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Abstract. In this paper, the authors discuss the nonexistence of solutions of second
order generalized a-difference equation

AL pyuk) + f(k,u(k)) =0, kela,c0), a>0, a>1. (1)

in lyaceyy and coca(e)) spaces, where Ay pyu(k) = u(k +£) — au(k) and £ € (0, 00).
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1. Introduction

The basic theory of difference equations is based on the operator A defined as
Au(k) =u(k+1)-u(k), ke N={0,1,2,3,---}. Eventhough many authors ([1, 4,
12, 18]) have suggested the definition of A as

Au(k) =u(k+£) —u(k), keR, £eR-{0}, (2)

no significant progress has taken place on this line. But recently, E. Thanda-
pani, M.M.S. Manuel, G.B.A.Xavier [7] considered the definition of A as given
in (2) and developed the theory of difference equations in a different direction.
For convenience, the operator A defined by (2) is labelled as Ay and by defin-
ing its inverse Azl, many interesting results and applications in number theory
(see [5]-[7],[10, 9],[16, 17]) were obtained. By extending the study related to the
sequences of complex numbers and ¢ to be real, some new qualitative proper-
ties of the solutions like rotatory, expanding, shrinking, spiral and weblike of
difference equations involving A, were obtained. The results obtained using Ay
can be found in ([8]). Jerzy Popenda and B.Szmanda ([13],[14]) defined A as
Agu(k) = u(k+1) - au(k) and based on this definition they have studied the
qualitative properties of solutions of a particular difference equation and no one
else has handled this operator. Here, the generalized definition of the operator
is taken as

Aypyu(k) = u(k+10) - au(k). (3)

and by defining its inverse, several interesting results on number theory were
obtained [11].

¢y and ¢y solutions of second order difference equation of (1) when ¢ = 1
and « = 1 was discussed in [15]. Nonexistence of solutions of (1) when a =1 was
discussed in [5] and [6]. In this paper, we discuss nonexistence of solutions in
Ca(a(e)) and co(a(e)) spaces for the second order generalized a-difference equation
(1).
Throughout this paper we use the following notations.
(i) [k] denotes the integer part of k,
(i) N={0,1,2,3,...}, N(a) ={a,a+ 1,a+2,...}, for any real a,
(ii))Ne(5) = {j, g+ £,7+2¢,... } and R is the set of all real numbers.

2. Preliminaries

In this section, we present some basic definitions which will be useful for the
subsequent discussion.

Definition 2.1. Let u(k),k € [0,00) be a real or complex valued function and
L€ (0,00). Then, the generalized a-difference operator A,y on u(k) is defined
as

Aypyu(k) = u(k+0) - au(k). (4)
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When a =1, the generalized a-difference operator A,y becomes the generalized
difference operator Ag. When a=1 and £ =1, then A,y is the usual difference
operator A.

Definition 2.2. [7] Let u(k),k € [0,00) be a real or complex valued function and
L€ (0,00). Then, the inverse operator Azl is defined as follows.

If Aw(k) = u(k), then v(k) = A7'u(k) +cj, (5)

where ¢; is a constant for all k e Ny(j), j=k- [%]6.
If klim u(k) =0, then we can take c; = 0.

Definition 2.3. The inverse of the Generalized a-difference operator denoted by
A;b) on u(k) is defined as, if Ayyv(k) = u(k), then

N|?T‘

Astpyu(k) = v(k) -altle;. )
where ¢; is a constant for all k e Ng(j), j=k- [%]E'

Definition 2.4. [5] A function u(k), k € [a,o0) is said to be in Loy -space if
> lu(a+j +70)| < oo for all j €[0,0). (7)
~v=0

Ifrlggo lu(a+j+rl)| =0 for all j €[0,£), then u(k) is said to be in the co(s)-space.

Definition 2.5. [7] Generalized polynomial factorial for £ >0 is defined as

S = k(k = 0) (k= 26)-(k = (n = 1)0). (8)

Theorem 2.6. For ¢ >0, if klim u(k) =0, then

[}

A tu(k) = - Zou(k +70), for all ke[0,00). (9)

Proof. Let z(k) = %o: u(k +rl).
r=0

Apz(k)=2(k+10) - z(k) = Z u(k+0+rl) - Z u(k +re).
Since hm u(k) =0, we get Agz(k) =-u(k) and the proof follows from Definition
2.2. ]
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Theorem 2.7. If klim uM) -~ 0 and £ >0, then

o(r+l) =

_ 2 u(k+rl
Aab)u(k) = - Z % fOT’ all ke [0, OO),OL > 1. (10)
=

Proof. Assume z(k) = § u(k+rt)
r=0

a(r+1)
Then, Anqeyz(k) = 2(k +£) - az(k) = 3 “0rtert) _ 55 ulhert) _ gy

r=0 r=0
Now, the proof follows from klim u(k) = 0 and Definition 2.3. ]

Lemma 2.8. Let u(k) and v(k) be any two functions. Then, ¥ k € [a, o0)

Aup{u(k)v(k)}
=u(k + ) Aqyv(k) + u(k + L)v(k) (= 1) + v(k)Agryu(k)
=v(k +£)Agyu(k) + v(k+ Ou(k) (= 1) + u(k)Agyv(k). (11)

Theorem 2.9. [5] For all (k,u) € [a,00) x R the function f(k,u) be defined and
£l < SRl (12)
Then, if u(k) € Loy is a solution of (1), there exists ki > a, (a > 20) such that

u(k) =0 for all k € [k1,00).

3. Main Results

In this section, we present the condition for nonexistence of nontrivial solutions

of (1).

Definition 3.1. A function u(k), k € [a,00) is said to be in lyq(e)) space if

2

ulaxj+rt) < oo, for all j€[0,0). (13)

al(r+1)

oo
)
r=0

If lim et Ol o for all j € [0,£) and a € [0,00), then u(k) is said to be in

a(r+1)

the co(a(e)) space.

Ezample 3.2. For n e N(1), k™ and ké") are in Lo (py) and co(qa(r)) Spaces.

Lemma 3.3. For k€ (0,00),0> 0, Eo(kz +70)7% < sy -
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Proof. Agﬁ ~ Ok e)k yields Ae (k_e)k e(kl—e)' Now, the proof follows from

1
Theorem 2.6 and (k_M)Q S T DD

Lemma 3.4. Leta>2(, a>1, ke [a,00) and r(k) = (Vi \/E)4(\/E =k Then
VEk+0+ +Vk—

kr(k)a? > 1.
Proof. Multiplying and dividing (k) by (\/ k+{- \/E)(\/E -Vk- 6), we get

r(k) =%\/E\/E[(1 + %)% - 1] [1— (1 - g)%]

4k 17 11,02 113,03 1135,/4\4
-z 531w 1ias (@)

1¢ 11,62 113,0\3 113574\4
I-(1-=c-==(=) —==2(=) —==22(=) = ||. (4
X[ ( 57 2a(e) “3aals) “waa(E) )] 14
We notice that, in the first expression of the above equation the sum of each pair-
wise positive and its consecutive negative terms yields a positive value. Hence

we obtain. ; ,
1e 11(2 113(2 1135(¢
[2k+2!4(k) T3 (k) +4'422(k) + ]
1

3
2
4 [ L1 4 11(¢ 2 113(¢ 3
=551 ][2z+az(z) +§Z§(E) + ]
4 0114 11162 113163 113524
=e_2§[§E+§Z(E) +M§(z +M§§(E) +]
401¢2011¢ 1 4 2 113(%4 3
—e—aazz[awa (z) +§Z§(E) +]
3 )4

2
Since second term of above is positive, we obtain r(k) > % Now, the proof is
obvious. ]

o

Lemma 3.5. Let a > 2(, k€ [a,00) and d(k) = V\%e - \/m\f/m. Then d(k) <1

Proof. Multiplying and dividing the 2" term of d(k) by vk + £ -k -¢ and
from the Binomial theorem for rational index, we find

1¢ 11,0N\2 113/¢
a0 1+ 35530 *3aalE) —

k 17 11 2 113,7¢
sl 51(%) 515(z) 00
17 11 2 113 3
~(1-55-57(5) - 37a(5) - ]
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174 11(6)2 113(6) e

Tok T 2wa\k) Taaa\k

k |:€ 11 3(@) ]
— - — + .00 .
201k 3142k
In the first expression of the above equation, each sum of negative term

and the consecutive posmve term of d(k) is negative. Hence, we obtain

d(k) <1+ §E -1=1+ §E <1, which completes the proof. [

Lemma 3.6. Let a > 20, k € [a+(, 00) andj:k—a—[’%a]e. If
Aneyz(k) <y (k) + aB(k)z(k) (15)
and 3 < B(k) < 3% for all k € [a,00), then
Aar) z(k)[kﬁ] 1 (1+8(+a+r0)™" SV(kz)[ﬁ](1+ﬁ(j+a+r€))"l (16)

r=0 r=0
where j =k -a - [k;ea]ﬂ.

Proof. From the inequality (15) and 1+/5(k) > 0, we find IZJEI;E?) az(k) < 132189)7

which yields,

Z(k’-!—f) [+2]-1 . B [Es2]

1+5(k) 71:10 (1+ B +a+rl))™ —az(k) ,II) (1+ﬁ]+a+r£))
N S |

1+ 8(k) g (1+B(j+a+rL))

Now (16) follows by assigning j +a + [k;e“] l=k. |

The following theorem gives the condition for nonexistence of nontrivial so-
lutions of (1).

Theorem 3.7. Let for all (k,u) € [a,00) xR and o > 1 the function f(k,u) be
defined and
62 _92
PO < Sh7 ()

Then, if u(k) € Lo(a(ry) s a solution of (1), there exists a real ky > a(a > 2() such
that u(k) =0 for all k € [kq,00).

Proof. Since u(k) is a solution of (1) and satisfies Definition 3.1,
we find,
u(k)

o[51)

: u(k)
kh—>I£lo Aa(f) hm Aa(e)W =0. (18)
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Hence, taking A;b) on equation (1) and using Theorem 2.6, we find

a(g)u(k) Z k’ + Tj(f;(ll;ﬂ + 7"6)) ) (19)

Again taking A~} () and by Theorem 2.6, we obtain

flk+rl+stu(k+rl+sl))

u(k) = 7“20520 ar+s+2) ’ (20)
which yields
ad fE+rl,u(k+1rl
_—Z(r+1) ( 04(7'+(2) )), ke [a,o0). (21)
r=0
Therefore, from (17), we obtain
lu(k)] < v(k), (22)
where
i o |u(k+rl
o(k) = S (e (ke 70 ﬁ for all k € [a, 00). (23)

Obviously v(k) > 0 for all k € [a,00) and klim v(k) = 0 by Definition 3.1. If
v(k+7)=0, forall je[0,£), for some k = k1 > a, then

u(k+j+rl)
a(r+2)

(r+1)(k+j+r€)_2( ):O7 for all r=0,1,2,....

Hence w(k) = 0, for all &k > k;. In this case the proof is complete.
Now, we suppose that v(k) > 0, forallk € [a,00). From (23) we obtain,

Aaqpyv(k) =—§0(k+re)*2\“§ﬁt’;f> and A2, v(k) = k72 |u(k)|. From (22), we
find

62
Ai(e)v(k) < Ekz’Qv(k), for all k € [a, o0). (24)
From the definition of v(k), a > 2¢, (2%14) < é and Schwartz’s inequality, we
obtain
g 1 |u(k+7r0)
v(k) <t 7ZE)(lc +7l) NGO

u(k +re) 2)%

a(r+1)

sé‘l(i(k+r£)"2)% (i

r=0 r=




336 D.S. Dilip et al.

By Lemma 3.3, we get v(k) < 3
Thus it follows that

1
1 (ozo: ‘u(k+7‘€) 2)2
r+1 N

V=L [Ty et

w(k) = 3Vk - bo(k) < (i

r=0

u(a+j+rl) 2)% . (25)

a(r+1)

Hence we have
w(k) = 0 and w(k) >0 for all k€ [a,o0). (26)
Applying Lemma 2.8 to (25) twice, we arrive at
A2 pw(k) =03 (VE+LA2 o(k) +2(a - D)VE+ D yv(k)

+ 20 (v (k) Aoy VE + +VE + Co(k) (o - 1)°
+2(a - 1) Ay VEo(k) +v(k)AZ ) VE = 0). (27)

Again from Lemma 2.8 and (25), we get

Aoyo(k) = 6’%(%Aa(4)w(k) + %Aamw(k) +w(k)A

From (27), (28) and by Lemma 2.8, we find that

1
075

1
Aoy (mﬁa(e)w(k))

1 a-1 1
:EAi(l)w(k) + %Aa(é)w(k‘)*_Aa(l)mAa(l)w(k)

/3
= {\/k + A2 (k) +2(a - DVE+ D0y 0(k) +28000(k) Aaiy Vi

VI lo(k) (0= 1)? + 2(a = 1) AggoyVEu(k) + v(k)A2 (Vi - 1}

o - k(l-a)-¢
+ ( - 1) Aqpw(k) + (%)Aa(l)w(kz)
=%§ {(VE+82 yv(k) + 207 ((a - 1)VE+
+ BV T2 Bupu(®) + Cu®) 0 (b =]

+VEk+lo(k)(a-1)v(k)(a-1)%+2(a- ].)Aa(g)\/E’U(k)
+ (k) A% VE= L]+ {O‘ 1, kl-a)- g} Agyw(k)

k k(k-0)
CE+ ¢ 202
{Wv(k) + ﬁ(\/k +0-VEYVE - (- VE)vu(k)

IN
| T
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+ (@ =1)2VE+ (k) +2(a = 1) AggyVhv(k) + v(k)A2 (Vi - 1}
2(k-/¢ 12 1
Oé( ( )(Vk+€_\/E)_E)—Aa(€)w(k)

Nk k-t
which in view of (24), (26) gives
Aueyz(k) < y(k) + aB(k)z(k) (29)
where .
2(k) = = Baqyw(k) (30)

(k) = 5 (BT 1 222 (VRT T~ VR (VR 1~ VE)
Ha=1)2VE+ L+ 2(a-1)Ag)Vh+ A2 V=) v(k) (31)

and 2(k - 0)
Blk) = = = A Vk-— (32)
Since Q(kk—\;;)Ag\/E >0, from (1 + = )2 <l+s 2 k, we obtain
2
~ <Bk) <15, e [a,00). (33)

. __ I
Further, since (Vk + ¢ - \/E)(\/k—ﬁ— Vk) = (VrlovR) (Votavk)
and
(a- 1)2\/ k+0+2(a- l)Aa(g)\/E + Ai([) VEk-{
=?(Vk+ - VE+Vk-(-Vk)
o2 Vk-0-Vk+/{

l ;
(VEk+L+VE)Y k-1 +Vk)
we get
(k) = 3 (62\/k 0 —20%0 + PVE(VE - L=V + 1) )v(k)
! EVEN 2kVE (VEk+ L+ VE)(VE+VE-{) '
From Lemmas 3.4 and 3.5,
40203k 20202+ 0> INE(VE=I-/k+E)
(k) < kf(gf(m+f)(+f+¢—) T T (VR (VR0 )“(k)
) 202(3 (\/k+£_ vk —1)v(kz) (34)
WENVE+ L+ VEYNVE+VE-0O\ VE  VE+0+VE-1 '

By Lemma 3.5, we find v(k) <0, for all k € [a,00). Thus from Lemma 3.6 and
v(k) <0,
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k-al_q

Aa(g)(Z(k) ZH (1+ﬁ(j+a+r£))1)<0, for all ke [a+¢,00),
0

r=

which is same as

k-al_;
. z(k)[ [n] (1+8(j+a+re))~!
ol 1A, L 2] <0, forall ke[a+¢,00),
al?
e
z(k) TI (1+B8(j+a+re))

i.e. - 5] is decreasing by /¢ steps.

al?

(42 ]-1
If z(k) é]—I (1+B(G+a+7r0))t >0, for all k € [a+ ¢,00), then z(k) > 0,
r=0

for all k € [a + £ ,00), from (30), we find A,pyw(k) > 0 and hence
w(k +£€) > aw(k), forall ke[a+¢,00), but this contradicts (26).
If there exists a real K > a + £ such that

K-al_1

HK+7) TT (1+B(+a+r))™ =p;<0forall 0<j < £, then
r=0
(2]
z(k) TI (1+B8(G+a+rl))t<p; forall ke[K, o0),
r=0

k-al_q

iez(k)<p; TI (1+B8(+a+rl)).

r=0

However from (33), 1+ (k) > (k-£€)/k>0and j=k-a- [%] ¢, it follows that
z(k) <p;(j+a-20)/(k-{), and hence from (30), we find

Agyw(k) <pj(j+a-10). Since w(k) >0, k>K+20= ;(k-K-{)>1, we
get w(k +£) < aw(k) +p;(j + a—¢) which yields w(k) < aw(k -£) +p;(j +a—-1{)
and hence for all k € [K +2(,00), w(k) < aw(K + ) + %pj(j +a-L)(k-K-10).
Since k>K+2(=k-K >2/, %(kz -K-0)>1. But this implies that
w(k) — —oo, and again we get a contradiction to (26). Combining the
above arguments, we find that our assumption v(k) > 0 for all k € [a, 00) is not
correct, and this completes the proof. [

Ezample 3.8. For the generalized difference equation Ai“)u(k) = kén_Q)((k +
O)(k(1-20)+26(1-(n-2)a)) +a(k—(n—2)¢) (k- (n- 1)6)) (17) is not satisfied.
Hence u(k) # 0 for all k € (2¢,00). Infact u(k) = kég) € la(a(r)) is a solution.

Theorem 3.9. Let for all (k,u) € [0,00) xR and o > 1 the function f(k,u) be
defined and

PO )l < k], g > 2. (35)

Then, if u(k) € co(a(r)) is a solution of (1), there exists a positive k1 > a (a > 4¢)
such that w(k) =0 for all k € [ky,00).



Generalized a-Difference Equation in £o((¢)) and co(a(e)) Spaces 339

Proof. Let u(k:) be a solution of (1) such that lim lwCass+rBl — 0. Then,
T —>00

a(r+1)

hm Aa(l) [ ] = khji Ai“)% =0 for all £ > 0. Thus, for this solution

also the relatlon (20) holds. Further, since there exists a constant ¢; > 0 such
that L8l < ¢; for all k € [k1, 00), where 0<j = k- [£]¢ < ¢, we find that

>, lf((k+70),u(k +1rl))] k [u(k +re)|
i AT bt 10
- 1-q pa- IM
TZ(:) k+rl) "1 o)
Scij’l Z(k+7“€)1’q where j =k - [%]E
r=0

=il BT S (ke + M)l_q]

| r=1

=c 00 [T g Z(—+7‘)1 Q]

~

' & T
=c T K4 0 ‘J[ £ +rl
2-q N

L £

-q
:cqu—l |:k’1_q +

:|<oo for all k € [ky,00).

Therefore, this solution also has the representation (20). Now as in Theorem
3.7. we define
o(k) = Z(r+1)(kz+r€) qluleerOl - z Ca(r + 1) (K 4 )ma bl

Since ¢ > 2 we find

(k) <07 z (r+1)(% +7) 2ROl 20 5 (g 1) (Jp 4 )2 Lelir]
r=0

a2 (r+2)

1
2
CORN= S
Hence, we deﬁne

w(k) = eq-*\/ —0o(k), 2(k) = 25 A0y (k).
(k) = 2 (1L + 2 (VE+ 0 - VR)(VE= - VE)
+(a-1) x/k+£+2(a—l)Aa(e)\/E+Ai(e)\/k—é)z‘;(k),

Bk) = 22 Doy VE - .
and apply snmlar analysis to see that there exists a positive integer k1 such that
u(k) =0 for all k € [ky, 00). |

Ezample 3.10. For the generalized difference equation Ai(e)u(k:) =k2(1-a)?+

20(1 - ) (2k + £) + 2% (35) is not satisfied and hence u(k) # 0 for all k € (0, o).
Infact u(k) = k? is a solution which belongs to co(a(e))-
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