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Abstract. The Symmetric division deg index [SDD] is one of the 148 discrete Adri-

atic indices [22] is good predictor of total surface area for polychlorobiphenyls. The

Symmetric division deg index of a connected graph G, is defined as SDD(G) =
∑

uv∈E(G)
du

dv
+ dv

du
where dv is the degree of a vertex v in G. In this paper, we provide

a lower and upper bounds of Symmetric division deg index of connected graphs. Also,

established the Nordhaus - Gaddum-type relations for Symmetric division deg index

of a connected graphs, unicyclic and bicyclic graph.

Keywords: Graph operations Symmetric division deg index; Maximum degree; Pendent

vertices; Unicyclic graphs; Bicyclic graphs.
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1. Introduction

Molecular descriptors, being numerical functions of molecular structure, play a
fundamental role in mathematical chemistry [1]. They are used in Quantitative
structure property relations and Quantitative structure activity relations (QSAR
and QSPR) studies to relates biological or chemical properties of molecules to
specific molecular descriptors [6]. In 1992, N. Trinajastic describe in his book
chemical graph theory is the topology, branch of mathematical chemistry which
applies graph theory to mathematical modelling of chemical phenomena. i.e,
Topological indices, being numerical functions of the underlying molecular graph,
represent an important type of molecular descriptors [21].

The smart polymers are macromolecules that display a dramatic change in
respect to small changes in the environment. In 2012, some applications re-
lated topological indices for Dox-loaded micelle comprising block co-polymer
with chemically conjuated Dox (smart polymers) are found in [17], and compar-
ative study of topological indices and molecular weight of some carbohydrates
(Chetin and Cellulose) are in [19]. Recently, in [9], C.K. Gupta and et al. con-
structed a calyey graph for multiplicative group of upper-triangular 2*2 matrices
over zmodn. Also, established some topological indices of that graph and the
relations on graph operations on matrix group.

Inspired by the most successful indices of the form, such as second Zagreb
index [8], ABC index [7], Randic index [16], Harmonic index [20], and others,
there was defined a whole family of Adriatic indices in [23]. Also posed a series
of open problems respect to mathematical properties of discrete adriatic indices.

In recent times [22], D. Vukicevic revealed the set of 148 discrete Adriatic
indices. They were analyzed on the testing sets provided by the International
Academy of Mathematical Chemistry and it had been shown that they have
good predictive properties in many cases. There was a vast research regarding
various properties of this topological index (see [12, 13, 17, 24]).

In 2014, M. Azari [3] is using Narumi Katayama index NK(G) of a simple
graph G is equal to the product of the degrees of the vertices of G. They
found sharp lower bounds of Narumi Katayama index for several classes of graph
operations.

In a new article [23], D. Vukicevic analyzed maximal value of max-min index
for different graphs with maximal degree and minimal values of index for graphs
with minimal degree. He posed the open questions in his conclusions. Stimulate
from that, here we ardent one of the index specifically, Symmetric division deg
index [SDD]. This emphasizes the development of lower and upper bounds for
graphs. This acquires some results that are partial answer to the open queries.

Symmetric division deg index is one of the discrete adriatic indices that is
good predictor of total surface area for polychlorobiphenyls.

We recall some definitions which are essential in our study. Let G be a simple
graph, the vertex-set and edge-set of which are represented by V (G) and E(G)
respectively. Notations used in this work are standard and mainly from [10].
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Definition 1.1. The Hyper-zagreb index [18] is defined as

HM(G) =
∑

uv∈E(G)

(du + dv)
2

Definition 1.2. The Symmetric division deg index of a connected graph G, (SDD)
is defined as

SDD(G) =
∑

uv∈E(G)

max(du, dv)

min(du, dv)
+

min(du, dv)

max(du, dv)
=

∑

uv∈E(G)

du

dv
+

dv

du

=
∑

uv∈E(G)

du
2 + dv

2

dudv

where du and dv are the degrees of respective vertices of u and v in G.

Many topological indices are bond-additive, they can be presented as a sum
of edge contributions and have the following form:

∑

uv∈E(G)

f(h(u), h(v)).

Where h(u) are usually degrees or the sum of distances from u to all other
vertices of G.

This paper starts with preliminaries, then coming up with lower and upper
bounds of Symmetric division deg index in section 3. Section 4 consists of results
related to Nordhaus - Gaddum-type. Final two sections dealt with Symmetric
division deg index of unicyclic and bi-cyclic graphs.

2. Preliminary Results

In this section, we discussed some useful Lemmas which are essential for the
forthcoming section results.

Let α(x, y) = x2+y2

xy
where x, y are positive integers, where, α : R × R → R.

Then Symmetric division deg index SDD(G) representation interms of α as

SDD(G) =
∑

uv∈E(G)

α(du, dv).

Lemma 2.1. Let x and y are positive integers. Then

(i) α(x, y) = 2 whenever x = y.
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(ii) For fixed y ≥ 2,

(a) α(x, y) is decreasing for x < y.

(b) α(x, y) is increasing for x > y.

(iii) α(x, 1) is increasing for x ≥ 1.

Proof. (i) By direct computation, α(x, x) = x2+x2

x2 = 2 when x = y.

(ii) Consider, α(x, y) = x2+y2

xy
, for fixed y ≥ 2.

∂α(x, y)

∂x
=

x2 − y2

yx2
=

(x+ y)(x− y)

yx2
.

Therefore, ∂α(x,y)
∂x

> 0 for x > y and ∂α(x,y)
∂x

< 0 for x < y.

Hence, for fixed y ≥ 2, we have (a) and (b).

(iii) Trivially, α(x, 1) = x2+1
x

is increases for x ≥ 1.

Lemma 2.2. Let f(x, y) = α(x+1, y)−α(x, y) where x and y are positive integer,
then

(i) f(x, y) is increasing for x > y.

(ii) f(x, y) is decreasing for x < y.

Proof. From the Lemma 2.1 (2), α(x, y) is increasing for x > y, therefore f(x, y)
is increasing for x > y. Similarly, the α(x, y) is increasing for x > y and f(x, y)
is decreasing for x < y.

Lemma 2.3. Let gn(x) = xα(1, x+ n+ 1)− (x− 1)α(1, x+ n) for x > 0, n > 1.
Then gn(x) increases for x.

Proof. We prove by induction process.

Case 1. For n = 1, let l(x) = xα(1, x + 2) = x(1+(x+2)2)
x+2 . Consider, g1(x) =

l(x)− l(x− 1). Then,

l′(x) =
2x3 + 10x2 + 16x+ 10

(x+ 2)2
> 0

and

l′′(x) =
2x4 + 10x2 + 16x+ 10

(x+ 1)4
> 0

By Lagrange’s mean value theorem, g′1(x) = l′(x) − l′(x − 1) = l′′(c) > 0 for
some x− 1 ≤ c ≤ x. Thus g1(x) is increasing for x.

Case 2. For n = 2, let h(x) = xα(1, x+ 3) = x3+6x2+10x
x+3 .
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Consider, g2(x) = h(x)− h(x− 1). Then,

h′(x) =
2x3 + 15x2 + 36x+ 30

(x+ 3)2
> 0

and

h′′(x) =
2x4 + 24x3 + 108x2 + 210x+ 144

(x+ 3)4
> 0.

By Lagrange’s mean value theorem, g′2(x) = h′(x) − h′(x − 1) = h′′(c) > 0 for
some x− 1 ≤ c ≤ x. Thus g2(x) is increasing for x.

Observing the cases (1) and (2) we arrive the conclusion that, for similar
arguments the result is true for n. Hence, gn(x) is increasing for x.

3. Lower and Upper Bounds on Symmetric Division deg Index

This section deals with relations via bounds of Hyper zagreb indices and Sym-
metric division deg indices. First we concentrate with lower bounds for Sym-
metric division deg indices.

We would like to quote the following well-known folklore results.

Lemma 3.1. [23] Let G be a simple connected graph with n vertices that does not
have isolated vertices. Then

∑

uv∈E(G)

( 1

du
+

1

du

)

= n.

Lemma 3.2. [15, Ozeki’s Inequality] Let (a1, a2, ..., an) and (b1, b2, ..., bn) be two
positive n− tuples such that there exist a positive numbers M1, m1, M2, m2

satisfying; 0 < m1 ≤ ai ≤ M1, 0 < m2 ≤ bi ≤ M2, 1 ≤ i ≤ n. Then

n
∑

i=1

a2i

n
∑

i=1

b2i −

n
∑

i=1

(aibi)
2 ≤

1

4
n2(M1M2 −m1m2).

Theorem 3.3. Let G be a simple connected graph with order n, size m, p pendent
vertices, maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≥ p
(δ1

2 + 1

δ1

)

+ 2(m− p). (1)

For the regular and star graph equality hold.

Proof. We recall the Theorem 1 of [4]. Utilizing in the process of the result.
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Consider,

SDD(G) =
∑

uv∈E(G)

(du

dv
+

dv

du

)

=
∑

uv∈E(G),du=1

(dv

1
+

1

dv

)

+
∑

uv∈E(G),du,dv 6=1

(du

dv
+

dv

du

)

≥
∑

uv∈E(G),du=1

(δ1

1
+

1

δ1

)

+
∑

uv∈E(G),du,dv 6=1

2

= p
(δ1

2 + 1

δ1

)

+ 2(m− p).

Theorem 3.4. Let G be a simple connected graph with order n, size m, p pendent
vertices, maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≥p
(δ1

2 + 1

δ1

)

+

√

(n−p(∆ + 1
∆))2(HM(G)−p(1 + ∆)2)

(m− p)
−4(m−p)2

(∆

δ1
−
δ1

∆

)2

− 2(m− p)

Where HM(G) is Hyper-Zagreb index. For the regular and star graph equality
hold.

Proof. Consider,

SDD(G) =
∑

uv∈E(G)

(du

dv
+

dv

du

)

=
∑

uv∈E(G),du=1

(dv

1
+

1

dv

)

+
∑

uv∈E(G),du,dv 6=1

(du

dv
+

dv

du

)

(2)

For dv 6= 1 and δ1 ≤ dv ≤ ∆, we have

∑

uv∈E(G),du=1

(dv

1
+

1

dv

)

≥
∑

uv∈E(G),du=1

(δ1

1
+

1

δ1

)

= p
(δ1

2 + 1

δ1

)

(3)

Since p is the number of pendent vertices in G, we have m − p number of non-
pendent edges in G.
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Therefore,

∑

uv∈E(G),du,dv 6=1

(du

dv
+

dv

du

)

=
∑

uv∈E(G),du,dv 6=1

[( 1

du
+

1

dv

)

(du + dv)− 2
]

(4)

=
∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)

(du + dv)− 2(m− p)

By Ozeki inequality, we have

[

∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)

(du + dv)
]2

≥
∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)2

×
∑

uv∈E(G),du,dv 6=1

(du + dv)
2

−
1

4
(m− p)2

(4∆

δ1
−

4δ1
∆

)2

=
∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)2

×
(

HM(G)−
∑

uv∈E(G),du=1

(1 + dv)
2
)

(5)

− 4(m− p)2
(∆

δ1
−

δ1

∆

)2

≥
1

m− p

[

n− p(∆ +
1

∆
)
]2

×
[

HM(G)− p(1 + ∆)2
]

− 4(m− p)2
(∆

δ1
−

δ1

∆

)2

Since by Cauchy-Schwarz inequality

(

∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

))2

≤ (m− p)
∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)2

Hence

∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)2

≥
1

m− p

[

∑

uv∈E(G)

( 1

du
+

1

dv

)

−
(

∑

uv∈E(G),du=1

(

dv +
1

dv

)]2

≥
1

m− p

[

n− p
(

∆+
1

∆

)]2
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Utilizing the equations (3)- (5) in equation (2), we obtain

SDD(G) ≥p
(δ1

2 + 1

δ1

)

+

√

(n−p(∆+ 1
∆))2(HM(G)−p(1+∆)2)

(m− p)
−4(m−p)2

(∆

δ1
−

δ1

∆

)2

− 2(m− p).

Corollary 3.5. Let G be a simple connected graph with order n, size m, maximum
degree ∆ and minimum degree δ. Then

SDD(G) ≥

√

n2HM(G)

m
− 4m2

(∆

δ
−

δ

∆

)2

− 2m

Proof. Put p = 0 in Theorem 3.4, we get required result.

Corollary 3.6. Let T be a tree of order n, p pendent vertices, maximum degree
∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≥p
(δ1

2 + 1

δ1

)

+

√

(n−p(∆+ 1
∆))2(HM(G)−p(1+∆)2)

(n− 1− p)
−4(n−1−p)2

(∆

δ1
−

δ1

∆

)2

− 2(n− 1− p)

In star graph equality hold.

Proof. We know that tree with order n having size m = n−1. The result follows
from Theorem 3.4.

Now we establish some results relate to an upper bound on Symmetric divi-
sion deg index.

Theorem 3.7. Let G be a simple connected graph with order n, size m, maximum
degree ∆ and minimum degree δ. Then

SDD(G) ≤ m
(∆2 + δ2

∆δ

)

(6)

For the regular and star graph equality hold.
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Proof. Consider,

SDD(G) =
∑

uv∈E(G)

(Max(du, dv)

Min(du, dv)
+

Min(du, dv)

Max(du, dv)

)

≤
∑

uv∈E(G)

(∆

δ
+

δ

∆

)

= m
(∆2 + δ2

∆δ

)

Case 1. For G is a star graph. Equality hold only if du = ∆ and dv = δ = 1
for any edge uv ∈ E(G).

Case 2. For G is a regular graph. Equality hold only if du = dv for any edge
uv ∈ E(G).

Theorem 3.8. Let G be a simple connected graph with order n, size m, p pendent
vertices, maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≤ p
(∆2 + 1

∆

)

+ (m− p)
(∆2 + δ1

2

∆δ1

)

Equality hold only if graph is regular and star.

Proof. Consider,

SDD(G) =
∑

uv∈E(G)

(du

dv
+

dv

du

)

=
∑

uv∈E(G),du=1

(dv

1
+

1

dv

)

+
∑

uv∈E(G),du,dv 6=1

(du

dv
+

dv

du

)

≤
∑

uv∈E(G),du=1

(∆

1
+

1

∆

)

+
∑

uv∈E(G),du,dv 6=1

(∆

δ1
+

δ1

∆

)

= p
(∆2 + 1

∆

)

+ (m− p)
(∆2 + δ1

2

∆δ1

)

Equality trivially holds for regular and star graph.

Theorem 3.9. Let G be a simple connected graph with order n, size m, p pendent
vertices, maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≤ p
(∆2 + 1

∆

)

+
1

δ1
2 [HM(G)− p(1 + δ1)

2]− 2(m− p)

Where HM(G) is Hyper-Zagreb index. Equality hold only if graph is regular or
star.
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Proof. For dv 6= 1 and δ1 ≤ dv ≤ ∆, we have

∑

uv∈E(G),du=1

(dv

1
+

1

dv

)

≤
∑

uv∈E(G),du=1

(∆

1
+

1

∆

)

= p
(∆2 + 1

∆

)

(7)

Since p is the number of pendent vertices in G, thenm−p number of non-pendent
edges in G.

By Cauchy-Schwarz inequality,

[

∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)

(du + dv)
]2

≤
∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)2

×
∑

uv∈E(G),du,dv 6=1

(du + dv)
2

=
∑

uv∈E(G),du,dv 6=1

(du + dv)
2

(dudv)2
×
[

HM(G)−
∑

uv∈E(G),du=1

(1 + dv)
2
]

≤
1

δ1
4

[

HM(G)−
∑

uv∈E(G),du=1

(1 + dv)
2
]

×
[

HM(G)−
∑

uv∈E(G),du=1

(1 + dv)
2
]

≤
1

δ1
4

[

HM(G)− p(1 + δ1)
2
]2

Finally,

∑

uv∈E(G),du,dv 6=1

( 1

du
+

1

dv

)

(du + dv) ≤
1

δ1
2

[

HM(G)− p(1 + δ1)
2
]

(8)

utilizing equations (4), (7) and (8) in equation (2), we obtain

SDD(G) ≤ p
(∆2 + 1

∆

)

+
1

δ1
2 [HM(G)− p(1 + δ1)

2]− 2(m− p)

Corollary 3.10. Let G be a simple connected graph with order n, size m, maxi-
mum degree ∆ and minimum degree δ. Then

SDD(G) ≤
1

δ2
[HM(G)]− 2m

Proof. Put p = 0 in Theorem 2.1, we get required results.

Corollary 3.11. Let T be a tree of order n, p pendent vertices, maximum degree
∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≤ p
(∆2 + 1

∆

)

+
1

δ1
2 [HM(G)− p(1 + δ1)

2]− 2(n− 1− p)
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Equality hold only if graph is star.

Proof. The number of edges in a tree having n vertices is m = n − 1, result
follows from Theorem 2.1.

4. Nòrdhaus-Gaddum-Type Results for Symmetric Division deg Index

In 1956, E.A. Nordhaus and J.W. Gaddum [14] gave tight bounds on the product
and sum of the chromatic numbers of a graph and its complement. Since then,
such type of results have been derived for several other graph invariants, see the
recent survey [2]. Nordhauss-Gaddum type results for ABC index are established
by Das and et al [5]. Inspired from this, we found the relations for symmetric
division deg index.

Theorem 4.1. Let G be a simple connected graph on n vertices with a connected
complement G. Then

SDD(G) + SDD(G) ≤

(

n

2

)

(k2 + 1

k

)

where k = max{∆
δ
, ∆
δ
}; ∆, δ, ∆ and δ are the maximum vertex degree and

minimum vertex degree of G and G respectively. Moreover, the equality holds if
and only if G is isomorphic to a regular graph.

Proof. Let G be a simple connected graph on n vertices and k ≥ ∆
δ

≥ 1 and

1− δ
k∆ ≥ 0. Then,

(

k −
∆

δ

)(

1−
δ

k∆

)

≥ 0

Implies,

(k2 + 1

k

)

≥
(δ2 +∆2

∆δ

)

(9)

The G is complement of G, k ≥ ∆
δ
≥ 1 and 1− δ

k∆
≥ 0.

Similarly,

(k2 + 1

k

)

≥
(δ

2
+∆

2

∆δ

)

(10)

We have m+m =
(

n
2

)

, ∆ = n− 1− δ and δ = n− 1−∆ where m, ∆ and δ are

the number of edges, maximum vertex degree and minimum vertex degree of G
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respectively. Applying Theorem 3.7 for G and G then,

SDD(G) + SDD(G) ≤ m
(∆2 + δ2

∆δ

)

+m
(∆

2
+ δ

2

∆δ

)

≤ m
(k2 + 1

k

)

+m
(k2 + 1

k

)

(Using Eqs. 9 and 10)

= (m+m)
(k2 + 1

k

)

=

(

n

2

)

(k2 + 1

k

)

.

Moreover, the equality holds if and only if G is isomorphic to a regular graph.

Theorem 4.2. Let G be a simple connected graph of order n such that its com-
plement G is connected. Let ∆, δ1, p and ∆, δ1, p denotes the maximum vertex
degree, minimum non-pendent vertex degree and pendent vertices of G and G

respectively.

If α = min{δ1, δ1} Then

SDD(G) + SDD(G) ≥ 2

(

n

2

)

− 2(p+ p) + (p+ p)
(α2 + 1

α

)

Equality holds only if G is k− regular graph with 2k + 1 vertices.

Proof. Let m and m are the number of edges in G and G respectively. We know
m+m =

(

n
2

)

.

Applying Theorem 3.3 for G and G. Then

SDD(G) + SDD(G) ≥ p
(δ1

2 + 1

δ1

)

+ 2(m− p) + p
(δ1

2
+ 1

δ1

)

+ 2(m− p)

= 2(m+m)− 2(p+ p) + p
(δ1

2 + 1

δ1

)

+ p
(δ1

2
+ 1

δ1

)

(11)

α = min{δ1, δ1} i.e, δ1, δ1 ≥ α ≥ 2 and also,
(

δ1
2+1
δ1

)

is monotonic increasing,

from equation (11) it follows that,

SDD(G) + SDD(G) ≥ 2

(

n

2

)

− 2(p+ p) + p
(α2 + 1

α

)

+ p
(α2 + 1

α1

)

= 2

(

n

2

)

− 2(p+ p) + (p+ p)
(α2 + 1

α

)

If G is k− regular graph with 2k+1 vertices, it can be easily seen that equality
holds.
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5. Symmetric Division deg Index of Unicyclic Graph

Unicyclic graphs are often considered in the field of mathematical chemistry.
Zhang F and et al [25] discussed the unicylic graphs for augmented zagreb index
motivated from that works, In this section, we determine the unicyclic graph of
order n with the maximum and the second maximum SDD indices for n ≥ 5.

Let Un be the set of n− vertex unicyclic graph. Let Un,p be the set of unicyclic
graph with n vertices and p pendent vertices.

Let Cn,p be the unicyclic graph formed by attaching p pendent vertices to a
vertex of the cycle Cn−p, where 0 ≤ p ≤ n− 3.

Corollary 5.1. Let G ∈ Un,p, where 0 ≤ p ≤ n− 3. Then

SDD(G) ≤ p
(p2 + 4p+ 5

p+ 2

)

+ (n− p)
(p2 + 4p+ 8

2(p+ 2)

)

Equality hold only if graph G ∼= Cn,p.

Proof. Since G is an unicyclic graph with size m = n, 3 ≤ ∆ ≤ p + 2. By
Theorem 3.8

SDD(G) ≤ p
(∆2 + 1

∆

)

+ (m− p)
(∆2 + δ1

2

∆δ1

)

≤ p
((p+ 2)2 + 1

(p+ 2)

)

+ (n− p)
( (p+ 2)2 + 22

2(p+ 2)

)

= p
(p2 + 4p+ 5

p+ 2

)

+ (n− p)
(p2 + 4p+ 8

2(p+ 2)

)

.

Lemma 5.2. For every positive integer n, with 0 ≤ p ≤ n− 3, graph Cn,p holds
that

SDD(Cn,0) < SDD(Cn,1) < ... < SDD(Cn,n−4) < SDD(Cn,n−3).

Proof. Consider the function

g(p) = p
(p2 + 4p+ 5

p+ 2

)

+ (n− p)
(p2 + 4p+ 8

2(p+ 2)

)

.

Then

g′(p) = p
(p2 + 4p+ 5

(p+ 2)2

)

+ (n− p)
( 2p2 + 8p

4(p+ 2)2

)

+
(p2 + 4p+ 2

2(p+ 2)

)

> 0 as p ≥ 1.

Thus g(p) is increasing function for 0 ≤ p ≤ n− 3 and g(1) = 10
3 + (n− 1)136 >

g(0) = 2n. Thus we have

SDD(Cn,0) < SDD(Cn,1) < ... < SDD(Cn,n−4) < SDD(Cn,n−3).
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Theorem 5.3. Among all graphs in Un with n ≥ 3, Cn,n−3 is the unique graph
with the maximum SDD index, which is equal to

1

2(n− 1)
(2n3 − 7n2 + 10n+ 3).

Proof. By Corollary 5.1, Cn,p with 0 ≤ p ≤ n− 3 is the unique graph with the
maximum SDD index

g(p) = p
(p2 + 4p+ 5

p+ 2

)

+ (n− p)
(p2 + 4p+ 8

2(p+ 2)

)

and by Lemma 5.2, Cn,n−3 is the unique graph with the maximal SDD index in
Un. It is clear that

SDD(Cn,n−3) =(n− 3)
((n− 3)2 + 4(n− 3) + 5

(n− 3) + 2

)

+ (n− (n− 3))
( (n− 3)2 + 4(n− 3) + 8

2((n− 3) + 2)

)

=
1

2(n− 1)
(2n3 − 7n2 + 10n+ 3).

Let v1, v2, ..., vr be the vertices of Cr are consecutively labelled.

Let Qn(p1, p2, ..., pr) be the unicyclic graph formed by attaching pi vertices
to vi where pi ≥ 0 for i = 1, ..., r and p1 ≥ p2 ≥ ... ≥ pr and

∑r

i=1 pi = n− r.

Lemma 5.4. Let G ∼= Qn(p1, p2, p3) with p1 ≥ p2 ≥ 1 and G′ ∼= Qn(p1 + 1, p2 −
1, p3). Then

SDD(G′) > SDD(G).

Proof. Consider,

SDD(G′)− SDD(G)

=(p1 + 1)α(1, p1 + 3) + (p2 − 1)α(1, p2 + 1)

+ α(p1 + 3, p2 + 1) + α(p2 + 1, p3 + 2) + α(p3 + 2, p1 + 3)

− [p1α(1, p1 + 2) + p2α(1, p2 + 2)]

− [α(p1 + 2, p2 + 2) + α(p2 + 2, p3 + 2) + α(p3 + 2, p1 + 2)]

=(p1 + 1)α(1, p1 + 3)− p1α(1, p1 + 2)− [p2α(1, p2 + 2)

− (p2 − 1)α(1, p2 + 1)] + α(p3 + 2, p1 + 3)− α(p3 + 2, p1 + 2)

− [α(p2 + 2, p3 + 2)− α(p2 + 1, p3 + 2)]

+ α(p1 + 3, p2 + 1)− α(p1 + 2, p2 + 2)

=g1(p1 + 1)− g1(p2) + f(p1 + 2, p3 + 2)− f(p2 + 1, p3 + 2)

+ α(p1 + 3, p2 + 1)− α(p1 + 2, p2 + 2)

>0
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Because, By Lemma 2.3, g1(p1 + 1) > g1(p2) since (p1 + 1) > p2. By Lemma
2.2, f(p1 + 2, p3 + 2) > f(p2 + 1, p3 + 2), since p1 + 2 > p2 + 1 > p3 + 2 and

α(p1 + 3, p2 + 1)− α(p1 + 2, p2 + 2)

=
((p1 + 3)2 + (p2 + 1)2

(p1 + 3)(p2 + 1)
−

(p1 + 2)2 + (p2 + 2)2

(p1 + 2)(p2 + 2)

)

> 0 for p1 > p2

Hence SDD(G′) > SDD(G).

Theorem 5.5. Among all graphs in Un with n ≥ 4,

(i) For n = 4 or n ≥ 12, Cn,n−4 is the unique graph with the second maximal
SDD index, which is equal to

(n− 4)
(n2 − 4n+ 5

n− 2

)

+
(n2 − 4n+ 8

n− 2

)

+ 4.

(ii) For 5 ≤ n ≤ 11, Qn(n−4, 1, 0) is the unique graph with the second maximal
SDD index, which is equal to

(n− 4)
(n2 − 4n+ 5

n− 2

)

+
(n2 − 4n+ 8

2(n− 2)

)

+
(n2 − 4n+ 13

3(n− 2)

)

+
33

6
.

Proof. By Lemma 5.2, the second maximal SDD index of graph in Un with n ≥ 4
is achieved by the graph in Un,n−3 \ {Cn,n−3} and Cn,n−4.

Case 1. If n = 4 is trivial.

Here, C4 is the unique graph with the second maximal SDD index, which is
equal to 8.

Case 2. If n ≥ 5.

By Lemma 5.4, if p2 ≥ p3 ≥ 1, we can observe thatQn(n−4, 1, 0) is the unique
graph with the maximum SDD index among all of the graph in Un,n−3\{Cn,n−3}.

It is easily seen that

SDD(Cn,n−4)− SDD(Qn(n− 4, 1, 0))

=(n− 4)α(1, n− 2) + 2α(n− 2, 2) + 2α(2, 2)

− [(n− 4)α(1, n− 2) + α(n− 2, 2) + α(2, 3) + α(3, n− 2) + α(1, 3)]

=
n2 − 4n− 2

6(n− 2)
−

3

2
=

n(n− 13) + 16

6(n− 2)

By simple calculation

SDD(Cn,n−4)− SDD(Qn(n− 4, 1, 0)) < 0 for 5 ≤ n ≤ 11.

i.e

SDD(Cn,n−4) < SDD(Qn(n− 4, 1, 0)) for 5 ≤ n ≤ 11.
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and

SDD(Cn,n−4)− SDD(Qn(n− 4, 1, 0)) > 0 for n ≥ 12.

i.e

SDD(Cn,n−4) > SDD(Qn(n− 4, 1, 0)) for n ≥ 12.

Also

SDD(Cn,n−4) = (n− 4)α(1, n− 2) + 2α(n− 2, 2) + 2α(2, 2)

= (n− 4)
(n2 − 4n+ 5

n− 2

)

+
(n2 − 4n+ 8

n− 2

)

+ 4 for n ≥ 12.

SDD(Qn(n− 4, 1, 0))

=(n− 4)α(1, n− 2) + α(n− 2, 2) + 2α(2, 3) + α(3, n− 2) + α(1, 3)

=(n− 4)
(n2 − 4n+ 5

n− 2

)

+
(n2 − 4n+ 8

2(n− 2)

)

+
(n2 − 4n+ 13

3(n− 2)

)

+
33

6
for 5 ≤ n ≤ 11.

Lemma 5.6. Let G ∼= Qn(p1, p2, p3, p4) with p3 ≥ 2. Then

SDD(Qn(p1 + 1, p2, p3 − 1, p4)) > SDD(G).

If p1 ≥ p2 ≥ p4 ≥ 2, then

SDD(Qn(p1, p2 + 1, p3, p4 − 1)) > SDD(G).

Proof. From the Lemmas 2.2 and 2.3, we have

SDD(Qn(p1 + 1, p2, p3 − 1, p4))− SDD(G)

=(p1 + 1)α(1, p1 + 3) + (p3 − 1)α(1, p3 + 1) + α(p1 + 3, p2 + 2)

+ α(p2 + 2, p3 + 1) + α(p3 + 1, p4 + 2) + α(p1 + 3, p4 + 2)

− [p1α(1, p1 + 2) + p3α(1, p3 + 2) + α(p1 + 2, p2 + 2)]

− [α(p2 + 2, p3 + 2) + α(p3 + 2, p4 + 2) + α(p1 + 2, p4 + 2)]

=(p1 + 1)α(1, p1 + 3)− p1α(1, p1 + 2)− [p3α(1, p3 + 2)

− (p3 − 1)α(1, p3 + 1)] + α(p1 + 3, p2 + 2)− α(p1 + 2, p2 + 2)

− [α(p2 + 2, p3 + 2)− α(p2 + 2, p3 + 1)] + α(p3 + 1, p4 + 2)

− α(p3 + 2, p4 + 2)− [α(p1 + 2, p4 + 2)− α(p1 + 3, p4 + 2)]

=g1(p1 + 1)− g1(p3) + f(p1 + 2, p2 + 2)− f(p3 + 1, p2 + 2)

+ f(p1 + 2, p4 + 2)− f(p3 + 2, p4 + 2)

>0
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Hence SDD(Qn(p1, p2+1, p3, p4− 1)) > SDD(G). similar arguments we obtain
the following;

If p1 ≥ p2 ≥ p4 ≥ 2, then SDD(Qn(p1, p2 + 1, p3, p4 − 1)) > SDD(G).

Lemma 5.7. Let G ∼= Qn(p1, p2, 1, 1) with p1 ≥ p2 ≥ 2. Then

SDD(Qn(p1 + 1, p2 − 1, 1, 1)) > SDD(G).

Proof. Consider from the Lemmas 2.2, 2.3 and 5.6, we have

SDD(Qn(p1 + 1, p2 − 1, 1, 1))− SDD(G)

=(p1 + 1)α(1, p1 + 3) + (p2 − 1)α(1, p2 + 1) + α(p1 + 3, p2 + 1)

+ α(p1 + 3, 3) + α(p2 + 1, 3)− [p1α(1, p1 + 2) + p2α(1, p2 + 2)

+ α(p1 + 2, p2 + 2) + α(p1 + 2, 3) + α(p2 + 2, 3)]

=g1(p1 + 1)− g1(p2) + f(p1 + 2, 3)− f(p2 + 1, 3) + α(p1 + 3, p2 + 1)

− α(p1 + 2, p2 + 2)

>0

Hence SDD(Qn(p1 + 1, p2 − 1, 1, 1)) > SDD(G).

6. Symmetric Division deg Index of Bicyclic Graph

In [11], Y. Hu discussed the bicyclic graph on harmonic index. Motivated from
this, in this section we determine the bicyclic graph of order n with the maximum
and the second maximum SDD indices for n ≥ 5.

Let Bn,p be the set of bicyclic graph with n vertices and p pendent vertices
for 0 ≤ p ≤ n− 4.

Let Sr,t
n,p be the n− vertex bicyclic graph by identifying one vertex of two

cycles Cr and Ct and attaching p = n+1−r− t pendent vertices to the common
vertex, where t ≥ r ≥ 3 and 0 ≤ p ≤ n− 5.

Corollary 6.1. Let G be a bicyclic graph with n ≥ 5 vertices and p pendent
vertices, where 0 ≤ p ≤ n− 5. Then

SDD(G) ≤ p
(p2 + 8p+ 14

2(p+ 4)

)

+ (n+ 1)
(p2 + 8p+ 20

2(p+ 4)

)

.

Equality hold only if graph G ∼= Sr,t
n,p.

Proof. Since G is an bicyclic graph with sizem = n+1 and 3 ≤ ∆ ≤ p+4 ≤ n−1.
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By Theorem 3.8,

SDD(G) ≤ p
(∆2 + 1

∆

)

+ (m− p)
(∆2 + δ1

2

∆δ1

)

≤ p
((p+ 4)2 + 1

(p+ 4)

)

+ (n+ 1− p)
((p+ 4)2 + 22

2(p+ 4)

)

= p
(p2 + 8p+ 14

2(p+ 4)

)

+ (n+ 1)
(p2 + 8p+ 20

2(p+ 4)

)

.

Lemma 6.2. For the graph in Sn,p with 0 ≤ p ≤ n− 5 and n ≥ 5, it holds that

SDD(Sn,0) < SDD(Sn,1) < ... < SDD(Sn,n−6) < SDD(Sn,n−5).

Proof. Consider the function

l(p) = p
(p2 + 8p+ 14

2(p+ 4)

)

+ (n+ 1)
(p2 + 8p+ 20

2(p+ 4)

)

Then

l′(p) = p
(2p2 + 16p+ 36

4(p+ 4)2

)

+ (n+ 1)
(2p2 + 16p+ 24

4(p+ 4)2

)

+
(p2 + 8p+ 14

2(p+ 4)

)

> 0

as p ≥ 1. Thus l(p) is increasing function for 0 ≤ p ≤ n− 5 and

l(1) =
23

10
+ (n+ 1)

29

10
> l(0) = (n+ 1)

20

8

Then we have SDD(Sn,0) < SDD(Sn,1) < ... < SDD(Sn,n−6) < SDD(Sn,n−5).

Let C∗
4 be the bicyclic graph obtained by adding an edge to the cycle C4.

Label the vertices of C∗
4 by v1, v2, v3, v4 with dv1 = dv2 = 3, dv3 = dv4 = 2.

Let C∗
n(p1, p2, p3, p4) be the graph formed from C∗

4 by attaching pi pendent

vertices to vi, where pi ≥ 0 for i = 1, 2, 3, 4, p1 ≥ p2, p3 ≥ p4 and
∑4

i=1 pi = n−4.

Theorem 6.3. Let G ∈ Bn,n−4 with n ≥ 5. Then

SDD(G) ≤ (n− 4)
(n2 − 2n+ 2

n− 1

)

+
(n2 − 2n+ 10

3(n− 1)

)

+
(n2 − 2n+ 5

(n− 1)

)

+
13

3
.

with equality if and only if G ∼= C∗
n(n− 4, 0, 0, 0).

Proof. Let G ∈ Bn,n−4 with n ≥ 5. Then G is of the form C∗
n(p1, p2, p3, p4) with

p1 ≥ p2, p3 ≥ p4 and
∑4

i=1 pi = n− 4.

Suppose that G1 = C∗
n(p1, p2, p3, p4) is a graph in Bn,n−4 with maximum

SDD index.
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Claim 1: Let G = C∗
n(p1, p2, p3, p4). If p2 ≥ 1 and G′ = C∗

n(p1 + 1, p2 −
1, p3, p4) then SDD(G′) > SDD(G).

Using Lemmas 2.2 and 2.3, we get

SDD(G′)− SDD(G)

=(p1 + 1)α(1, p1 + 4) + (p2 − 1)α(1, p2 + 2) + α(p1 + 4, p2 + 2)

+ α(p1 + 4, p3 + 2) + α(p1 + 4, p4 + 2) + α(p2 + 2, p3 + 2)

+ α(p2 + 2, p4 + 2)− [p1α(1, p1 + 3) + p2α(1, p2 + 3)]

− [α(p1 + 3, p2 + 3) + α(p1 + 3, p3 + 2) + α(p1 + 3, p4 + 2)]

− [α(p2 + 3, p3 + 2) + α(p2 + 3, p4 + 2)]

=(p1 + 1)α(1, p1 + 4)− p1α(1, p1 + 3)− [p2α(1, p2 + 3)

− (p2 − 1)α(1, p2 + 2)] + α(p1 + 4, p3 + 2)− α(p1 + 3, p3 + 2)

− [α(p2 + 3, p3 + 2)− α(p2 + 2, p3 + 2)] + α(p1 + 4, p4 + 2)

− α(p1 + 3, p4 + 2)− [α(p2 + 3, p4 + 2)− α(p2 + 2, p4 + 2)]

+ α(p1 + 4, p2 + 2)− α(p1 + 3, p2 + 3)

=g2(p1 + 1)− g2(p2) + f(p1 + 3, p3 + 2)− f(p2 + 2, p3 + 2)

+ f(p1 + 3, p4 + 2)− f(p2 + 2, p4 + 2) + α(p1 + 4, p2 + 2)

− α(p1 + 3, p2 + 3)

>0

Because, By Lemma 2.3, g2(p1 +1) > g2(p2) since (p1 +1) > p2 By Lemma 2.2,
f(p1 + 3, p3 + 2) > f(p2 + 2, p3 + 2), since p1 + 3 > p2 + 2 > p3 + 2 By Lemma
2.2, f(p1 + 3, p4 + 2) > f(p2 + 2, p4 + 2), since p1 + 3 > p2 + 2 > p4 + 2 and

α(p1 + 4, p2 + 2)− α(p1 + 3, p2 + 3)

=
( (p1 + 4)2 + (p2 + 2)2

(p1 + 4)(p2 + 2)
−

(p1 + 3)2 + (p2 + 3)2

(p1 + 3)(p2 + 3)

)

> 0 for p1 > p2

Hence

SDD(G′) > SDD(G).

Claim 2: If p4 ≥ 2 then SDD(C∗
n(p1, p2, p3 + 1, p4 − 1)) > SDD(C∗

n(p1, p2,
p3, p4)).

Using Lemmas 2.2 and 2.3, we get

SDD(C∗
n(p1, p2, p3 + 1, p4 − 1))− SDD(C∗

n(p1, p2, p3, p4))

=(p3 + 1)α(1, p3 + 3) + (p4 − 1)α(1, p4 + 1) + α(p1 + 3, p3 + 3)

+ α(p1 + 3, p4 + 1) + α(p2 + 3, p3 + 3) + α(p2 + 3, p4 + 1)

− [p3α(1, p3 + 2) + p4α(1, p4 + 2)]− [α(p1 + 3, p3 + 2)

+ α(p1 + 3, p4 + 2) + α(p2 + 3, p3 + 2) + α(p2 + 3, p4 + 2)]

=(p3 + 1)α(1, p3 + 3)− p3α(1, p3 + 2)− [p4α(1, p4 + 2)
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− (p4 − 1)α(1, p4 + 1)] + α(p3 + 3, p1 + 3)− α(p3 + 2, p1 + 3)

− [α(p4 + 2, p1 + 3)− α(p4 + 1, p1 + 3)] + α(p3 + 3, p2 + 3)

− α(p3 + 2, p2 + 3)− [α(p4 + 2, p2 + 3)− α(p4 + 1, p2 + 3)]

>0

Hence

SDD(C∗
n(p1, p2, p3 + 1, p4 − 1)) > SDD(C∗

n(p1, p2, p3, p4)).

Claim 3: If p1, p3 ≥ 2, then SDD(C∗
n(p1 + p3, 0, 0, 0)) > SDD(C∗

n(p1, 0, p3, 0)).

SDD(C∗
n(p1 + p3, 0, 0, 0))− SDD(C∗

n(p1, 0, p3, 0))

=(p1 + p3)α(1, p1 + p3 + 3) + 2α(2, p1 + p3 + 3) + α(3, p1 + p3 + 3)

+ α(3, 2)− [p1α(1, p1 + 3) + p3α(1, p3 + 2)]

− [α(3, p1 + 3) + α(3, p3 + 2) + α(p1 + 3, p3 + 2)]

=p1[α(1, p1 + p3 + 3)− α(1, p1 + 3)] + p3[α(1, p1 + p3 + 3)

− α(1, p3 + 2)] + α(3, p1 + p3 + 3)− α(3, p3 + 2)

+ 2α(2, p1 + p3 + 3) + α(3, 2)− α(3, p3 + 2)− α(p1 + 3, p3 + 2)

>0

Because, By Lemma 2.1, α(x, y) is increasing for x ≥ 1 α(1, p1 + p3 + 3) −
α(1, p1 + 3) > 0, since p1 + p3 + 3 > p1 + 3 α(1, p1 + p3 + 3)− α(1, p3 + 2) > 0,
since p1+p3+3 > p3+2 By Lemma 2.2, α(3, p1+p3+3)−α(3, p3+2) > 0, since
p1+p3+3 > p3+2 and 2α(2, p1+p3+3)+α(3, 2)−α(3, p3+2)−α(p1+3, p3+2) > 0.
Hence,

SDD(C∗
n(p1 + p3, 0, 0, 0)) > SDD(C∗

n(p1, 0, p3, 0)).

Claim 4: If p1, p3 ≥ 2, then SDD(C∗
n(0, 0, p1 + p3, 0)) > SDD(C∗

n(p1, 0, p3, 0)).

SDD(C∗
n(0, 0, p1 + p3, 0))− SDD(C∗

n(p1, 0, p3, 0))

=(p1 + p3)α(1, p1 + p3 + 2) + α(3, 3) + 2α(3, p1 + p3 + 2) + α(3, 2)

− [p1α(1, p1 + 3) + p3α(1, p3 + 2) + α(3, p1 + 3)]− [α(3, p3 + 2)

+ α(p1 + 3, p3 + 2) + α(2, p1 + 3)]

=p1[α(1, p1 + p3 + 2)− α(1, p1 + 3)] + p3[α(1, p1 + p3 + 2)

− α(1, p3 + 2)] + α(3, p1 + p3 + 2)− α(3, p1 + 2)

+ α(3, p1 + p3 + 2)− α(3, p3 + 2) + α(3, 3) + α(2, 3)

− α(2, p1 + 3)− α(p1 + 3, p3 + 2)

>0

Hence

SDD(C∗
n(0, 0, p1 + p3, 0)) > SDD(C∗

n(p1, 0, p3, 0)).
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From Claims 1 and 2, we can conclude that G1 = C∗
n(p1, 0, p3, 0). From Claims 3

and 4, we can conclude that G1 = C∗
n(p1+p3, 0, 0, 0) or G1 = C∗

n(0, 0, p1+p3, 0)

i.e G1 = C∗
n(n− 4, 0, 0, 0) or G1 = C∗

n(0, 0, n− 4, 0) since
∑4

i=1 pi = n− 4.

Claim 5: SDD(C∗
n(n− 4, 0, 0, 0)) > SDD(C∗

n(0, 0, n− 4, 0)).

SDD(C∗
n(n− 4, 0, 0, 0))− SDD(C∗

n(0, 0, n− 4, 0))

=(n− 4)α(1, n− 1) + α(3, n− 1) + 2α(n− 1, 2) + α(3, 2)

− [(n− 4)α(1, n− 2) + α(3, 3) + 2α(n− 2, 3) + α(3, 2)]

=(n− 4)[α(1, n− 1)− α(1, n− 2)] + [α(n− 1, 3)− α(n− 2, 3)]

+ 2α(n− 1, 2)− α(3, n− 2)− α(3, 3)

>0

Hence SDD(C∗
n(n − 4, 0, 0, 0)) > SDD(C∗

n(0, 0, n − 4, 0)). Thus G1 = C∗
n(n −

4, 0, 0, 0) and

SDD(C∗
n(n− 4, 0, 0, 0))

=(n− 4)α(1, n− 1) + α(3, n− 1) + 2α(n− 1, 2) + 2α(3, 2)

=(n− 4)
(n2 − 2n+ 2

n− 1

)

+
(n2 − 2n+ 10

3(n− 1)

)

+
(n2 − 2n+ 5

(n− 1)

)

+
13

3
.

Corollary 6.4. Among the graphs in Bn,n−4 with n ≥ 5, C∗
n(0, 0, n− 4, 0) is the

unique graph with the second maximum SDD indices, which are equal to

SDD(C∗
n(0, 0, n− 4, 0)) = (n− 4)

(n2 − 4n+ 5

n− 2

)

+ 2
(n2 − 4n+ 13

3(n− 2)

)

+
19

3
.

Proof. Let G1 = C∗
n(n1, n2, n3, n4) is a graph in Bn,n−4 with the second maxi-

mum SDD index, which is achieved by the graph in Bn,n−4 \ C∗
n(n− 4, 0, 0, 0)

with the maximum SDD index.

By the Theorem 6.3, we have G1 = C∗
n(0, 0, n− 4, 0) and

SDD(C∗
n(0, 0, n− 4, 0))

=(n− 4)α(1, n− 2) + α(3, 3) + 2α(n− 2, 3) + 2α(3, 2)

=(n− 4)
(n2 − 4n+ 5

n− 2

)

+ 2
(n2 − 4n+ 13

3(n− 2)

)

+
19

3
.
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