 1, r) + D(y,m + 1, r).
Therefore, D(x+ y,m+ 1, r) ≥ D(x,m+ 1, r) +D(y,m+ 1, r).

In order to use the algorithm from Lemma 2.1, we must compare all n + 1
pairs of values given from D(n−w, k− 1, r− 1) and D(n+w, k− 1, r). We will
introduce an integer wi in Lemma 2.4 such that we only need to compare the
values given from two numbers: D(n−wi, k − 1, r− 1) and D(n+wi, k − 1, r).
wd can therefore only be either wi or wi + 1.

Lemma 2.4. For given 0 < r < k and 0 < n, the function F (w) = D(n− w, k −
1, r− 1)−D(n+w, k− 1, r) is a monotonically decreasing function with respect

to 0 ≤ w ≤ n. Furthermore, there exists a unique integer 0 ≤ wi < n such that

F (wi) ≥ 0 and F (wi + 1) < 0.

Proof. For 0 ≤ w < n, from Lemma 2.2a, we have D(n − w, k − 1, r − 1) ≥
D(n− (w+1), k− 1, r− 1)+ 1 and D(n+(w+1), k− 1, r) ≥ D(n+w, k− 1, r).
Hence, F (w) = D(n − w, k − 1, r − 1) − D(n + w, k − 1, r) ≥ D(n − (w +
1), k − 1, r − 1) −D(n + (w + 1), k − 1, r) + 2 > F (w + 1). Therefore, F (w) =
D(n, k−1, r−1)−D(n+w, k−1, r) is a monotonically decreasing function with
respect to 0 ≤ w ≤ n. Moreover, since F (0) = D(n, k−1, r−1)−D(n, k−1, r) ≥ 0
by Lemma 2.2c and F (n) = D(0, k− 1, r− 1)−D(2n, k− 1, r) < 0, there exists
a unique integer 0 ≤ wi < n such that F (wi) ≥ 0 and F (wi + 1) < 0.

Lemma 2.5.

(a) D(n, k, r) = max{D(n+ wi, k − 1, r), D(n− wi − 1, k − 1, r − 1)};

(b) If D(n+wi, k−1, r) = D(n−wi, k−1, r−1), then wd = wi and D(n, k, r) =
D(n+ wd, k − 1, r) = D(n− wd, k − 1, r − 1);

(c) If D(n+ wi, k − 1, r) ∕= D(n− wi, k − 1, r − 1), then:

(i) If D(n+wi, k− 1, r) > D(n−wi − 1, k− 1, r− 1), then wd = wi and

D(n, k, r) = D(n+ wd, k − 1, r);

(ii) If D(n+wi, k− 1, r) < D(n−wi − 1, k− 1, r − 1), then wd = wi + 1
and D(n, k, r) = D(n− wd, k − 1, r − 1).

Proof. (a) From Lemma 2.4, there exists a unique integer 0 ≤ wi < n such that
F (wi) ≥ 0 and F (wi + 1) < 0. Hence for 0 ≤ w ≤ wi, D(n− w, k − 1, r − 1) ≥
D(n+w, k−1, r). For wi+1 ≤ w ≤ n, D(n−w, k−1, r−1) < D(n+w, k−1, r).
Therefore, Lemma 2.1, we have that D(n, k, r) = max0≤w≤n{min{D(n−w, k −
1, r−1), D(n+w, k−1, r)}} = max{max0≤w≤wi

{min{D(n−w, k−1, r−1), D(n+
w, k− 1, r)}},maxwi+1≤w≤n{min{D(n−w, k− 1, r− 1), D(n+w, k− 1, r)}}} =
max{max0≤w≤wi

{D(n+w, k − 1, r)},maxwi+1≤w≤n{D(n−w, k − 1, r− 1)}} =
max{D(n+ wi, k − 1, r), D(n− wi − 1, k − 1, r − 1)}.
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(b) If D(n+ wi, k − 1, r) = D(n− wi, k − 1, r − 1), then D(n, k, r) = D(n+
wi, k − 1, r) and wd = wi. This is because D(n−wi, k − 1, r− 1) > D(n−wi −
1, k − 1, r − 1).

(c) (i) If D(n+ wi, k − 1, r) > D(n− wi − 1, k − 1, r − 1), then D(n, k, r) =
D(n+ wd, k − 1, r) and wd = wi.

(c) (ii) If D(n+wi, k − 1, r) < D(n−wi − 1, k − 1, r − 1), then wd = wi + 1
and D(n, k, r) = D(n− wd, k − 1, r − 1).

Lemmas 2.4 and 2.5 allowed us to write a simple computer program to
find D(n, k, r). We then used this computer program to find many values of
D(n, k, r). From the data, we observed properties such as the periodicity of
D(n + 1, k, r) −D(n, k, r) with respect to n, but it is difficult to find a pattern
for the period. We will, however, be able to prove the periodicity and find the
period in Section 4. Some special cases are provided such as r = 1, r = 2, and
r = k − 1. In these cases, we will use Lemmas 2.4 and 2.5 to find wi, wd, and
D(n, k, r). The periodicity of D(n+1, k, r)−D(n, k, r) is also observed in these
cases.

Case 1 (r = 1):

For k = 2, D(n−wi, 1, 0) ≥ D(n+wi, 1, 1) implies 2(n−wi) ≥ n+wi. This
means wi ≤

n
3 . Similarly, D(n−wi−1, 1, 0) < D(n+wi+1, 1, 1) implies wi+1 >

n
3 , so we have wi = ⌊n

3 ⌋. D(3m + s, 2, 1) = max{D(2m + s − 1, 1, 0), D(4m +
s, 1, 1)} = max{2(2m+ s− 1), 4m+ s} = 4m+ s = ⌊ 4n

3 ⌋, where 0 ≤ s ≤ 2 and
wd = m. Therefore, D(n, 2, 1) = ⌊ 4n

3 ⌋ and wd = ⌊n
3 ⌋. We have observed that

for n ≥ 0, D(n + 1, 2, 1) −D(n, 2, 1) is a periodic sequence with a period of 3:
1, 1, 2, 1, 1, 2, 1, 1, 2, . . .We define P (2, 1) = 3.

For k = 3, D(n − wi, 2, 0) ≥ D(n + wi, 2, 1) and D(n − wi − 1, 2, 0) <

D(n+wi+1, 2, 1) imply 4(n−wi) ≥ ⌊ 4(n+wi)
3 ⌋ and 4(n−wi−1) < ⌊ 4(n+wi+1)

3 ⌋.
Therefore, we have wi = ⌊n

2 ⌋, so D(2m, 3, 1) = D(m, 2, 0) = D(3m, 2, 1) =
4m = 2n and wi = m. D(2m + 1, 3, 1) = max{D(m, 2, 0), D(3m + 1, 2, 1)} =

max{4m, ⌊ 4(3m+1)
3 ⌋} = ⌊ 4(3m+1)

3 ⌋ = 4m+1 = n+2⌊n
2 ⌋ and wd = m. Therefore,

D(n, 3, 1) = n + 2⌊n
2 ⌋ and wd = ⌊n

2 ⌋. We have observed that for n ≥ 0, D(n +
1, 3, 1) − D(n, 3, 1) is a periodic sequence with a period of 2: 1, 3, 1, 3, 1, 3,
. . .We define P (3, 1) = 2.

For k = 4, D(n − wi, 3, 0) ≥ D(n + wi, 3, 1) and D(n − wi − 1, 3, 0) <

D(n + wi + 1, 3, 1) imply 8(n − wi) ≥ n + wi + 2⌊n+wi

2 ⌋ and 8(n − wi − 1) <

n+wi +1+2⌊n+wi+1
2 ⌋. If n = 5m+ s, where 0 ≤ s < 5, then wi = 3m+ ⌊ s

2⌋ =
⌊ 3n

5 ⌋. D(5m+ s, 4, 1) = max{D(2m+ s−⌊ s
2⌋− 1, 3, 0), D(8m+ s+ ⌊ s

2⌋, 3, 1)} =

max{8(2m + s − ⌊ s
2⌋ − 1), 8m + s + ⌊ s

2⌋ + 2⌊
m+s+⌊ s

2 ⌋

2 ⌋} = 8m + s + ⌊ s
2⌋ +

2⌊
8m+s+⌊ s

2 ⌋

2 ⌋ = ⌊ 8n
5 ⌋+ 2⌊ 4n

5 ⌋ and wd = wi = ⌊ 3n
5 ⌋. We have observed that for

n ≥ 0, D(n+1, 4, 1) = D(n, 4, 1) is a periodic sequence with a period of 5: 1, 4,
3, 4, 4, 1, 4, 3, 4, 4, 1, 4, 3, 4, 4, . . .We define P (4, 1) = 5.

Examples of D(n, k, 1) are shown in Table 1. Later on, we will prove that if k
is even, P (k, 1) = k+1, if k is odd, P (k, 1) = k+1

2 , and D(n+1, k, r)−D(n, k, r)
is a periodic sequence with a period of P (k, r).
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k∖n 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11
2 1 2 4 5 6 8 9 10 12 13 14
3 1 4 5 8 9 12 13 16 17 20 21
4 1 5 8 12 16 17 21 24 28 32 33
5 1 8 16 17 24 32 33 40 48 49 56
6 1 16 24 32 40 49 64 65 80 88 96
7 1 24 40 64 65 88 104 128 129 152 168
8 1 40 65 104 128 152 192 216 256 257 296
9 1 65 128 192 256 257 321 384 448 512 513
10 1 128 256 321 448 512 577 704 769 896 1024

Table 1. Values of D(n, k, 1)

Case 2 (r = 2):

For k = 3, D(n−wi, 2, 1) ≥ D(n+wi, 2, 2) and D(n−wi − 1, 2, 1) < D(n+

wi+1, 2, 2) imply ⌊ 4(n−wi)
3 ⌋ ≥ n+wi and ⌊ 4(n−wi−1)

3 ⌋ < n+wi+1, so wi = ⌊n
7 ⌋.

D(7m+s, 3, 2) = max{D(6m+s, 2, 1), D(8m+s, 2, 2)}= max{⌊ 4(6m+s−1)
3 ⌋, 8m+

s} = 8m+ s = ⌊ 8n
7 ⌋ and wd = wi = ⌊n

7 ⌋ for 0 ≤ s < 7. We have observed that
for n ≥ 0, D(n + 1, 3, 2) −D(n, 3, 2) is a periodic sequence with a period of 7:
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, . . .We define P (3, 2) = 7.

For k = 4, D(n−wi, 3, 1) ≥ D(n+wi, 3, 2) and D(n−wi − 1, 3, 1) < D(n+

wi +1, 3, 2) imply n−wi +2⌊n−wi

2 ⌋ ≥ ⌊ 8(n+wi)
7 ⌋ and n−wi − 1+ 2⌊n−wi−1

2 ⌋ <

⌊ 8(n+wi+1)
7 ⌋.So we have wi = ⌊ n

11⌋+ ⌊ 2n+6
11 ⌋. If n = 11m+ s, let wi = 3m+ a.

Then, D(11m+ s, 4, 2) = max{D(8m+ s− a− 1, 3, 1), D(14m+ s+ a, 3, 2)} =

max{8m + s − a − 1 + 2⌊ 8m+s−a−1
2 ⌋, ⌊ 8(14m+s+a)

7 ⌋} = 16m + s + a + ⌊ s+a
7 ⌋

and wd = wi, where 0 ≤ s < 11. Therefore, D(n, 4, 2) = ⌊ 12n
11 ⌋ + ⌊ 4n+1

11 ⌋ and
wd = ⌊ n

11⌋+ ⌊ 2n+6
11 ⌋. We have observed that for n ≥ 0, D(n+1, 4, 2)−D(n, 4, 2)

is a periodic sequence with a period of 11: 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 2,
1, 1, 2, 1, 2, 1, 1, 3, . . .We define P (4, 2) = 11.

Table 2 shows examples of D(n, k, 2).

k∖n 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 10 11
4 1 2 4 5 6 8 9 11 12 13
5 1 2 5 6 8 11 12 16 17 18
6 1 2 6 8 12 16 17 21 24 27
7 1 2 8 16 21 24 27 32 34 40
8 1 2 16 24 27 34 44 49 59 64
9 1 2 24 34 44 59 65 76 88 104
10 1 2 34 59 65 88 112 128 145 168

Table 2. Values of D(n, k, 2)

From the above discussions and analyses, for small k and r, we have the
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explicit formula for D(n, k, r).

Corollary 2.6. D(n, 2, 1) = ⌊ 4n
3 ⌋; D(n, 3, 1) = n + 2⌊n

2 ⌋; D(n, 4, 1) = ⌊ 8n
5 ⌋ +

2⌊ 4n
5 ⌋; D(n, 3, 2) = ⌊ 8n

7 ⌋; D(n, 4, 2) = ⌊ 12n
11 ⌋+ ⌊ 4n+1

11 ⌋.

Case 3 (r = k − 1):

For k = 3, we have D(n, 2, 1) = ⌊ 4n
3 ⌋, wd = ⌊n

3 ⌋, and P (2, 1) = 3.

For k = 4, we have D(n, 3, 2) = ⌊ 8n
7 ⌋, wd = ⌊n

7 ⌋, and P (3, 2) = 7.

For k = 5, we have D(n, 4, 3) = ⌊ 16n
15 ⌋, wd = ⌊ n

15⌋, and P (4, 3) = 15.

We observe and will later prove that D(n, k, k − 1) = ⌊ n⋅2k

2k−1
⌋, wd = ⌊ n

2k−1
⌋,

and P (k, k − 1) = 2k − 1.

Table 3 shows examples of P (k, r).

k∖r 0 1 2 3 4 5 6 7 8
1 1 (1)
2 1 22 − 1 (1)
3 1 21 23 − 1 (1)
4 1 5 24 − 5 24 − 1 (1)
5 1 3 23 24 − 3 25 − 1 (1)
6 1 7 11 25 − 11 26 − 7 26 − 1 (1)
7 1 4 29 24 27 − 29 26 − 4 27 − 1 (1)
8 1 9 37 93 28 − 93 28 − 37 28 − 9 28 − 1 (1)
9 1 5 23 65 27 28 − 65 28 − 23 28 − 5 29 − 1

10 1 11 14 44 193 29 − 193 28 − 44 28 − 14 210 − 11

11 1 6 67 29 281 28 210 − 281 28 − 29 211 − 67

12 1 13 79 299 397 793 211 − 793 211 − 397 212 − 299

13 1 7 46 189 1093 595 210 211 − 595 213 − 1093

14 1 15 53 235 1471 3473 1619 212 − 1619 214 − 3473

15 1 8 121 144 1941 2472 9949 211 215 − 9949

Table 3. Values P (k, r)

3. Solutions of C(n, k, r)

Let the initial money n and wagers be non-negative real numbers and call the
maximum money player A can have after all k rounds C(n, k, r).

Lemma 3.1.

(a) C(1, k, 0) = 2k;

(b) C(1, k, k) = 1;

(c) D(n, k, r) ≤ C(n, k, r);

(d) C(n, k, r) = n ⋅ C(1, k, r).
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Proof. (a) If Player A wagers the maximum money allowed at each bet, he will
win all the bets and yield part (a).

(b) Player A cannot wager any amount of money other than 0 at each bet or
else he will lose the bet.

(c) Since D(n, k, r) is the money at the end with the constraint of integer
wagers and C(n, k, r) is the maximum money at the end without the constraint,
so D(n, k, r) ≤ C(n, k, r).

(d) Converting n dollars into 1 unit and changing the unit back to dollars at
the very end yields part (d). Therefore, C(n, k, r) is a continuous function with
respect to n.

Lemma 3.2. For given 0 < r < k, there exists a unique non-negative real number

wc(k, r) ≤ 1, which will be written as wc for simplicity, such that C(1−wc, k −
1, r − 1) = C(1 + wc, k − 1, r).

Proof. As w increases from 0 to n, C(1− w, k − 1, r − 1)− C(1 +w, k − 1, r) is
monotonically decreasing from C(1, k− 1, r− 1)−C(1, k− 1, r) ≥ 0 to C(0, k−
1, r − 1) − C(2, k − 1, r) = C(2, k − 1, r) < 0. Since C(1 − w, k − 1, r − 1) −
C(1 + w, k − 1, r) is continuous, there exists a unique number, wc, such that
C(1 − wc, k − 1, r − 1)− C(1 + wc, k − 1, r) = 0.

Similar to the integer case, we have that, for continuous wagers, C(1, k, r) =
max0≤w≤1{min{C(1− w, k − 1, r − 1), C(1 + w, k − 1, r)}}.

Lemma 3.3. For k > r > 0,

C(1, k, r) = C(1− wc, k − 1, r − 1) = C(1 + wc, k − 1, r) (4)

Proof. If w < wc, we have C(1 + w, k − 1, r) < C(1 + wc, k − 1, r) = C(1 −
wc, k − 1, r − 1) < C(1 − w, k − 1, r − 1). Therefore min{C(1 − wc, k − 1, r −
1), C(1+wc, k−1, r)} > min{C(1−w, k−1, r−1), C(1+w, k−1, r)}. Similarly,
If w > wc, we have C(1 − w, k − 1, r − 1) < C(1 − wc, k − 1, r − 1) = C(1 +
wc, k − 1, r) < C(1 + w, k − 1, r). Therefore min{C(1 − wc, k − 1, r − 1), C(1 +
wc, k− 1, r)} > min{C(1−w, k− 1, r− 1), C(1+w, k− 1, r)}. Since C(1, k, r) =
max0≤w≤1{min{C(1−w, k − 1, r − 1), C(1 +w, k − 1, r)}} we have C(1, k, r) =
C(1 − wc, k − 1, r − 1) = C(1 + wc, k − 1, r).

That is, for k > r > 0, player A chooses a wager at every possible bet such
that the maximum money at the very end is independent of whether player B
let him win or lose.

Lemma 3.4. G(k, r) =
r
∑

j=0

(

k

j

)

is the solution to the initial conditions G(k, 0) = 1,

G(k, k) = 2k, and the recurrence formula G(k, r) = G(k− 1, r− 1)+G(k− 1, r),
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where 0 < r < k.

Proof. It is easy to see that G(k, r) meets the initial conditions: G(k, 0) =
(

k

0

)

= 1 and G(k, k) =
k
∑

j=0

(

k

j

)

= 2k. For 0 < r < k, we have G(k, r) =

r
∑

j=1

(

k

j

)

+
(

k

0

)

=
r
∑

j=1

(
(

k−1
j

)

+
(

k−1
j−1

)

) +
(

k−1
0

)

= G(k − 1, r) + G(k − 1, r − 1).

Therefore, G(k, r)−G(k − 1, r) = G(k − 1, r − 1).

Lemma 3.5. If r and k are integers such that 0 ≤ r ≤ k, then:

(a) C(1, k, r) = 2k

G(k,r) ;

(b) wc(k, r) =
(k−1

r )
G(k,r) .

Proof. (a) The cases for r = 0 and r = k are trivial. For 0 < r < k, from Lemma
3.3, we have C(1 + wc, k − 1, r) = C(1 − wc, k − 1, r − 1), so (1 + wc) ⋅ C(1, k −

1, r) = (1− wc) ⋅ C(1, k − 1, r − 1) and wc =
C(1,k−1,r−1)−C(1,k−1,r)
C(1,k−1,r−1)+C(1,k−1,r) . Therefore,

1
C(1,k,r) =

1
2 ⋅ ( 1

C(1,k−1,r) +
1

C(1,k−1,r−1) ).

Let F (k, r) = 2k

C(1,k,r) . Then, we have F (k, r) = F (k − 1, r) +F (k − 1, r− 1)

for 0 < r < k, F (k, 0) = 2k

C(1,k,0) = 1, and F (k, k) = 2k

C(1,k,k) = 2k. Therefore,

from Lemma 3.4, we have that F (k, r) = G(k, r). We therefore have C(1, k, r) =
2k

G(k,r) .

(b) wc(k, r) =
G(k−1,r)−G(k−1,r−1)

G(k,r) =
(k−1

r )
G(k,r) .

Lemma 3.6. 1
C(1,k,r) +

1
C(1,k,k−r−1) = 1.

Proof. 2k

C(1,k,r) +
2k

C(1,k,k−r−1) = G(k, r)+G(k, k− r− 1) =
r
∑

j=0

(

k
j

)

+
k−r−1
∑

j=0

(

k
j

)

=

r
∑

j=0

(

k

j

)

+
k
∑

j=r+1

(

k

j

)

= 2k. Therefore, 1
C(1,k,r) +

1
C(1,k,k−r−1) = 1.

Theorem 3.7. C(n, k, r) = n⋅2k
r∑

j=0
(kj)

.

Proof. From Lemmas 3.1 (d) and 3.5 (a), we have that C(n, k, r) = n⋅2k
r∑

j=0
(kj)

.

It is obvious that C(n, k, r) has the following monotonic properties:

(a) If n > m, then C(n, k, r) > C(m, k, r);

(b) If k > m and n > 0, then C(n, k, r) > C(n,m, r);
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(c) If r > m and n > 0, then C(n, k, r) < C(n, k,m).
All the possible bets of C(1, k, r) form a binary rooted tree, called the C(1, k,

r) tree. Each possible bet is a node which is labeled as (l, s, u), where l is how
many bets are left over, s is how many times player A can still lose, and if there
are more than one node for the same l and s, we use a natural number u to label
them, where smaller u means earlier wins. Let the money owned at node (l, s, u)
be n(l, s, u). Then, the optimal wager at node (l, s, u) is n(l, s, u) ⋅wc(l, s). This
is because wc is the optimal wager when n = 1. The optimal wager at (l, s, u)
is a function of n, k, r, l, s, and u. For our application, we normally fix k and
r. For simplicity, we will call the optimal wagers of the C(n, k, r) tree ”wagers”
and define them as wn(l, s, u) from now on. The wager of the root node (k, r, 1)

is w1(k, r, 1) = 1 ⋅ wc(k, r) =
(k−1

r )
G(k,r) and the money owned for the root node is

n(k, r, 1) = 1. (0, 0, u), where 1 ≤ u ≤
(

k
r

)

, are leaf nodes which have no wagers
and its n(0, 0, u) = C(1, k, r).

The C(n, k, r) tree has the same structure as that of the C(1, k, r) tree except
at each node, the optimal and the money owned are exactly n times of the
corresponding wager and money owned of the C(1, k, r) tree, respectively.

Lemma 3.8. The C(n, k, r) tree has the following properties:

(a) C(n(l, s, u), l, s) = C(n, k, r);

(b) Money owned, n(l, s, u), and wager, wn(l, s, u) at node (l, s, u) are inde-

pendent of u.

Proof. We will use k as the variable for induction. (a) Nodes of the C(n, 1, 0)
tree are (1, 0, 1) and (0, 0, 1). n(1, 0, 1) = n, wn(1, 0, 1) = n, and n(0, 0, 1) = 2n.
C(n(1, 0, 1), 1, 0) = 2n = C(n(0, 0, 1), 0, 0) = C(n, 1, 0). Assuming the statement
is true for k ≤ m, for k = m+1, when r = m+1, the nodes of the C(n,m+1,m+
1) tree are (0, 0, 1) and (l, l, 1), where 0 < l ≤ m + 1. n(0, 0, 1) = n(l, l, 1) =
n, and wn(l, l, 1) = 0. C(n(0, 0, 1), 0, 0) = C(n(l, l, 1), l, l) = n(l, l, 1) = n =
C(n,m+1,m+1). For 0 ≤ r ≤ m, non-root nodes (l, s, u) of the C(n,m+1, r)
tree are nodes of the C(n ⋅ (1 + wc),m, r) tree or C(n ⋅ (1 − wc),m, r − 1) tree.
C(n(l, s, u), l, s) = C(n ⋅ (1 + wc),m, r) or C(n ⋅ (1− wc),m, r − 1). Since C(n ⋅
(1 +wc),m, r) = C(n ⋅ (1−wc),m, r− 1) = C(n,m+ 1, r), we have proven part
(a).

(b) From part (a), we have C(n(l, s, u1), l, s) = C(n, k, r) = C(n(l, s, u2), l, s).
This implies n(l, s, u1) = n(l, s, u2). Since wn(l, s, u) = n(l, s, u) ⋅ wc(l, s), both
n(l, s, u) and wn(l, s, u) are independent of u.

We will use n(l, s) and wn(l, s) instead of n(l, s, u) and wn(l, s, u). Note that
wn(l, s) = n(l, s) ⋅ wc(l, s).

Lemma 3.9.
(a) Wagers of the C(G(k, r), k, r) tree, wG(k,r)(k−m+1, r−j) = 2m−1 ⋅

(

k−m

r−j

)

,

where 1 ≤ m ≤ k and max{0, r +m− k − 1} ≤ j ≤ min{r,m− 1};
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(b) All the wagers of the C(G(k, r), k, r) tree are integers.

Proof. (a) Please refer to Tables 4 and 5 for visual aid. At the 1st bet (level
1) - the root node (k, r, 1), the money owned n(k, r) = G(k, r) and wager
wG(k,r)(k, r) =

(

k−1
r

)

.

At the 2nd bet (level 2), there are 2 possible nodes:

Node (k−1, r, 1): n(k−1, r) = G(k, r)+
(

k−1
r

)

= 2⋅G(k−1, r) and wG(k,r)(k−

1, r) = 2 ⋅
(

k−2
r

)

Node (k−1, r−1, 1): n(k−1, r−1) = 2⋅G(k−1, r−1) and wG(k,r)(k−1, r−1) =

2 ⋅
(

k−2
r−1

)

At the mtℎ bet (level m), nodes are (k −m+ 1, r − j, u), where max{0, r +
m− k − 1} ≤ j ≤ min{r,m− 1}.

Therefore, n(k −m+ 1, r− j) = 2m−1 ⋅G(k −m+ 1, r− j), and wG(k,r)(k −

m+ 1, r − j) = 2m−1 ⋅
(

k−m
r−j

)

.

(b) Since
(

k−m

r−j

)

are all integers, all the wagers are integers.

(5,3,1)

(4,2,1)

(3,1,1)

(2,0,1)

(1,0,4)

(0,0,10)

(2,1,3)

(1,0,3)

(0,0,9)

(1,1,6)

(0,0,8)

(3,2,2)

(2,1,2)

(1,0,2)

(0,0,7)

(1,1,5)

(0,0,6)

(2,2,3)

(1,1,4)

(0,0,5)

(4,3,1)

(3,2,1)

(2,1,1)

(1,0,1)

(0,0,4)

(1,1,3)

(0,0,3)

(2,2,2)

(1,1,2)

(0,0,2)

(3,3,1)

(2,2,1)

(1,1,1)

(0,0,1)

Table 4. The C(n, 5, 3) tree.

Definition 3.10. For any natural number k and any non-negative integer

r < k, we define g(k, k) = 2k and g(k, r) is the greatest common divisor of

all wG(k,r)(l, s) of the C(G(k, r), k, r) tree.

Let ℎ(k, r,m) denote 2m−1 ⋅gcd(
(

k−m

r

)

,
(

k−m

r−1

)

, . . . ,
(

k−m

r−m+1

)

), where 0 < m ≤
min{k− 1, k− r, r+1}. Note that ℎ(k, r,m) is the greatest common factor of all
the wagers at the mtℎ bet of the C(G(k, r), k, r) tree. Since wG(k,r)(r + 1, r) =

2k−r−1, we have ℎ(k, r, k − r) = 2k−r−1.
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l∖s 8 7 6 5 4 3 2 1 0

13
(

12
8

)

12 21 ⋅
(

11
8

)

21 ⋅
(

11
7

)

11 22 ⋅
(

10
8

)

22 ⋅
(

10
7

)

22 ⋅
(

10
6

)

10 23 ⋅
(

9
8

)

23 ⋅
(

9
7

)

23 ⋅
(

9
6

)

23 ⋅
(

9
5

)

9 24 24 ⋅
(

8
7

)

24 ⋅
(

8
6

)

24 ⋅
(

8
5

)

24 ⋅
(

8
4

)

8 0 25 25 ⋅
(

7
6

)

25 ⋅
(

7
5

)

25 ⋅
(

7
4

)

25 ⋅
(

7
3

)

7 0 26 26 ⋅
(

6
5

)

26 ⋅
(

6
4

)

26 ⋅
(

6
3

)

26 ⋅
(

6
2

)

6 0 27 27 ⋅
(

5
4

)

27 ⋅
(

5
3

)

27 ⋅
(

5
2

)

27 ⋅
(

5
1

)

5 0 28 28 ⋅
(

4
3

)

28 ⋅
(

4
2

)

28 ⋅
(

4
1

)

28

4 0 29 29 ⋅
(

3
2

)

29 ⋅
(

3
1

)

29

3 0 210 210 ⋅
(

2
1

)

210

2 0 211 211

1 0 212

0

Table 5. wG(13,8)(l, s) of the C(G(13, 8), 13, 8) tree

Lemma 3.11. For r < k, g(k, r) = gcd(ℎ(k, r, 1), ℎ(k, r, 2), . . . , ℎ(k, r,min(k −
1, k − r, r + 1))).

Proof. Since wG(k,r)(r + 1, r) = 2k−r−1, we have g(k, r) = 2g where g ≤ k −

r − 1. Also, 2k−r ∣ wG(k,r)(k − m, s) for m > k − r. Therefore, those cases
do not need to be included in the calculation of the gcd. That is, g(k, r) =
gcd(ℎ(k, r, 1), ℎ(k, r, 2), . . . , ℎ(k, r,min(k − 1, k − r, r + 1))).

Lemma 3.12. g(k, r) = g(k, k − r − 1) for r < k.

Proof. ℎ(k, k − r − 1,m) = 2m−1 ⋅ gcd(
(

k−m

k−r−1

)

,
(

k−m

k−r−2

)

, . . . ,
(

k−m

k−r−m

)

) = 2m−1 ⋅

gcd(
(

k−m

r−m+1

)

,
(

k−m

r−m+2

)

, . . . ,
(

k−m

r

)

) = ℎ(k, r,m). g(k, k − r − 1) = gcd(ℎ(k, k −
r− 1, 1), ℎ(k, k− r− 1, 2), . . . , ℎ(k, k− r− 1,min{k− 1, r+1, k− 2})) = g(k, r).

It is easy to see that g(k, 0) = 1 = g(k, k − 1) since
(

k−1
0

)

= 1 =
(

k−1
k−1

)

.

Lemma 3.13.

(a) For 0 ≤ r < 2m, we have g(2m, r) = 1.

(b) For 0 < r < 2m, we have g(2m + 1, r) = 2.

Proof. (a) ℎ(k, r, 1) =
(

k−1
r

)

, which is odd when k = 2m[8]. Therefore, g(2m, r) =
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1, where r < 2m.

(b) ℎ(k, r, 2) = 2⋅gcd(
(

k−2
r

)

,
(

k−2
r−1

)

) = 2 when k = 2m+1[8]. ℎ(k, r, 1) =
(

k−1
r

)

,

which is even when k = 2m + 1[8]. Therefore, g(2m + 1, r) = 2, where r < 2m.

Theorem 3.14. The wagers of the C(n, k, r) tree are all integers if and only if
G(k,r)
g(k,r) ∣ n, where a ∣ b means a divides b.

Proof. For k = r, the theorem is true since both G(k,r)
g(k,r) ∣ n and the wagers of the

C(n, k, r) tree are all integers.

For k > r, from Lemma 3.9b and the definition of g(k, r), we know that

wG(k,r)
g(k,r)

(l, s) =
wG(k,r)(l,s)

g(k,r) are all integers and are relatively prime. Therefore,

the gcd of all wG(k,r)
g(k,r)

(l, s) is 1. wn(l, s) =
n

G(k,r)
g(k,r)

⋅ wG(k,r)
g(k,r)

(l, s). If n = m ⋅ G(k,r)
g(k,r) ,

then every wn(l, s) is an integer. Conversely, if every wn(l, s) is an integer, then
n

G(k,r)
g(k,r)

is an integer.

k∖r 0 1 2 3 4 5 6 7 8
1 1 (2)
2 1 1 (22)
3 1 2 1 (23)
4 1 1 1 1 (24)
5 1 2 2 2 1 (25)
6 1 1 2 2 1 1 (26)
7 1 2 1 22 1 2 1 (27)
8 1 1 1 1 1 1 1 1 (28)
9 1 2 2 2 2 2 2 2 1
10 1 1 22 22 2 2 22 22 1
11 1 2 1 23 2 22 2 23 1
12 1 1 1 1 2 2 2 2 1
13 1 2 2 2 1 22 22 22 1
14 1 1 2 2 1 1 22 22 1
15 1 2 1 22 1 2 1 23 1

Table 6. Values of g(k, r)

4. Further Properties of D(n, k, r)

Theorem 4.1. For any 0 ≤ r ≤ k and n > 0, C(n, k, r) = D(n, k, r) if and only

if the wagers at each node of the C(n, k, r) tree are integers.

Proof. For k = 1, C(n, 1, 0) = 2n = D(n, 1, 0) and the wager is n, which is an
integer. C(n, 1, 1) = n = D(n, 1, 1) and the wager is 0, which is an integer, so
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for 0 ≤ r ≤ k, we have C(n, 1, r) = D(n, 1, r) if and only if all possible wagers
in the C(n, 1, r) tree are integers.

Assuming the statement is true for all k ≤ m, we want to prove it is true for
k = m+1. C(n,m+1,m+1) = n = D(n,m+1,m+1) and all the wagers are 0
so the statement is true for r = m+1. C(n,m+1, 0) = n ⋅2m+1 = D(n,m+1, 0)
and all the wagers are n, n ⋅ 2, . . . , n ⋅ 2m, so the statement is true for r = 0.

For 0 < r < m+ 1, Let us first prove that if D(n,m+ 1, r) = C(n,m+ 1, r),
then all wagers of the C(n,m + 1, r) tree are integers. We know that the first
wager of C(n,m + 1, r) is n ⋅ wc and C(n,m + 1, r) = C(n ⋅ (1 + wc),m, r) =
C(n ⋅ (1 − wc),m, r − 1). Let the first wager of D(n,m + 1, r) be wd. Then,
D(n,m + 1, r) = min{D(n + wd,m, r), D(n − wd,m, r − 1)}. If wd ≤ n ⋅ wc,
D(n,m + 1, r) ≤ D(n + wd,m, r) ≤ C(n + wd,m, r) ≤ C(n + n ⋅ wc,m, r) =
C(n,m + 1, r). The inequalities become equalities and wd = n ⋅ wc. Similarly,
if wd ≥ n ⋅ wc, D(n,m + 1, r) ≤ D(n − wd,m, r − 1) ≤ C(n − wd,m, r − 1) ≤
C(n − n ⋅ wc,m, r − 1) = C(n,m + 1, r). The equalities hold and wd = n ⋅ wc.
Therefore, wd = n ⋅wc and D(n,m+1, r) = D(n ⋅ (1+wc),m, r− 1) = C(n,m+
1, r) = C(n ⋅ (1 +wc),m, r). D(n ⋅ (1 +wc),m, r) = C(n ⋅ (1 +wc),m, r) implies
all the wagers of the C(n ⋅ (1 + wc),m, r) tree are integers and similarly, all the
wagers of the C(n ⋅ (1−wc),m, r− 1) tree are integers. Therefore, all the wagers
of the C(n,m+ 1, r) tree are integers.

Lastly, we will prove that if all wagers of the C(n,m+1, r) tree are integers,
then D(n,m+1, r) = C(n,m+1, r). The C(n ⋅ (1 +wc),m, r) tree is a sub-tree
of the C(n,m+1, r) tree. Therefore all wagers of the C(n ⋅(1+wc),m, r) tree are
integers. This implies that C(n ⋅ (1+wc),m, r) = D(n ⋅ (1+wc),m, r). Similarly,
C(n ⋅ (1−wc),m, r−1) = D(n ⋅ (1−wc),m, r). Since n ⋅wc is an integer, we have
D(n,m+1, r) ≥ min{D(n⋅(1+wc),m, r), D(n⋅(1−wc),m, r−1)} = C(n,m+1, r).
Since C(n,m+ 1, r) ≥ D(n,m+ 1, r), we have C(n,m+ 1, r) = D(n,m+ 1, r).

Lemma 4.2. For any 0 ≤ r ≤ k and n > 0, we have:

(a) Existence: There exists a positive integer n such that C(n, k, r) =
D(n, k, r);

(b) Homogeneity: If C(n, k, r) = D(n, k, r), then C(n ⋅m, k, r) = D(n ⋅m, k, r);

(c) Additivity: If C(n1, k, r) = D(n1, k, r) and C(n2, k, r) = D(n2, k, r) where

n2 > n1, then C(n2 − n1, k, r) = D(n2 − n1, k, r).

Proof. (a) From Lemma 3.9 (b) and Theorem 4.1, we have C(G(k, r), k, r) =
D(G(k, r), k, r).

(b) If C(n, k, r) = D(n, k, r), then all wagers of the C(n, k, r) tree are integers.
That implies that all wagers of the C(n ⋅m, k, r) tree are integers.

(c) If C(n1, k, r) = D(n1, k, r) and C(n2, k, r) = D(n2, k, r), then all wagers
of the C(n1, k, r) tree and the C(n2, k, r) tree are integers. Since the wagers of
the C(n, k, r) tree are n times the corresponding wagers of the C(1, k, r) tree,
wagers of C(n2 − n1, k, r) tree are the difference of the corresponding wagers of
the C(n1, k, r) tree and the C(n2, k, r) tree.
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Lemma 4.3. For every 0 ≤ r ≤ k, let P (k, r) = G(k,r)
g(k,r) . Then, C(n, k, r) =

D(n, k, r) if and only if P (k, r) ∣ n.

Proof. From Theorem 3.14, we have P (k, r) ∣ n if and only if all the wagers of
the C(n, k, r) tree are integers. From Theorem 4.1, we have that all the wagers
of the C(n, k, r) tree are integers if and only if C(n, k, r) = D(n, k, r). Therefore,
C(n, k, r) = D(n, k, r) if and only if P (k, r) ∣ n.

Lemma 4.4. P (k, k − r − 1) = 2k

g(k,r) − P (k, r).

Proof. P (k, k − r − 1) = G(k,k−r−1)
g(k,k−r−1) = 2k−G(k,r)

g(k,r) = 2k

g(k,r) − P (k, r).

Theorem 4.5.

(a) D(n, k, r) = C(m, k, r) + D(y, k, r) = m⋅2k

G(k,r) + D(y, k, r) where m =

⌊ n
P (k,r)⌋ ⋅ P (k, r) and y = n−m;

(b) D(n+1, k, r)−D(n, k, r) is a periodic function of n with a period of P (k, r).

Proof. (a) For D(y, k, r), we can use the C(1, k, r) tree structure and attach each
node with wagers and money owned of D(y, k, r). The wagers and money owned
are increasing functions of y. There exists an optimized path from the root node
to a leaf node of the C(1, k, r) tree such that the leaf node has money owned
equal to D(y, k, r). D(m, k, r) and C(m, k, r) have the same tree and values
attached at each node and the optimized D(m, k, r) path can be any path of the
C(m, k, r) tree. If we use the optimized D(y, k, r) path for D(y + m, k, r), at
each node the wager and money owned for D(y+m, k, r) are the sum of those of
D(y, k, r) and C(m, k, r), so we have D(y+m, k, r) ≥ D(y, k, r) +C(m, k, r). If
we use the optimized D(y +m, k, r) path for D(y, k, r) at each node, the wager
and money owned for D(y, k, r) are the difference of those of D(y+m, k, r) and
C(m, k, r). We then have D(y, k, r) ≥ D(m + y, k, r) − C(m, k, r). Therefore,
D(m + y, k, r) = C(m, k, r) +D(y, k, r). This implies D(n, k, r) = C(m, k, r) +

D(y, k, r) = m⋅2k

G(k,r) +D(y, k, r).

(b) D(n+1, k, r)−D(n, k, r) = D(y+1, k, r)−D(y, k, r) for 0 ≤ y < P (k, r),
so it is a periodic function of n with period P (k, r).

Corollary 4.6.

(a) D(n, k, k − 1) = ⌊ n⋅2k

2k−1
⌋;

(b) D(m⋅G(k,r)
g(k,r) , k, r) = C(m⋅G(k,r)

g(k,r) , k, r) = m⋅2k

g(k,r) .

Proof. (a) P (k, k − 1) = G(k,k−1)
g(k,k−1) = 2k − 1. For non-negative integers y <

2k − 1, y ≤ D(y, k, k − 1) ≤ C(y, k, k − 1) = y⋅2k

2k−1
= y + y

2k−1
. This implies

D(y, k, k − 1) = y. From Theorem 4.5, we have that D(n, k, k − 1) = ⌊ n
P (k,r)⌋ ⋅
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P (k, r) ⋅ 2k

G(k,r) +D(y, k, r), where y = n− ⌊ n
P (k,r)⌋ ⋅ P (k, r), so D(n, k, k − 1) =

⌊ n
2k−1⌋ ⋅ 2

k + y = ⌊ n
2k−1⌋ ⋅ 2

k + n− ⌊ n
2k−1⌋ ⋅ (2

k − 1) = n+ ⌊ n
2k−1⌋ = ⌊ n⋅2k

2k−1⌋.

(b) From Lemma 4.3, we have that D(m⋅G(k,r)
g(k,r) , k, r) = C(m⋅G(k,r)

g(k,r) , k, r) =

m⋅2k

g(k,r) .
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