Dynamic Betting Game

Charles Jwo-Yue Lien

Los Altos High School, 201 Almond Ave., Los Altos, CA 94022, USA
Email: charleslien97@gmail.com

Received 9 September 2014
Accepted 10 January 2015
Communicated by Yeong-Nan Yeh
AMS Mathematics Subject Classification(2000): 11B83, 11Y40, 90C27, 91A05, 91A25, 91A46

Abstract

Players A and B play a betting game. Player A starts with initial money n. In each of k rounds, player A can wager an integer w between 0 and what he has currently. B then decides whether A wins or loses. If A wins, he receives w money, and if A loses, he loses w money. A total of k rounds are played, but A can only lose r times. What strategy should A use to end with the maximum amount of money, $D(n, k, r)$?

In this paper, we provide a strategy for A to maximize his money and the algorithm to calculate $D(n, k, r)$. We study the periodicity of $D(n+1, k, r)-D(n, k, r)$ relative to n. We will also extend n and w to non-negative real numbers. The maximum amount of money that A can obtain with continuous money is $C(n, k, r)$, and we study the relationship between C and D.

Keywords: Betting game; Dynamic game; Zero-sum game.

1. Introduction

Professor Yeong-Nan Yeh ${ }^{[15]}$ proposed the following problem:
Players A and B play a betting game. Player A starts with initial money n. In each of k rounds, player A can wager an integer w between 0 and what he has currently. B then decides whether A wins or loses. If A wins, he receives w money, and if A loses, he loses w money. A total of k rounds are played, but A can only lose r times. What strategy should A use to end with the maximum amount of money, $D(n, k, r)$?

The strategy of this problem looks like that of a two-player zero-sum game
with player A having choice of $n+1$ pure strategies with the w ranging from 0 to n and player B has choice of 2 pure strategies, letting A win or lose. However, in a zero-sum game, A's choice and B's choice are independent. This problem is much more difficult because in this game, B's decision is made in response to A's decision.

When I first started the question, I wrote a computer program to calculate many examples of $D(n, k, r)$. With the data, I could identify the periodic properties of $D(n+1, k, r)-D(n, k, r)$, but I could not find a general equation. Because of this, I decided to look at $C(n, k, r)$, which extends the domains of n and wagers to non-negative real numbers. By doing so, the pattern for $C(n, k, r)$ became very clear and I used the information from $C(n, k, r)$ to help explain certain properties of $D(n, k, r)$.

In section 2, we describe the strategy for player A and the algorithm to calculate $D(n, k, r)$. We also discuss the periodicity of $D(n+1, k, r)-D(n, k, r)$, and properties and some specific examples of D. In section 3, we change the domains of n and the wagers to non-negative real numbers, giving a new maximum money function $C(n, k, r)$. We find A's strategy for C and the equation for C as well as analyze special properties. In section 4, we talk about the relationship between C and D and the formula for calculating the period of $D(n+1, k, r)-D(n, k, r)$.

For further information in dynamic games, combinatorial identities, and number theory, please refer to [16-18].

2. Strategy and Properties of $D(n, k, r)$

In the case of $r=0$ or $r=k, \mathrm{~B}$ has no choices and A will wager the maximum allowed for $r=0$ and wagers 0 for $r=k$ at all bets. So we have:

$$
\begin{align*}
& D(n, k, 0)=n \cdot 2^{k} \tag{1}\\
& D(n, k, k)=n \tag{2}
\end{align*}
$$

Lemma 2.1. For $k>r>0$, we have:

$$
\begin{equation*}
D(n, k, r)=\max _{0 \leq w \leq n}\{\min \{D(n-w, k-1, r-1), D(n+w, k-1, r)\}\} \tag{3}
\end{equation*}
$$

Proof. First, we prove that there exists a solution. Let G be the gain matrix for player A. $G_{i j}=D\left(n-(i-1) \cdot(-1)^{j}, k-1, r-j+1\right)$, where $i=w+1$ and $j=1$ means player A wins and $j=2$ means player A loses. When player A chooses a pure strategy, he knows that player B will minimize his gain, so player A checks each row for the minimum value and chooses the row that has the highest minimum value. That is, player A chooses a row to maximize $\min _{j}\left\{G_{i j}\right\}$. After player A chooses a row a, player B will choose the column b, to minimize $G_{a j}$ which is $\min _{j}\left\{G_{a j}\right\}=G_{a b}$. That means A's gain is $G_{a b}$.

Secondly, we prove that the gain $G_{a b}$ is a stable solution. If player B changes his choice to a different column, player A's gain will increase because $G_{a b}$ is the
minimum of $G_{a 1}$ and $G_{a 2}$. Therefore, player B won't change his choice unless $G_{a 1}=G_{a 2}$, which will not change the solution. If player A changes his choice to row c, player B will choose the column to minimize the gain to $\min _{j}\left\{G_{c j}\right\}$, which will reduce player A's gain to $\min _{j}\left\{G_{c j}\right\} \leq \min _{j}\left\{G_{a j}\right\}$. Therefore, player A will not change his choice unless $\min _{j}\left\{G_{c j}\right\}=\min _{j}\left\{G_{a j}\right\}$, which does not change the gain. So $G_{a b}$ is a stable solution.

Lastly, we show $G_{a b}$ is the maximum value. Assuming there is another solution $G_{d e}>G_{a b}$. That is, player A chooses row d. Since player B chose column e, it implies $G_{d e}=\min _{j}\left\{G_{d j}\right\} \leq \min _{j}\left\{G_{a j}\right\}=G_{a b}$. However, this contradicts our previous assumption that $G_{d e}>G_{a b}$. Therefore, $G_{a b}$ is the maximum value. That is, $D(n, k, r)=G_{a b}=\max _{0 \leq w \leq n}\{\min \{D(n-w, k-1, r-1), D(n+w, k-$ $1, r)\}\}$.

Lemma 2.2.

(a) If $n \geq m$, then $D(n, k, r)-D(m, k, r) \geq n-m$;
(b) If $k>l$, then $D(n, k, r) \geq D(n, l, r)$;
(c) If $r>s$, then $D(n, k, r) \leq D(n, k, s)$;
(a) If $r=k$ or $n \leq r$, then $D(n, k, r)=n$.

Proof. (a) $D(n, k, r)$ is the maximum money player A can have at the end with initial money n. If player A is required to set aside $n-m$ and only use m as initial money to play the game, he will have maximum amount of money, $n-m+D(m, k, r)$ at the end of the game. Since $D(n, k, r)$ is the upper bound, we have $D(n, k, r) \geq n-m+D(m, k, r)$.
(b) If player A wagers 0 for the initial $k-l$ bets, player B will of course let player A win on those bets. Player A will have equal or less money at the end due to the constraint.
(c) By Lemma 2.1 (a) and (b), we have $D(n, k, r)=\max _{0 \leq w \leq n}\{\min \{D(n-$ $w, k-1, r-1), D(n+w, k-1, r)\}\} \leq D(n-w, k-1, r-1) \leq D(n, k, r-1)$. Hence it follows from induction that (c) holds.
(d) Since player A has less than $r+1$ money, he will lose the wager if he wagers more than 0 .

Define $w_{d}(n, k, r)$ as the wager to maximize $\min \{D(n-w, k-1, r-1), D(n+$ $w, k-1, r)\}$. If there is more than one optimized wager, we will define the smallest wager as $w_{d}(n, k, r)$. For simplicity, let w_{d} or $w_{d}(n)$ denote $w_{d}(n, k, r)$. That is, $D(n, k, r)=\min \left\{D\left(n-w_{d}, k-1, r-1\right), D\left(n+w_{d}, k-1, r\right)\right\}$.

Lemma 2.3. $D(x+y, k, r) \geq D(x, k, r)+D(y, k, r)$.
Proof. For $k=1$, we have $D(x+y, 1,0)=2(x+y)=D(x, 1,0)+D(y, 1,0)$ and $D(x+y, 1,1)=x+y=D(x, 1,1)+D(y, 1,1)$. Assuming the statement is true for $k \leq m$, for $k=m+1$, if $r=m+1, D(x+y, m+1, m+1)=$ $D(x, m+1, m+1)+D(y, m+1, m+1)$. If $r \leq m$, we have $D(x, m+1, r)=$
$\min \left\{D\left(x+w_{d}(x), m, r\right), D\left(x-w_{d}(x), m, r-1\right)\right\}$ and $D(y, m+1, r)=\min (D(y+$ $\left.\left.w_{d}(y), m, r\right), D\left(y-w_{d}(y), m, r-1\right)\right)$. From our assumption, we have $D(x+y+$ $\left.w_{d}(x)+w_{d}(y), m, r\right) \geq D\left(x+w_{d}(x), m, r\right)+D\left(y+w_{d}(y), m, r\right) \geq D(x, m+$ $1, r)+D(y, m+1, r)$. Similarly, $D\left(x+y-w_{d}(x)-w_{d}(y), m, r-1\right) \geq D(x-$ $\left.w_{d}(x), m, r-1\right)+D\left(y-w_{d}(y), m, r-1\right) \geq D(x, m+1, r)+D(y, m+1, r)$. Therefore, $D(x+y, m+1, r) \geq D(x, m+1, r)+D(y, m+1, r)$.

In order to use the algorithm from Lemma 2.1, we must compare all $n+1$ pairs of values given from $D(n-w, k-1, r-1)$ and $D(n+w, k-1, r)$. We will introduce an integer w_{i} in Lemma 2.4 such that we only need to compare the values given from two numbers: $D\left(n-w_{i}, k-1, r-1\right)$ and $D\left(n+w_{i}, k-1, r\right)$. w_{d} can therefore only be either w_{i} or $w_{i}+1$.

Lemma 2.4. For given $0<r<k$ and $0<n$, the function $F(w)=D(n-w, k-$ $1, r-1)-D(n+w, k-1, r)$ is a monotonically decreasing function with respect to $0 \leq w \leq n$. Furthermore, there exists a unique integer $0 \leq w_{i}<n$ such that $F\left(w_{i}\right) \geq 0$ and $F\left(w_{i}+1\right)<0$.

Proof. For $0 \leq w<n$, from Lemma 2.2a, we have $D(n-w, k-1, r-1) \geq$ $D(n-(w+1), k-1, r-1)+1$ and $D(n+(w+1), k-1, r) \geq D(n+w, k-1, r)$. Hence, $F(w)=D(n-w, k-1, r-1)-D(n+w, k-1, r) \geq D(n-(w+$ 1), $k-1, r-1)-D(n+(w+1), k-1, r)+2>F(w+1)$. Therefore, $F(w)=$ $D(n, k-1, r-1)-D(n+w, k-1, r)$ is a monotonically decreasing function with respect to $0 \leq w \leq n$. Moreover, since $F(0)=D(n, k-1, r-1)-D(n, k-1, r) \geq 0$ by Lemma 2.2c and $F(n)=D(0, k-1, r-1)-D(2 n, k-1, r)<0$, there exists a unique integer $0 \leq w_{i}<n$ such that $F\left(w_{i}\right) \geq 0$ and $F\left(w_{i}+1\right)<0$.

Lemma 2.5.

(a) $D(n, k, r)=\max \left\{D\left(n+w_{i}, k-1, r\right), D\left(n-w_{i}-1, k-1, r-1\right)\right\}$;
(b) If $D\left(n+w_{i}, k-1, r\right)=D\left(n-w_{i}, k-1, r-1\right)$, then $w_{d}=w_{i}$ and $D(n, k, r)=$ $D\left(n+w_{d}, k-1, r\right)=D\left(n-w_{d}, k-1, r-1\right) ;$
(c) If $D\left(n+w_{i}, k-1, r\right) \neq D\left(n-w_{i}, k-1, r-1\right)$, then:
(i) If $D\left(n+w_{i}, k-1, r\right)>D\left(n-w_{i}-1, k-1, r-1\right)$, then $w_{d}=w_{i}$ and $D(n, k, r)=D\left(n+w_{d}, k-1, r\right)$;
(ii) If $D\left(n+w_{i}, k-1, r\right)<D\left(n-w_{i}-1, k-1, r-1\right)$, then $w_{d}=w_{i}+1$ and $D(n, k, r)=D\left(n-w_{d}, k-1, r-1\right)$.
Proof. (a) From Lemma 2.4, there exists a unique integer $0 \leq w_{i}<n$ such that $F\left(w_{i}\right) \geq 0$ and $F\left(w_{i}+1\right)<0$. Hence for $0 \leq w \leq w_{i}, D(n-w, k-1, r-1) \geq$ $D(n+w, k-1, r)$. For $w_{i}+1 \leq w \leq n, D(n-w, k-1, r-1)<D(n+w, k-1, r)$. Therefore, Lemma 2.1, we have that $D(n, k, r)=\max _{0 \leq w \leq n}\{\min \{D(n-w, k-$ $1, r-1), D(n+w, k-1, r)\}\}=\max \left\{\max _{0 \leq w \leq w_{i}}\{\min \{D(n-w, k-1, r-1), D(n+\right.$ $\left.w, k-1, r)\}\}, \max _{w_{i}+1 \leq w \leq n}\{\min \{D(n-w, \bar{k}-1, r-1), D(n+w, k-1, r)\}\}\right\}=$ $\max \left\{\max _{0 \leq w \leq w_{i}}\{D(n+w, k-1, r)\}, \max _{w_{i}+1 \leq w \leq n}\{D(n-w, k-1, r-1)\}\right\}=$ $\max \left\{D\left(n+w_{i}, k-1, r\right), D\left(n-w_{i}-1, k-1, r-1\right)\right\}$.
(b) If $D\left(n+w_{i}, k-1, r\right)=D\left(n-w_{i}, k-1, r-1\right)$, then $D(n, k, r)=D(n+$ $\left.w_{i}, k-1, r\right)$ and $w_{d}=w_{i}$. This is because $D\left(n-w_{i}, k-1, r-1\right)>D\left(n-w_{i}-\right.$ $1, k-1, r-1)$.
(c) (i) If $D\left(n+w_{i}, k-1, r\right)>D\left(n-w_{i}-1, k-1, r-1\right)$, then $D(n, k, r)=$ $D\left(n+w_{d}, k-1, r\right)$ and $w_{d}=w_{i}$.
(c) (ii) If $D\left(n+w_{i}, k-1, r\right)<D\left(n-w_{i}-1, k-1, r-1\right)$, then $w_{d}=w_{i}+1$ and $D(n, k, r)=D\left(n-w_{d}, k-1, r-1\right)$.

Lemmas 2.4 and 2.5 allowed us to write a simple computer program to find $D(n, k, r)$. We then used this computer program to find many values of $D(n, k, r)$. From the data, we observed properties such as the periodicity of $D(n+1, k, r)-D(n, k, r)$ with respect to n, but it is difficult to find a pattern for the period. We will, however, be able to prove the periodicity and find the period in Section 4. Some special cases are provided such as $r=1, r=2$, and $r=k-1$. In these cases, we will use Lemmas 2.4 and 2.5 to find w_{i}, w_{d}, and $D(n, k, r)$. The periodicity of $D(n+1, k, r)-D(n, k, r)$ is also observed in these cases.

Case $1(r=1)$:
For $k=2, D\left(n-w_{i}, 1,0\right) \geq D\left(n+w_{i}, 1,1\right)$ implies $2\left(n-w_{i}\right) \geq n+w_{i}$. This means $w_{i} \leq \frac{n}{3}$. Similarly, $D\left(n-w_{i}-1,1,0\right)<D\left(n+w_{i}+1,1,1\right)$ implies $w_{i}+1>$ $\frac{n}{3}$, so we have $w_{i}=\left\lfloor\frac{n}{3}\right\rfloor . D(3 m+s, 2,1)=\max \{D(2 m+s-1,1,0), D(4 m+$ $s, 1,1)\}=\max \{2(2 m+s-1), 4 m+s\}=4 m+s=\left\lfloor\frac{4 n}{3}\right\rfloor$, where $0 \leq s \leq 2$ and $w_{d}=m$. Therefore, $D(n, 2,1)=\left\lfloor\frac{4 n}{3}\right\rfloor$ and $w_{d}=\left\lfloor\frac{n}{3}\right\rfloor$. We have observed that for $n \geq 0, D(n+1,2,1)-D(n, 2,1)$ is a periodic sequence with a period of 3: $1,1,2,1,1,2,1,1,2, \ldots$ We define $P(2,1)=3$.

For $k=3, D\left(n-w_{i}, 2,0\right) \geq D\left(n+w_{i}, 2,1\right)$ and $D\left(n-w_{i}-1,2,0\right)<$ $D\left(n+w_{i}+1,2,1\right)$ imply $4\left(n-w_{i}\right) \geq\left\lfloor\frac{4\left(n+w_{i}\right)}{3}\right\rfloor$ and $4\left(n-w_{i}-1\right)<\left\lfloor\frac{4\left(n+w_{i}+1\right)}{3}\right\rfloor$. Therefore, we have $w_{i}=\left\lfloor\frac{n}{2}\right\rfloor$, so $D(2 m, 3,1)=D(m, 2,0)=D(3 m, 2,1)=$ $4 m=2 n$ and $w_{i}=m . D(2 m+1,3,1)=\max \{D(m, 2,0), D(3 m+1,2,1)\}=$ $\max \left\{4 m,\left\lfloor\frac{4(3 m+1)}{3}\right\rfloor\right\}=\left\lfloor\frac{4(3 m+1)}{3}\right\rfloor=4 m+1=n+2\left\lfloor\frac{n}{2}\right\rfloor$ and $w_{d}=m$. Therefore, $D(n, 3,1)=n+2\left\lfloor\frac{n}{2}\right\rfloor$ and $w_{d}=\left\lfloor\frac{n}{2}\right\rfloor$. We have observed that for $n \geq 0, D(n+$ $1,3,1)-D(n, 3,1)$ is a periodic sequence with a period of $2: 1,3,1,3,1,3$, \ldots We define $P(3,1)=2$.

For $k=4, D\left(n-w_{i}, 3,0\right) \geq D\left(n+w_{i}, 3,1\right)$ and $D\left(n-w_{i}-1,3,0\right)<$ $D\left(n+w_{i}+1,3,1\right)$ imply $8\left(n-w_{i}\right) \geq n+w_{i}+2\left\lfloor\frac{n+w_{i}}{2}\right\rfloor$ and $8\left(n-w_{i}-1\right)<$ $n+w_{i}+1+2\left\lfloor\frac{n+w_{i}+1}{2}\right\rfloor$. If $n=5 m+s$, where $0 \leq s<5$, then $w_{i}=3 m+\left\lfloor\frac{s}{2}\right\rfloor=$ $\left\lfloor\frac{3 n}{5}\right\rfloor . D(5 m+s, 4,1)=\max \left\{D\left(2 m+s-\left\lfloor\frac{s}{2}\right\rfloor-1,3,0\right), D\left(8 m+s+\left\lfloor\frac{s}{2}\right\rfloor, 3,1\right)\right\}=$ $\max \left\{8\left(2 m+s-\left\lfloor\frac{s}{2}\right\rfloor-1\right), 8 m+s+\left\lfloor\frac{s}{2}\right\rfloor+2\left\lfloor\frac{m+s+\left\lfloor\frac{s}{2}\right\rfloor}{2}\right\rfloor\right\}=8 m+s+\left\lfloor\frac{s}{2}\right\rfloor+$ $2\left\lfloor\frac{8 m+s+\left\lfloor\frac{s}{2}\right\rfloor}{2}\right\rfloor=\left\lfloor\frac{8 n}{5}\right\rfloor+2\left\lfloor\frac{4 n}{5}\right\rfloor$ and $w_{d}=w_{i}=\left\lfloor\frac{3 n}{5}\right\rfloor$. We have observed that for $n \geq 0, D(n+1,4,1)=D(n, 4,1)$ is a periodic sequence with a period of $5: 1,4$, $3,4,4,1,4,3,4,4,1,4,3,4,4, \ldots$ We define $P(4,1)=5$.

Examples of $D(n, k, 1)$ are shown in Table 1. Later on, we will prove that if k is even, $P(k, 1)=k+1$, if k is odd, $P(k, 1)=\frac{k+1}{2}$, and $D(n+1, k, r)-D(n, k, r)$ is a periodic sequence with a period of $P(k, r)$.

$k \backslash n$	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11
2	1	2	4	5	6	8	9	10	12	13	14
3	1	4	5	8	9	12	13	16	17	20	21
4	1	5	8	12	16	17	21	24	28	32	33
5	1	8	16	17	24	32	33	40	48	49	56
6	1	16	24	32	40	49	64	65	80	88	96
7	1	24	40	64	65	88	104	128	129	152	168
8	1	40	65	104	128	152	192	216	256	257	296
9	1	65	128	192	256	257	321	384	448	512	513
10	1	128	256	321	448	512	577	704	769	896	1024

Table 1. Values of $D(n, k, 1)$

Case $2(r=2)$:
For $k=3, D\left(n-w_{i}, 2,1\right) \geq D\left(n+w_{i}, 2,2\right)$ and $D\left(n-w_{i}-1,2,1\right)<D(n+$ $\left.w_{i}+1,2,2\right)$ imply $\left\lfloor\frac{4\left(n-w_{i}\right)}{3}\right\rfloor \geq n+w_{i}$ and $\left\lfloor\frac{4\left(n-w_{i}-1\right)}{3}\right\rfloor<n+w_{i}+1$, so $w_{i}=\left\lfloor\frac{n}{7}\right\rfloor$. $D(7 m+s, 3,2)=\max \{D(6 m+s, 2,1), D(8 m+s, 2,2)\}=\max \left\{\left\lfloor\frac{4(6 m+s-1)}{3}\right\rfloor, 8 m+\right.$ $s\}=8 m+s=\left\lfloor\frac{8 n}{7}\right\rfloor$ and $w_{d}=w_{i}=\left\lfloor\frac{n}{7}\right\rfloor$ for $0 \leq s<7$. We have observed that for $n \geq 0, D(n+1,3,2)-D(n, 3,2)$ is a periodic sequence with a period of 7 : $1,1,1,1,1,1,2,1,1,1,1,1,1,2, \ldots$ We define $P(3,2)=7$.

For $k=4, D\left(n-w_{i}, 3,1\right) \geq D\left(n+w_{i}, 3,2\right)$ and $D\left(n-w_{i}-1,3,1\right)<D(n+$ $\left.w_{i}+1,3,2\right)$ imply $n-w_{i}+2\left\lfloor\frac{n-w_{i}}{2}\right\rfloor \geq\left\lfloor\frac{8\left(n+w_{i}\right)}{7}\right\rfloor$ and $n-w_{i}-1+2\left\lfloor\frac{n-w_{i}-1}{2}\right\rfloor<$ $\left\lfloor\frac{8\left(n+w_{i}+1\right)}{7}\right\rfloor$. So we have $w_{i}=\left\lfloor\frac{n}{11}\right\rfloor+\left\lfloor\frac{2 n+6}{11}\right\rfloor$. If $n=11 m+s$, let $w_{i}=3 m+a$. Then, $D(11 m+s, 4,2)=\max \{D(8 m+s-a-1,3,1), D(14 m+s+a, 3,2)\}=$ $\max \left\{8 m+s-a-1+2\left\lfloor\frac{8 m+s-a-1}{2}\right\rfloor,\left\lfloor\frac{8(14 m+s+a)}{7}\right\rfloor\right\}=16 m+s+a+\left\lfloor\frac{s+a}{7}\right\rfloor$ and $w_{d}=w_{i}$, where $0 \leq s<11$. Therefore, $D(n, 4,2)=\left\lfloor\frac{12 n}{11}\right\rfloor+\left\lfloor\frac{4 n+1}{11}\right\rfloor$ and $w_{d}=\left\lfloor\frac{n}{11}\right\rfloor+\left\lfloor\frac{2 n+6}{11}\right\rfloor$. We have observed that for $n \geq 0, D(n+1,4,2)-D(n, 4,2)$ is a periodic sequence with a period of $11: 1,1,2,1,1,2,1,2,1,1,3,1,1,2$, $1,1,2,1,2,1,1,3, \ldots$ We define $P(4,2)=11$.

Table 2 shows examples of $D(n, k, 2)$.

$k \backslash n$	1	2	3	4	5	6	7	8	9	10
2	1	2	3	4	5	6	7	8	9	10
3	1	2	3	4	5	6	8	9	10	11
4	1	2	4	5	6	8	9	11	12	13
5	1	2	5	6	8	11	12	16	17	18
6	1	2	6	8	12	16	17	21	24	27
7	1	2	8	16	21	24	27	32	34	40
8	1	2	16	24	27	34	44	49	59	64
9	1	2	24	34	44	59	65	76	88	104
10	1	2	34	59	65	88	112	128	145	168
		Table 2. Values of $D(n, k, 2)$								

From the above discussions and analyses, for small k and r, we have the
explicit formula for $D(n, k, r)$.

Corollary 2.6. $D(n, 2,1)=\left\lfloor\frac{4 n}{3}\right\rfloor ; D(n, 3,1)=n+2\left\lfloor\frac{n}{2}\right\rfloor ; D(n, 4,1)=\left\lfloor\frac{8 n}{5}\right\rfloor+$ $2\left\lfloor\frac{4 n}{5}\right\rfloor ; D(n, 3,2)=\left\lfloor\frac{8 n}{7}\right\rfloor ; D(n, 4,2)=\left\lfloor\frac{12 n}{11}\right\rfloor+\left\lfloor\frac{4 n+1}{11}\right\rfloor$.

Case $3(r=k-1)$:
For $k=3$, we have $D(n, 2,1)=\left\lfloor\frac{4 n}{3}\right\rfloor, w_{d}=\left\lfloor\frac{n}{3}\right\rfloor$, and $P(2,1)=3$.
For $k=4$, we have $D(n, 3,2)=\left\lfloor\frac{8 n}{7}\right\rfloor, w_{d}=\left\lfloor\frac{n}{7}\right\rfloor$, and $P(3,2)=7$.
For $k=5$, we have $D(n, 4,3)=\left\lfloor\frac{16 n}{15}\right\rfloor, w_{d}=\left\lfloor\frac{n}{15}\right\rfloor$, and $P(4,3)=15$.
We observe and will later prove that $D(n, k, k-1)=\left\lfloor\frac{n \cdot 2^{k}}{2^{k}-1}\right\rfloor, w_{d}=\left\lfloor\frac{n}{2^{k}-1}\right\rfloor$, and $P(k, k-1)=2^{k}-1$.

Table 3 shows examples of $P(k, r)$.

$k \backslash r$	0	1	2	3	4	5	6	7	8
1	1	(1)							
2	1	$2^{2}-1$	(1)						
3	1	2^{1}	$2^{3}-1$	(1)					
4	1	5	$2^{4}-5$	$2^{4}-1$	(1)				
5	1	3	2^{3}	$2^{4}-3$	$2^{5}-1$	(1)			
6	1	7	11	$2^{5}-11$	$2^{6}-7$	$2^{6}-1$	(1)		
7	1	4	29	2^{4}	$2^{7}-29$	$2^{6}-4$	$2^{7}-1$	(1)	
8	1	9	37	93	$2^{8}-93$	$2^{8}-37$	$2^{8}-9$	$2^{8}-1$	(1)
9	1	5	23	65	2^{7}	$2^{8}-65$	$2^{8}-23$	$2^{8}-5$	$2^{9}-1$
10	1	11	14	44	193	$2^{9}-193$	$2^{8}-44$	$2^{8}-14$	$2^{10}-11$
11	1	6	67	29	281	2^{8}	$2^{10}-281$	$2^{8}-29$	$2^{11}-67$
12	1	13	79	299	397	793	$2^{11}-793$	$2^{11}-397$	$2^{12}-299$
13	1	7	46	189	1093	595	2^{10}	$2^{11}-595$	$2^{13}-1093$
14	1	15	53	235	1471	3473	1619	$2^{12}-1619$	$2^{14}-3473$
15	1	8	121	144	1941	2472	9949	2^{11}	$2^{15}-9949$

Table 3. Values $P(k, r)$

3. Solutions of $C(n, k, r)$

Let the initial money n and wagers be non-negative real numbers and call the maximum money player A can have after all k rounds $C(n, k, r)$.

Lemma 3.1.

(a) $C(1, k, 0)=2^{k}$;
(b) $C(1, k, k)=1$;
(c) $D(n, k, r) \leq C(n, k, r)$;
(d) $C(n, k, r)=n \cdot C(1, k, r)$.

Proof. (a) If Player A wagers the maximum money allowed at each bet, he will win all the bets and yield part (a).
(b) Player A cannot wager any amount of money other than 0 at each bet or else he will lose the bet.
(c) Since $D(n, k, r)$ is the money at the end with the constraint of integer wagers and $C(n, k, r)$ is the maximum money at the end without the constraint, so $D(n, k, r) \leq C(n, k, r)$.
(d) Converting n dollars into 1 unit and changing the unit back to dollars at the very end yields part (d). Therefore, $C(n, k, r)$ is a continuous function with respect to n.

Lemma 3.2. For given $0<r<k$, there exists a unique non-negative real number $w_{c}(k, r) \leq 1$, which will be written as w_{c} for simplicity, such that $C\left(1-w_{c}, k-\right.$ $1, r-1)=C\left(1+w_{c}, k-1, r\right)$.

Proof. As w increases from 0 to $n, C(1-w, k-1, r-1)-C(1+w, k-1, r)$ is monotonically decreasing from $C(1, k-1, r-1)-C(1, k-1, r) \geq 0$ to $C(0, k-$ $1, r-1)-C(2, k-1, r)=C(2, k-1, r)<0$. Since $C(1-w, k-1, r-1)-$ $C(1+w, k-1, r)$ is continuous, there exists a unique number, w_{c}, such that $C\left(1-w_{c}, k-1, r-1\right)-C\left(1+w_{c}, k-1, r\right)=0$.

Similar to the integer case, we have that, for continuous wagers, $C(1, k, r)=$ $\max _{0 \leq w \leq 1}\{\min \{C(1-w, k-1, r-1), C(1+w, k-1, r)\}\}$.

Lemma 3.3. For $k>r>0$,

$$
\begin{equation*}
C(1, k, r)=C\left(1-w_{c}, k-1, r-1\right)=C\left(1+w_{c}, k-1, r\right) \tag{4}
\end{equation*}
$$

Proof. If $w<w_{c}$, we have $C(1+w, k-1, r)<C\left(1+w_{c}, k-1, r\right)=C(1-$ $\left.w_{c}, k-1, r-1\right)<C(1-w, k-1, r-1)$. Therefore $\min \left\{C\left(1-w_{c}, k-1, r-\right.\right.$ 1), $\left.C\left(1+w_{c}, k-1, r\right)\right\}>\min \{C(1-w, k-1, r-1), C(1+w, k-1, r)\}$. Similarly, If $w>w_{c}$, we have $C(1-w, k-1, r-1)<C\left(1-w_{c}, k-1, r-1\right)=C(1+$ $\left.w_{c}, k-1, r\right)<C(1+w, k-1, r)$. Therefore $\min \left\{C\left(1-w_{c}, k-1, r-1\right), C(1+\right.$ $\left.\left.w_{c}, k-1, r\right)\right\}>\min \{C(1-w, k-1, r-1), C(1+w, k-1, r)\}$. Since $C(1, k, r)=$ $\max _{0 \leq w \leq 1}\{\min \{C(1-w, k-1, r-1), C(1+w, k-1, r)\}\}$ we have $C(1, k, r)=$ $C\left(1-w_{c}, k-1, r-1\right)=C\left(1+w_{c}, k-1, r\right)$.

That is, for $k>r>0$, player A chooses a wager at every possible bet such that the maximum money at the very end is independent of whether player B let him win or lose.

Lemma 3.4. $G(k, r)=\sum_{j=0}^{r}\binom{k}{j}$ is the solution to the initial conditions $G(k, 0)=1$, $G(k, k)=2^{k}$, and the recurrence formula $G(k, r)=G(k-1, r-1)+G(k-1, r)$,
where $0<r<k$.
Proof. It is easy to see that $G(k, r)$ meets the initial conditions: $G(k, 0)=$ $\binom{k}{0}=1$ and $G(k, k)=\sum_{j=0}^{k}\binom{k}{j}=2^{k}$. For $0<r<k$, we have $G(k, r)=$ $\sum_{j=1}^{r}\binom{k}{j}+\binom{k}{0}=\sum_{j=1}^{r}\left(\binom{k-1}{j}+\binom{k-1}{j-1}\right)+\binom{k-1}{0}=G(k-1, r)+G(k-1, r-1)$. Therefore, $G(k, r)-G(k-1, r)=G(k-1, r-1)$.

Lemma 3.5. If r and k are integers such that $0 \leq r \leq k$, then:
(a) $C(1, k, r)=\frac{2^{k}}{G(k, r)}$;
(b) $w_{c}(k, r)=\frac{\binom{k-1}{r}}{G(k, r)}$.

Proof. (a) The cases for $r=0$ and $r=k$ are trivial. For $0<r<k$, from Lemma 3.3, we have $C\left(1+w_{c}, k-1, r\right)=C\left(1-w_{c}, k-1, r-1\right)$, so $\left(1+w_{c}\right) \cdot C(1, k-$ $1, r)=\left(1-w_{c}\right) \cdot C(1, k-1, r-1)$ and $w_{c}=\frac{C(1, k-1, r-1)-C(1, k-1, r)}{C(1, k-1, r-1)+C(1, k-1, r)}$. Therefore, $\frac{1}{C(1, k, r)}=\frac{1}{2} \cdot\left(\frac{1}{C(1, k-1, r)}+\frac{1}{C(1, k-1, r-1)}\right)$.

Let $F(k, r)=\frac{2^{k}}{C(1, k, r)}$. Then, we have $F(k, r)=F(k-1, r)+F(k-1, r-1)$ for $0<r<k, F(k, 0)=\frac{2^{k}}{C(1, k, 0)}=1$, and $F(k, k)=\frac{2^{k}}{C(1, k, k)}=2^{k}$. Therefore, from Lemma 3.4, we have that $F(k, r)=G(k, r)$. We therefore have $C(1, k, r)=$ $\frac{2^{k}}{G(k, r)}$.
(b) $w_{c}(k, r)=\frac{G(k-1, r)-G(k-1, r-1)}{G(k, r)}=\frac{\binom{k-1}{r}}{G(k, r)}$.

Lemma 3.6. $\frac{1}{C(1, k, r)}+\frac{1}{C(1, k, k-r-1)}=1$.
Proof. $\frac{2^{k}}{C(1, k, r)}+\frac{2^{k}}{C(1, k, k-r-1)}=G(k, r)+G(k, k-r-1)=\sum_{j=0}^{r}\binom{k}{j}+\sum_{j=0}^{k-r-1}\binom{k}{j}=$ $\sum_{j=0}^{r}\binom{k}{j}+\sum_{j=r+1}^{k}\binom{k}{j}=2^{k}$. Therefore, $\frac{1}{C(1, k, r)}+\frac{1}{C(1, k, k-r-1)}=1$.

Theorem 3.7. $C(n, k, r)=\frac{n \cdot 2^{k}}{\sum_{j=0}^{r}\binom{k}{j}}$.
Proof. From Lemmas 3.1 (d) and 3.5 (a), we have that $C(n, k, r)=\frac{n \cdot 2^{k}}{\sum_{j=0}^{r}\binom{k}{j}}$.

It is obvious that $C(n, k, r)$ has the following monotonic properties:
(a) If $n>m$, then $C(n, k, r)>C(m, k, r)$;
(b) If $k>m$ and $n>0$, then $C(n, k, r)>C(n, m, r)$;
(c) If $r>m$ and $n>0$, then $C(n, k, r)<C(n, k, m)$.

All the possible bets of $C(1, k, r)$ form a binary rooted tree, called the $C(1, k$, $r)$ tree. Each possible bet is a node which is labeled as (l, s, u), where l is how many bets are left over, s is how many times player A can still lose, and if there are more than one node for the same l and s, we use a natural number u to label them, where smaller u means earlier wins. Let the money owned at node (l, s, u) be $n(l, s, u)$. Then, the optimal wager at node (l, s, u) is $n(l, s, u) \cdot w_{c}(l, s)$. This is because w_{c} is the optimal wager when $n=1$. The optimal wager at (l, s, u) is a function of n, k, r, l, s, and u. For our application, we normally fix k and r. For simplicity, we will call the optimal wagers of the $C(n, k, r)$ tree "wagers" and define them as $w_{n}(l, s, u)$ from now on. The wager of the root node $(k, r, 1)$ is $w_{1}(k, r, 1)=1 \cdot w_{c}(k, r)=\frac{\binom{k-1}{G(k, r)}}{}$ and the money owned for the root node is $n(k, r, 1)=1 .(0,0, u)$, where $1 \leq u \leq\binom{ k}{r}$, are leaf nodes which have no wagers and its $n(0,0, u)=C(1, k, r)$.

The $C(n, k, r)$ tree has the same structure as that of the $C(1, k, r)$ tree except at each node, the optimal and the money owned are exactly n times of the corresponding wager and money owned of the $C(1, k, r)$ tree, respectively.

Lemma 3.8. The $C(n, k, r)$ tree has the following properties:
(a) $C(n(l, s, u), l, s)=C(n, k, r)$;
(b) Money owned, $n(l, s, u)$, and wager, $w_{n}(l, s, u)$ at node (l, s, u) are independent of u.

Proof. We will use k as the variable for induction. (a) Nodes of the $C(n, 1,0)$ tree are $(1,0,1)$ and $(0,0,1) . n(1,0,1)=n, w_{n}(1,0,1)=n$, and $n(0,0,1)=2 n$. $C(n(1,0,1), 1,0)=2 n=C(n(0,0,1), 0,0)=C(n, 1,0)$. Assuming the statement is true for $k \leq m$, for $k=m+1$, when $r=m+1$, the nodes of the $C(n, m+1, m+$ 1) tree are $(0,0,1)$ and $(l, l, 1)$, where $0<l \leq m+1 . n(0,0,1)=n(l, l, 1)=$ n, and $w_{n}(l, l, 1)=0 . \quad C(n(0,0,1), 0,0)=C(n(l, l, 1), l, l)=n(l, l, 1)=n=$ $C(n, m+1, m+1)$. For $0 \leq r \leq m$, non-root nodes (l, s, u) of the $C(n, m+1, r)$ tree are nodes of the $C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ tree or $C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)$ tree. $C(n(l, s, u), l, s)=C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ or $C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)$. Since $C(n$. $\left.\left(1+w_{c}\right), m, r\right)=C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)=C(n, m+1, r)$, we have proven part (a).
(b) From part (a), we have $C\left(n\left(l, s, u_{1}\right), l, s\right)=C(n, k, r)=C\left(n\left(l, s, u_{2}\right), l, s\right)$. This implies $n\left(l, s, u_{1}\right)=n\left(l, s, u_{2}\right)$. Since $w_{n}(l, s, u)=n(l, s, u) \cdot w_{c}(l, s)$, both $n(l, s, u)$ and $w_{n}(l, s, u)$ are independent of u.

We will use $n(l, s)$ and $w_{n}(l, s)$ instead of $n(l, s, u)$ and $w_{n}(l, s, u)$. Note that $w_{n}(l, s)=n(l, s) \cdot w_{c}(l, s)$.

Lemma 3.9.

(a) Wagers of the $C(G(k, r), k, r)$ tree, $w_{G(k, r)}(k-m+1, r-j)=2^{m-1} \cdot\binom{k-m}{r-j}$, where $1 \leq m \leq k$ and $\max \{0, r+m-k-1\} \leq j \leq \min \{r, m-1\} ;$
(b) All the wagers of the $C(G(k, r), k, r)$ tree are integers.

Proof. (a) Please refer to Tables 4 and 5 for visual aid. At the 1st bet (level $1)$ - the root node $(k, r, 1)$, the money owned $n(k, r)=G(k, r)$ and wager $w_{G(k, r)}(k, r)=\binom{k-1}{r}$.

At the 2 nd bet (level 2), there are 2 possible nodes:
Node $(k-1, r, 1): n(k-1, r)=G(k, r)+\binom{k-1}{r}=2 \cdot G(k-1, r)$ and $w_{G(k, r)}(k-$ $1, r)=2 \cdot\binom{k-2}{r}$

Node $(k-1, r-1,1): n(k-1, r-1)=2 \cdot G(k-1, r-1)$ and $w_{G(k, r)}(k-1, r-1)=$ $2 \cdot\binom{k-2}{r-1}$

At the $m^{t h}$ bet (level m), nodes are $(k-m+1, r-j, u)$, where $\max \{0, r+$ $m-k-1\} \leq j \leq \min \{r, m-1\}$.

Therefore, $n(k-m+1, r-j)=2^{m-1} \cdot G(k-m+1, r-j)$, and $w_{G(k, r)}(k-$ $m+1, r-j)=2^{m-1} \cdot\binom{k-m}{r-j}$.
(b) Since $\binom{k-m}{r-j}$ are all integers, all the wagers are integers.

Table 4. The $C(n, 5,3)$ tree.

Definition 3.10. For any natural number k and any non-negative integer $r<k$, we define $g(k, k)=2^{k}$ and $g(k, r)$ is the greatest common divisor of all $w_{G(k, r)}(l, s)$ of the $C(G(k, r), k, r)$ tree.

Let $h(k, r, m)$ denote $2^{m-1} \cdot \operatorname{gcd}\left(\binom{k-m}{r},\binom{k-m}{r-1}, \ldots,\binom{k-m}{r-m+1}\right)$, where $0<m \leq$ $\min \{k-1, k-r, r+1\}$. Note that $h(k, r, m)$ is the greatest common factor of all the wagers at the $m^{t h}$ bet of the $C(G(k, r), k, r)$ tree. Since $w_{G(k, r)}(r+1, r)=$ 2^{k-r-1}, we have $h(k, r, k-r)=2^{k-r-1}$.

Table 5. $w_{G(13,8)}(l, s)$ of the $C(G(13,8), 13,8)$ tree

Lemma 3.11. For $r<k, g(k, r)=\operatorname{gcd}(h(k, r, 1), h(k, r, 2), \ldots, h(k, r, \min (k-$ $1, k-r, r+1))$).

Proof. Since $w_{G(k, r)}(r+1, r)=2^{k-r-1}$, we have $g(k, r)=2^{g}$ where $g \leq k-$ $r-1$. Also, $2^{k-r} \mid w_{G(k, r)}(k-m, s)$ for $m>k-r$. Therefore, those cases do not need to be included in the calculation of the gcd. That is, $g(k, r)=$ $\operatorname{gcd}(h(k, r, 1), h(k, r, 2), \ldots, h(k, r, \min (k-1, k-r, r+1)))$.

Lemma 3.12. $g(k, r)=g(k, k-r-1)$ for $r<k$.
Proof. $h(k, k-r-1, m)=2^{m-1} \cdot \operatorname{gcd}\left(\binom{k-m}{k-r-1},\binom{k-m}{k-r-2}, \ldots,\binom{k-m}{k-r-m}\right)=2^{m-1}$. $\operatorname{gcd}\left(\binom{k-m}{r-m+1},\binom{k-m}{r-m+2}, \ldots,\binom{k-m}{r}\right)=h(k, r, m) . \quad g(k, k-r-1)=\operatorname{gcd}(h(k, k-$ $r-1,1), h(k, k-r-1,2), \ldots, h(k, k-r-1, \min \{k-1, r+1, k-2\}))=g(k, r)$.

It is easy to see that $g(k, 0)=1=g(k, k-1)$ since $\binom{k-1}{0}=1=\binom{k-1}{k-1}$.

Lemma 3.13.

(a) For $0 \leq r<2^{m}$, we have $g\left(2^{m}, r\right)=1$.
(b) For $0<r<2^{m}$, we have $g\left(2^{m}+1, r\right)=2$.

Proof. (a) $h(k, r, 1)=\binom{k-1}{r}$, which is odd when $k=2^{m[8]}$. Therefore, $g\left(2^{m}, r\right)=$

1 , where $r<2^{m}$.
(b) $h(k, r, 2)=2 \cdot \operatorname{gcd}\left(\binom{k-2}{r},\binom{k-2}{r-1}\right)=2$ when $k=2^{m}+1^{[8]} \cdot h(k, r, 1)=\binom{k-1}{r}$, which is even when $k=2^{m}+1^{[8]}$. Therefore, $g\left(2^{m}+1, r\right)=2$, where $r<2^{m}$.

Theorem 3.14. The wagers of the $C(n, k, r)$ tree are all integers if and only if $\left.\frac{G(k, r)}{g(k, r)} \right\rvert\, n$, where $a \mid b$ means a divides b.

Proof. For $k=r$, the theorem is true since both $\left.\frac{G(k, r)}{g(k, r)} \right\rvert\, n$ and the wagers of the $C(n, k, r)$ tree are all integers.

For $k>r$, from Lemma 3.9b and the definition of $g(k, r)$, we know that $w_{\frac{G(k, r)}{g(k, r)}}(l, s)=\frac{w_{G(k, r)}(l, s)}{g(k, r)}$ are all integers and are relatively prime. Therefore, the gcd of all $w_{\frac{G(k, r)}{g(k, r)}}(l, s)$ is 1. $w_{n}(l, s)=\frac{n}{\frac{G(k, r)}{g(k, r)}} \cdot w_{\frac{G(k, r)}{g(k, r)}}(l, s)$. If $n=m \cdot \frac{G(k, r)}{g(k, r)}$, then every $w_{n}(l, s)$ is an integer. Conversely, if every $w_{n}(l, s)$ is an integer, then $\frac{n}{\frac{G(k, r)}{g(k, r)}}$ is an integer.

$k \backslash r$	0	1	2	3	4	5	6	7	8
1	1	(2)							
2	1	1	$\left(2^{2}\right)$						
3	1	2	1	$\left(2^{3}\right)$					
4	1	1	1	1	$\left(2^{4}\right)$				
5	1	2	2	2	1	$\left(2^{5}\right)$			
6	1	1	2	2	1	1	$\left(2^{6}\right)$		
7	1	2	1	2^{2}	1	2	1	$\left(2^{7}\right)$	
8	1	1	1	1	1	1	1	1	$\left(2^{8}\right)$
9	1	2	2	2	2	2	2	2	1
10	1	1	2^{2}	2^{2}	2	2	2^{2}	2^{2}	1
11	1	2	1	2^{3}	2	2^{2}	2	2^{3}	1
12	1	1	1	1	2	2	2	2	1
13	1	2	2	2	1	2^{2}	2^{2}	2^{2}	1
14	1	1	2	2	1	1	2^{2}	2^{2}	1
15	1	2	1	2^{2}	1	2	1	2^{3}	1

Table 6. Values of $g(k, r)$

4. Further Properties of $D(n, k, r)$

Theorem 4.1. For any $0 \leq r \leq k$ and $n>0, C(n, k, r)=D(n, k, r)$ if and only if the wagers at each node of the $C(n, k, r)$ tree are integers.

Proof. For $k=1, C(n, 1,0)=2 n=D(n, 1,0)$ and the wager is n, which is an integer. $C(n, 1,1)=n=D(n, 1,1)$ and the wager is 0 , which is an integer, so
for $0 \leq r \leq k$, we have $C(n, 1, r)=D(n, 1, r)$ if and only if all possible wagers in the $C(n, 1, r)$ tree are integers.

Assuming the statement is true for all $k \leq m$, we want to prove it is true for $k=m+1 . C(n, m+1, m+1)=n=D(n, m+1, m+1)$ and all the wagers are 0 so the statement is true for $r=m+1 . C(n, m+1,0)=n \cdot 2^{m+1}=D(n, m+1,0)$ and all the wagers are $n, n \cdot 2, \ldots, n \cdot 2^{m}$, so the statement is true for $r=0$.

For $0<r<m+1$, Let us first prove that if $D(n, m+1, r)=C(n, m+1, r)$, then all wagers of the $C(n, m+1, r)$ tree are integers. We know that the first wager of $C(n, m+1, r)$ is $n \cdot w_{c}$ and $C(n, m+1, r)=C\left(n \cdot\left(1+w_{c}\right), m, r\right)=$ $C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)$. Let the first wager of $D(n, m+1, r)$ be w_{d}. Then, $D(n, m+1, r)=\min \left\{D\left(n+w_{d}, m, r\right), D\left(n-w_{d}, m, r-1\right)\right\}$. If $w_{d} \leq n \cdot w_{c}$, $D(n, m+1, r) \leq D\left(n+w_{d}, m, r\right) \leq C\left(n+w_{d}, m, r\right) \leq C\left(n+n \cdot w_{c}, m, r\right)=$ $C(n, m+1, r)$. The inequalities become equalities and $w_{d}=n \cdot w_{c}$. Similarly, if $w_{d} \geq n \cdot w_{c}, D(n, m+1, r) \leq D\left(n-w_{d}, m, r-1\right) \leq C\left(n-w_{d}, m, r-1\right) \leq$ $C\left(n-n \cdot w_{c}, m, r-1\right)=C(n, m+1, r)$. The equalities hold and $w_{d}=n \cdot w_{c}$. Therefore, $w_{d}=n \cdot w_{c}$ and $D(n, m+1, r)=D\left(n \cdot\left(1+w_{c}\right), m, r-1\right)=C(n, m+$ $1, r)=C\left(n \cdot\left(1+w_{c}\right), m, r\right) . D\left(n \cdot\left(1+w_{c}\right), m, r\right)=C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ implies all the wagers of the $C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ tree are integers and similarly, all the wagers of the $C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)$ tree are integers. Therefore, all the wagers of the $C(n, m+1, r)$ tree are integers.

Lastly, we will prove that if all wagers of the $C(n, m+1, r)$ tree are integers, then $D(n, m+1, r)=C(n, m+1, r)$. The $C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ tree is a sub-tree of the $C(n, m+1, r)$ tree. Therefore all wagers of the $C\left(n \cdot\left(1+w_{c}\right), m, r\right)$ tree are integers. This implies that $C\left(n \cdot\left(1+w_{c}\right), m, r\right)=D\left(n \cdot\left(1+w_{c}\right), m, r\right)$. Similarly, $C\left(n \cdot\left(1-w_{c}\right), m, r-1\right)=D\left(n \cdot\left(1-w_{c}\right), m, r\right)$. Since $n \cdot w_{c}$ is an integer, we have $D(n, m+1, r) \geq \min \left\{D\left(n \cdot\left(1+w_{c}\right), m, r\right), D\left(n \cdot\left(1-w_{c}\right), m, r-1\right)\right\}=C(n, m+1, r)$. Since $C(n, m+1, r) \geq D(n, m+1, r)$, we have $C(n, m+1, r)=D(n, m+1, r)$.

Lemma 4.2. For any $0 \leq r \leq k$ and $n>0$, we have:
(a) Existence: There exists a positive integer n such that $C(n, k, r)=$ $D(n, k, r)$;
(b) Homogeneity: If $C(n, k, r)=D(n, k, r)$, then $C(n \cdot m, k, r)=D(n \cdot m, k, r)$;
(c) Additivity: If $C\left(n_{1}, k, r\right)=D\left(n_{1}, k, r\right)$ and $C\left(n_{2}, k, r\right)=D\left(n_{2}, k, r\right)$ where $n_{2}>n_{1}$, then $C\left(n_{2}-n_{1}, k, r\right)=D\left(n_{2}-n_{1}, k, r\right)$.

Proof. (a) From Lemma 3.9 (b) and Theorem 4.1, we have $C(G(k, r), k, r)=$ $D(G(k, r), k, r)$.
(b) If $C(n, k, r)=D(n, k, r)$, then all wagers of the $C(n, k, r)$ tree are integers. That implies that all wagers of the $C(n \cdot m, k, r)$ tree are integers.
(c) If $C\left(n_{1}, k, r\right)=D\left(n_{1}, k, r\right)$ and $C\left(n_{2}, k, r\right)=D\left(n_{2}, k, r\right)$, then all wagers of the $C\left(n_{1}, k, r\right)$ tree and the $C\left(n_{2}, k, r\right)$ tree are integers. Since the wagers of the $C(n, k, r)$ tree are n times the corresponding wagers of the $C(1, k, r)$ tree, wagers of $C\left(n_{2}-n_{1}, k, r\right)$ tree are the difference of the corresponding wagers of the $C\left(n_{1}, k, r\right)$ tree and the $C\left(n_{2}, k, r\right)$ tree.

Lemma 4.3. For every $0 \leq r \leq k$, let $P(k, r)=\frac{G(k, r)}{g(k, r)}$. Then, $C(n, k, r)=$ $D(n, k, r)$ if and only if $P(k, r) \mid n$.

Proof. From Theorem 3.14, we have $P(k, r) \mid n$ if and only if all the wagers of the $C(n, k, r)$ tree are integers. From Theorem 4.1, we have that all the wagers of the $C(n, k, r)$ tree are integers if and only if $C(n, k, r)=D(n, k, r)$. Therefore, $C(n, k, r)=D(n, k, r)$ if and only if $P(k, r) \mid n$.

Lemma 4.4. $P(k, k-r-1)=\frac{2^{k}}{g(k, r)}-P(k, r)$.
Proof. $P(k, k-r-1)=\frac{G(k, k-r-1)}{g(k, k-r-1)}=\frac{2^{k}-G(k, r)}{g(k, r)}=\frac{2^{k}}{g(k, r)}-P(k, r)$.

Theorem 4.5.

(a) $D(n, k, r)=C(m, k, r)+D(y, k, r)=\frac{m \cdot 2^{k}}{G(k, r)}+D(y, k, r)$ where $m=$ $\left\lfloor\frac{n}{P(k, r)}\right\rfloor \cdot P(k, r)$ and $y=n-m$;
(b) $D(n+1, k, r)-D(n, k, r)$ is a periodic function of n with a period of $P(k, r)$.

Proof. (a) For $D(y, k, r)$, we can use the $C(1, k, r)$ tree structure and attach each node with wagers and money owned of $D(y, k, r)$. The wagers and money owned are increasing functions of y. There exists an optimized path from the root node to a leaf node of the $C(1, k, r)$ tree such that the leaf node has money owned equal to $D(y, k, r)$. $D(m, k, r)$ and $C(m, k, r)$ have the same tree and values attached at each node and the optimized $D(m, k, r)$ path can be any path of the $C(m, k, r)$ tree. If we use the optimized $D(y, k, r)$ path for $D(y+m, k, r)$, at each node the wager and money owned for $D(y+m, k, r)$ are the sum of those of $D(y, k, r)$ and $C(m, k, r)$, so we have $D(y+m, k, r) \geq D(y, k, r)+C(m, k, r)$. If we use the optimized $D(y+m, k, r)$ path for $D(y, k, r)$ at each node, the wager and money owned for $D(y, k, r)$ are the difference of those of $D(y+m, k, r)$ and $C(m, k, r)$. We then have $D(y, k, r) \geq D(m+y, k, r)-C(m, k, r)$. Therefore, $D(m+y, k, r)=C(m, k, r)+D(y, k, r)$. This implies $D(n, k, r)=C(m, k, r)+$ $D(y, k, r)=\frac{m \cdot 2^{k}}{G(k, r)}+D(y, k, r)$.
(b) $D(n+1, k, r)-D(n, k, r)=D(y+1, k, r)-D(y, k, r)$ for $0 \leq y<P(k, r)$, so it is a periodic function of n with period $P(k, r)$.

Corollary 4.6.

(a) $D(n, k, k-1)=\left\lfloor\frac{n \cdot 2^{k}}{2^{k}-1}\right\rfloor$;
(b) $D\left(\frac{m \cdot G(k, r)}{g(k, r)}, k, r\right)=C\left(\frac{m \cdot G(k, r)}{g(k, r)}, k, r\right)=\frac{m \cdot 2^{k}}{g(k, r)}$.

Proof. (a) $P(k, k-1)=\frac{G(k, k-1)}{g(k, k-1)}=2^{k}-1$. For non-negative integers $y<$ $2^{k}-1, y \leq D(y, k, k-1) \leq C(y, k, k-1)=\frac{y \cdot 2^{k}}{2^{k}-1}=y+\frac{y}{2^{k}-1}$. This implies $D(y, k, k-1)=y$. From Theorem 4.5, we have that $D(n, k, k-1)=\left\lfloor\frac{n}{P(k, r)}\right\rfloor$.
$P(k, r) \cdot \frac{2^{k}}{G(k, r)}+D(y, k, r)$, where $y=n-\left\lfloor\frac{n}{P(k, r)}\right\rfloor \cdot P(k, r)$, so $D(n, k, k-1)=$ $\left\lfloor\frac{n}{2^{k}-1}\right\rfloor \cdot 2^{k}+y=\left\lfloor\frac{n}{2^{k}-1}\right\rfloor \cdot 2^{k}+n-\left\lfloor\frac{n}{2^{k}-1}\right\rfloor \cdot\left(2^{k}-1\right)=n+\left\lfloor\frac{n}{2^{k}-1}\right\rfloor=\left\lfloor\frac{n \cdot 2^{k}}{2^{k}-1}\right\rfloor$.
(b) From Lemma 4.3, we have that $D\left(\frac{m \cdot G(k, r)}{g(k, r)}, k, r\right)=C\left(\frac{m \cdot G(k, r)}{g(k, r)}, k, r\right)=$ $\frac{m \cdot 2^{k}}{g(k, r)}$.

Acknowledgement. I would like to thank professor Yeong-Nan Yeh for proposing this problem as well as providing valuable discussions.

References

[1] K.S. Davis and W.A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990) 229-233.
[2] L.E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, 1919.
[3] S.-P. Eu, S.-C. Liu, Y.-N. Yeh, On the congruences of some combinatorial numbers, Stud. Appl. Math. 116 (2006) 135-144.
[4] N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947) 589-592.
[5] B. Gan, Y.-N. Yeh, The Nim-like game and dynamic recurrence relations, Studies in Applied Mathematics 95 (1995) 213-228.
[6] I.M. Gessel, Some congruences for Ap'ery numbers, J. Number Theory 14 (1982) 362-368.
[7] A.R. Karlin and Y. Peres, Game Theory, Alive, Department of Statistics, UC Berkely, drafted Deember 3, 2013.
[8] S.C. Liu, J.C. Yeh, Catalan numbers modulo 2k, J. Integer Sequences 13 (2) (2010), Art.10.5.4, 1-26.
[9] F. Luca and M. Klazar, On integrality and periodicity of the Motzkin numbers, Aequ. Math. 69 (2005) 68-75.
[10] E. Lucas, Sur les congruences des nombres eul'eriens et d es coefficients diffrentiels des fonctions trigonomtriques suivant un module premier, Bull. Soc. Math. France 6 (1878) 49-54.
[11] Y. Mimura, Congruence properties of Apery numbers, J. Number Theory 16 (1983) 138-146.
[12] A. Postnikov and B. Sagan, Note: What power of two divides a weighted Catalan number, J. Combin. Theory Ser. A 114 (2007) 970-977.
[13] H. Riesel, Prime Numbers and Computer Methods for Factorization, Springer, 1994.
[14] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
[15] Y.-N. Yeh, Personal Communication to the author, 2012.
[16] K.M. Yeung, On congruence for Apery numbers, Southeast Asian Bull. Math. 20 (1) (1996) 103-110.
[17] K M Yeung, Some combinatorial identities involving Stiring numbers, Southeast Asian Bull. Math. 20 (2) (1996) 41-48.
[18] K.M. Yeung, On congruend for binomial coefficients, J. Number Theory 33 (1) (1989) 1-17.

