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Abstract. In this paper, the authors discuss the nonexistence of solutions of second
order generalized α-difference equation

∆2

α(ℓ)u(k) + f(k,u(k)) = 0, k ∈ [a,∞), a > 0, α > 1. (1)

in ℓ2(α(ℓ)) and c0(α(ℓ)) spaces, where ∆α(ℓ)u(k) = u(k + ℓ) −αu(k) and ℓ ∈ (0,∞).
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1. Introduction

The basic theory of difference equations is based on the operator ∆ defined as
∆u(k) = u(k + 1) − u(k), k ∈ N = {0,1,2,3,⋯}. Eventhough many authors ([1, 4,
12, 18]) have suggested the definition of ∆ as

∆u(k) = u(k + ℓ) − u(k), k ∈ R, ℓ ∈ R − {0}, (2)

no significant progress has taken place on this line. But recently, E. Thanda-
pani, M.M.S. Manuel, G.B.A.Xavier [7] considered the definition of ∆ as given
in (2) and developed the theory of difference equations in a different direction.
For convenience, the operator ∆ defined by (2) is labelled as ∆ℓ and by defin-
ing its inverse ∆−1ℓ , many interesting results and applications in number theory
(see [5]-[7],[10, 9],[16, 17]) were obtained. By extending the study related to the
sequences of complex numbers and ℓ to be real, some new qualitative proper-
ties of the solutions like rotatory, expanding, shrinking, spiral and weblike of
difference equations involving ∆ℓ were obtained. The results obtained using ∆ℓ

can be found in ([8]). Jerzy Popenda and B.Szmanda ([13],[14]) defined ∆ as
∆αu(k) = u(k + 1) − αu(k) and based on this definition they have studied the
qualitative properties of solutions of a particular difference equation and no one
else has handled this operator. Here, the generalized definition of the operator
is taken as

∆α(ℓ)u(k) = u(k + ℓ) − αu(k). (3)

and by defining its inverse, several interesting results on number theory were
obtained [11].

ℓ2 and c0 solutions of second order difference equation of (1) when ℓ = 1
and α = 1 was discussed in [15]. Nonexistence of solutions of (1) when α = 1 was
discussed in [5] and [6]. In this paper, we discuss nonexistence of solutions in
ℓ2(α(ℓ)) and c0(α(ℓ)) spaces for the second order generalized α-difference equation
(1).
Throughout this paper we use the following notations.
(i) [k] denotes the integer part of k,
(ii) N = {0,1,2,3, . . .}, N(a) = {a, a + 1, a + 2, . . . }, for any real a,
(iii)Nℓ(j) = {j, j + ℓ, j + 2ℓ, . . . } and R is the set of all real numbers.

2. Preliminaries

In this section, we present some basic definitions which will be useful for the
subsequent discussion.

Definition 2.1. Let u(k), k ∈ [0,∞) be a real or complex valued function and
ℓ ∈ (0,∞). Then, the generalized α-difference operator ∆α(ℓ) on u(k) is defined
as

∆α(ℓ)u(k) = u(k + ℓ) − αu(k). (4)
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When α = 1, the generalized α-difference operator ∆α(ℓ) becomes the generalized
difference operator ∆ℓ. When α = 1 and ℓ = 1, then ∆α(ℓ) is the usual difference
operator ∆.

Definition 2.2. [7] Let u(k), k ∈ [0,∞) be a real or complex valued function and
ℓ ∈ (0,∞). Then, the inverse operator ∆−1ℓ is defined as follows.

If ∆ℓv(k) = u(k), then v(k) = ∆−1ℓ u(k)+ cj , (5)

where cj is a constant for all k ∈ Nℓ(j), j = k − [k
ℓ
] ℓ.

If lim
k→∞

u(k) = 0, then we can take cj = 0.

Definition 2.3. The inverse of the Generalized α-difference operator denoted by
∆−1

α(ℓ) on u(k) is defined as, if ∆α(ℓ)v(k) = u(k), then
∆−1α(ℓ)u(k) = v(k) − α[ kℓ ]cj . (6)

where cj is a constant for all k ∈ Nℓ(j), j = k − [k
ℓ
] ℓ.

Definition 2.4. [5] A function u(k), k ∈ [a,∞) is said to be in ℓ2(ℓ)-space if

∞∑
γ=0

∣u(a + j + γℓ)∣2 < ∞ for all j ∈ [0, ℓ). (7)

If lim
r→∞ ∣u(a + j + rℓ)∣ = 0 for all j ∈ [0, ℓ), then u(k) is said to be in the c0(ℓ)-space.

Definition 2.5. [7] Generalized polynomial factorial for ℓ > 0 is defined as

k
(n)
ℓ
= k(k − ℓ)(k − 2ℓ)⋯(k − (n − 1)ℓ). (8)

Theorem 2.6. For ℓ > 0, if lim
k→∞

u(k) = 0, then

∆−1ℓ u(k) = − ∞∑
r=0

u(k + rℓ), for all k ∈ [0,∞). (9)

Proof. Let z(k) = ∞∑
r=0

u(k + rℓ).
∆ℓz(k) = z(k + ℓ) − z(k) = ∞∑

r=0
u(k + ℓ + rℓ) − ∞∑

r=0
u(k + rℓ).

Since lim
k→∞

u(k) = 0, we get ∆ℓz(k) = −u(k) and the proof follows from Definition

2.2.
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Theorem 2.7. If lim
k→∞

u(k)
α(r+1) = 0 and ℓ > 0, then

∆−1α(ℓ)u(k) = −
∞∑
r=0

u(k + rℓ)
α(r+1)

, for all k ∈ [0,∞), α > 1. (10)

Proof. Assume z(k) = ∞∑
r=0

u(k+rℓ)
α(r+1) .

Then, ∆α(ℓ)z(k) = z(k + ℓ) − αz(k) = ∞∑
r=0

u(k+ℓ+rℓ)
α(r+1) −

∞∑
r=0

u(k+rℓ)
αr = −u(k).

Now, the proof follows from lim
k→∞

u(k) = 0 and Definition 2.3.

Lemma 2.8. Let u(k) and v(k) be any two functions. Then, ∀ k ∈ [a,∞)
∆α(ℓ){u(k)v(k)}
=u(k + ℓ)∆α(ℓ)v(k) + u(k + ℓ)v(k)(α − 1) + v(k)∆α(ℓ)u(k)
=v(k + ℓ)∆α(ℓ)u(k)+ v(k + ℓ)u(k)(α − 1) + u(k)∆α(ℓ)v(k). (11)

Theorem 2.9. [5] For all (k,u) ∈ [a,∞) ×R the function f(k,u) be defined and

∣f(k,u)∣ ≤ ℓ2

2
k−2 ∣u∣ . (12)

Then, if u(k) ∈ ℓ2(ℓ) is a solution of (1), there exists k1 ≥ a, (a ≥ 2ℓ) such that
u(k) = 0 for all k ∈ [k1,∞).

3. Main Results

In this section, we present the condition for nonexistence of nontrivial solutions
of (1).

Definition 3.1. A function u(k), k ∈ [a,∞) is said to be in ℓ2(α(ℓ)) space if

∞∑
r=0

∣u(a + j + rℓ)
α(r+1)

∣
2

< ∞, for all j ∈ [0, ℓ). (13)

If lim
r→∞

∣u(a+j+rℓ)∣
α(r+1) = 0 for all j ∈ [0, ℓ) and a ∈ [0,∞), then u(k) is said to be in

the c0(α(ℓ)) space.

Example 3.2. For n ∈ N(1), kn and k
(n)
ℓ

are in ℓ2(α(ℓ)) and c0(α(ℓ)) spaces.

Lemma 3.3. For k ∈ (0,∞), ℓ > 0, ∞∑
r=0
(k + rℓ)−2 ≤ 1

ℓ(k−ℓ) .
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Proof. ∆ℓ
1

k−ℓ = −
ℓ

(k−ℓ)k yields ∆−1ℓ
−1

(k−ℓ)k =
1

ℓ(k−ℓ) . Now, the proof follows from

Theorem 2.6 and 1

(k−rℓ)2 ≤
1

(k+(r−1)ℓ)(k+rℓ) .

Lemma 3.4. Let a ≥ 2ℓ, α > 1, k ∈ [a,∞) and r(k) = 4(√k+ℓ+√k)(√k+√k−ℓ) . Then
kr(k)α2 > 1.

Proof. Multiplying and dividing r(k) by (√k + ℓ −√k)(√k −√k − ℓ), we get

r(k) = 4
ℓ2

√
k
√
k [(1 + ℓ

k
) 1

2

− 1][1 − (1 − ℓ

k
) 1

2 ]
=
4k

ℓ2
[1 + 1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 − 1

4!

1

4

3

2

5

2
( ℓ
k
)4 +⋯− 1]

× [1 − (1 − 1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 − 1

3!

1

4

3

2
( ℓ
k
)3 − 1

4!

1

4

3

2

5

2
( ℓ
k
)4 −⋯)] . (14)

We notice that, in the first expression of the above equation the sum of each pair-
wise positive and its consecutive negative terms yields a positive value. Hence
we obtain.

r(k) > 4k
ℓ2
[1
2

ℓ
k
− 1

2!

1

4
( ℓ
k
)2] [1

2

ℓ
k
+ 1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 + 1

4!

1

4

3

2

5

2
( ℓ
k
)4 +⋯ ]

= 4

ℓ2
[ ℓ
2
− ℓ

2

1

4

ℓ
k
] [ 1

2

ℓ
k
+ 1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 +⋯ ]

= 4

ℓ2
ℓ
2
[1
2

ℓ
k
+ 1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 + 1

4!

1

4

3

2

5

2
( ℓ
k
)4 +⋯ ]

− 4

ℓ2
ℓ
2

1

4

ℓ
k
[1
2

ℓ
k
+ 1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 +⋯ ]

= 1

k
+ 2

ℓ
[ 1
2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 + 1

4!

1

4

3

2

5

2
( ℓ
k
)4 +⋯ ]

− 2

ℓ
[ 1
2!

1

4
( ℓ
k
)2 + 1

2!

1

4

1

4
( ℓ
k
)3 + 1

3!

1

4

1

4

1

4
( ℓ
k
)4 +⋯ ]

= 1

k
+ 2

4ℓ
[ 1
3!
( 3
2
− 3

4
)( ℓ

k
)3 + 1

4!

3

2
( 5
2
− 4

4
)( ℓ

k
)4 +⋯ ].

Since second term of above is positive, we obtain r(k) > 1

k
. Now, the proof is

obvious.

Lemma 3.5. Let a ≥ 2ℓ, k ∈ [a,∞) and d(k) = √k+ℓ√
k
−

√
k√

k+ℓ+√k−ℓ . Then d(k) < 1.
Proof. Multiplying and dividing the 2nd term of d(k) by

√
k + ℓ −

√
k − ℓ and

from the Binomial theorem for rational index, we find

d(k) =1 + 1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 −⋯∞

−
k

2ℓ
[1 + 1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 −⋯∞

− (1 − 1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 − 1

3!

1

4

3

2
( ℓ
k
)3 −⋯∞)]
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=1 +
1

2

ℓ

k
−

1

2!

1

4
( ℓ
k
)2 + 1

3!

1

4

3

2
( ℓ
k
)3 −⋯∞

−
k

2ℓ
[ ℓ
k
+

1

3!

1

4

3

2
( ℓ
k
)3 +⋯∞].

In the first expression of the above equation, each sum of negative term
and the consecutive positive term of d(k) is negative. Hence, we obtain
d(k) < 1 + 1

2

ℓ
k
− 1

2
= 1

2
+ 1

2

ℓ
k
< 1, which completes the proof.

Lemma 3.6. Let a ≥ 2ℓ, k ∈ [a + ℓ,∞) and j = k − a − [k−a
ℓ
]ℓ. If

∆α(ℓ)z(k) ≤ γ(k)+ αβ(k)z(k) (15)

and −ℓ
k
< β(k) < −ℓ2

k2 for all k ∈ [a,∞), then

∆α(ℓ)
⎛⎜⎝z(k)

[k−a
ℓ
]−1
∏
r=0

(1 + β(j + a + rℓ))−1⎞⎟⎠ ≤ γ(k)
[ k−a

ℓ
]

∏
r=0

(1 + β(j + a + rℓ))−1 (16)

where j = k − a − [k−a
ℓ
] ℓ.

Proof. From the inequality (15) and 1+β(k) > 0, we find z(k+ℓ)
1+β(k) − αz(k) ≤ γ(k)

1+β(k) ,
which yields,

z(k + ℓ)
1 + β(k)

[k−a
ℓ
]−1
∏
r=0

(1 + β(j + a + rℓ))−1 − αz(k) [
k−a
ℓ
]−1
∏
r=0

(1 + β(j + a + rℓ))−1

≤
γ(k)

1 + β(k)
[k−a

ℓ
]−1
∏
r=0

(1 + β(j + a + rℓ))−1

Now (16) follows by assigning j + a + [k−a
ℓ
] ℓ = k.

The following theorem gives the condition for nonexistence of nontrivial so-
lutions of (1).

Theorem 3.7. Let for all (k,u) ∈ [a,∞) × R and α > 1 the function f(k,u) be
defined and

∣f(k,u)∣ ≤ ℓ2

2
k−2 ∣u∣ . (17)

Then, if u(k) ∈ ℓ2(α(ℓ)) is a solution of (1), there exists a real k1 ≥ a(a ≥ 2ℓ) such
that u(k) = 0 for all k ∈ [k1,∞).
Proof. Since u(k) is a solution of (1) and satisfies Definition 3.1,
we find,

lim
k→∞

∆α(ℓ)
u(k)

α(⌈
k+ℓ
ℓ
⌉) = lim

k→∞
∆2

α(ℓ)
u(k)

α(⌈
k+2ℓ

ℓ
⌉) = 0. (18)
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Hence, taking ∆−1
α(ℓ) on equation (1) and using Theorem 2.6, we find

∆α(ℓ)u(k) = ∞∑
r=0

f(k + rℓ, u(k + rℓ))
α(r+1)

. (19)

Again taking ∆−1
α(ℓ) and by Theorem 2.6, we obtain

u(k) = − ∞∑
r=0

∞∑
s=0

f(k + rℓ + sℓ, u(k + rℓ + sℓ))
α(r+s+2)

, (20)

which yields

u(k) = − ∞∑
r=0

(r + 1)f(k + rℓ, u(k + rℓ))
α(r+2)

, k ∈ [a,∞). (21)

Therefore, from (17), we obtain

∣u(k)∣ ≤ ℓ2

2
v(k), (22)

where

v(k) = ∞∑
r=0

(r + 1)(k + rℓ)−2 ∣u(k + rℓ)
α(r+2)

∣ for all k ∈ [a,∞). (23)

Obviously v(k) ≥ 0 for all k ∈ [a,∞) and lim
k→∞

v(k) = 0 by Definition 3.1. If

v(k + j) = 0, for all j ∈ [0, ℓ), for some k = k1 ≥ a, then

(r + 1)(k + j + rℓ)−2(u(k + j + rℓ)
α(r+2)

) = 0, for all r = 0,1,2, . . . .

Hence u(k) = 0, for all k ≥ k1. In this case the proof is complete.
Now, we suppose that v(k) > 0, for all k ∈ [a,∞). From (23) we obtain,

∆α(ℓ)v(k) = − ∞∑
r=0
(k + rℓ)−2 ∣u(k+rℓ)

α(r+1) ∣ and ∆2

α(ℓ)v(k) = k−2 ∣u(k)∣ . From (22), we

find

∆2

α(ℓ)v(k) ≤ ℓ2

2
k−2v(k), for all k ∈ [a,∞). (24)

From the definition of v(k), a ≥ 2ℓ, r+1
α(k+rℓ) ≤

1

ℓ
and Schwartz’s inequality, we

obtain

v(k) ≤ℓ−1 ∞∑
r=0

(k + rℓ)−1 ∣u(k + rℓ)
α(r+1)

∣

≤ℓ−1 ( ∞∑
r=0

(k + rℓ)−2)
1

2 ⎛
⎝
∞∑
r=0

∣u(k + rℓ)
α(r+1)

∣
2⎞
⎠

1

2

.
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By Lemma 3.3, we get v(k) ≤ ℓ− 3

2
1√
k−ℓ (

∞∑
r=0
∣u(k+rℓ)
α(r+1) ∣2)

1

2

.

Thus it follows that

w(k) = ℓ 3

2

√
k − ℓv(k) ≤ ⎛⎝

∞∑
r=0

∣u(a + j + rℓ)
α(r+1)

∣
2⎞
⎠

1

2

. (25)

Hence we have

w(k)→ 0 and w(k) > 0 for all k ∈ [a,∞). (26)

Applying Lemma 2.8 to (25) twice, we arrive at

∆2

α(ℓ)w(k) =ℓ 3

2 (√k + ℓ∆2

α(ℓ)v(k) + 2(α − 1)√k + ℓ∆α(ℓ)v(k)
+ 2∆α(ℓ)v(k)∆α(ℓ)

√
k + +

√
k + ℓv(k)(α − 1)2

+ 2(α − 1)∆α(ℓ)
√
kv(k) + v(k)∆2

α(ℓ)
√
k − ℓ). (27)

Again from Lemma 2.8 and (25), we get

∆α(ℓ)v(k) = ℓ− 3

2 ( 1√
k
∆α(ℓ)w(k) + (α − 1)√

k
∆α(ℓ)w(k) +w(k)∆α(ℓ)

1√
k − ℓ

). (28)
From (27), (28) and by Lemma 2.8, we find that

∆α(ℓ) ( 1

k − ℓ
∆α(ℓ)w(k))

=
1

k
∆2

α(ℓ)w(k) + (α − 1)k
∆α(ℓ)w(k)+∆α(ℓ)

1

k − ℓ
∆α(ℓ)w(k)

=
ℓ

3

2

k
{√k + ℓ∆2

α(ℓ)v(k) + 2(α − 1)√k + ℓ∆α(ℓ)v(k) + 2∆α(ℓ)v(k)∆α(ℓ)
√
k

+
√
k + ℓv(k)(α − 1)2 + 2(α − 1)∆α(ℓ)

√
kv(k) + v(k)∆2

α(ℓ)
√
k − ℓ}

+
(α − 1)

k
∆α(ℓ)w(k) + (k(1 − α) − ℓ

k(k − ℓ) )∆α(ℓ)w(k)
=
ℓ

3

2

k
{√k + ℓ∆2

α(ℓ)v(k) + 2ℓ −32 ((α − 1)√k + ℓ
+∆α(ℓ)

√
k)[ 1√

k
∆α(ℓ)w(k) + (α − 1)√

k
w(k) +w(k)∆α(ℓ)

1√
k − ℓ

]
+
√
k + ℓv(k)(α − 1)v(k)(α − 1)2 + 2(α − 1)∆α(ℓ)

√
kv(k)

+ v(k)∆2

α(ℓ)
√
k − ℓ} + {α − 1

k
+
k(1 − α) − ℓ
k(k − ℓ) }∆α(ℓ)w(k)

≤
ℓ

3

2

k
{ℓ2
√
k + ℓ

2k2
v(k) + 2α2√

k
(√k + ℓ −√k)(√k − ℓ −√k)v(k)
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+ (α − 1)2√k + ℓv(k) + 2(α − 1)∆α(ℓ)
√
kv(k) + v(k)∆2

α(ℓ)
√
k − ℓ}

+ α(2(k − ℓ)
k
√
k
(√k + ℓ −√k) − ℓ

k
) 1

k − ℓ
∆α(ℓ)w(k)

which in view of (24), (26) gives

∆α(ℓ)z(k) ≤ γ(k)+ αβ(k)z(k) (29)

where

z(k) = 1

k − ℓ
∆α(ℓ)w(k) (30)

γ(k) = ℓ
3

2

k
( ℓ2√k+ℓ

2k2 + 2α2√
k
(√k + ℓ −√k)(√k − ℓ −√k)

+(α − 1)2√k + ℓ + 2(α − 1)∆α(ℓ)
√
k +∆2

α(ℓ)
√
k − ℓ)v(k) (31)

and

β(k) = 2(k − ℓ)
k
√
k

∆ℓ

√
k −

ℓ

k
. (32)

Since 2(k−ℓ)
k
√
k
∆ℓ

√
k > 0, from (1 + ℓ

k
) 1

2

< 1 + 1

2

ℓ
k
, we obtain

−
ℓ

k
< β(k) < − ℓ2

k2
, k ∈ [a,∞). (33)

Further, since (√k + ℓ −√k)(√k − ℓ −√k) = − ℓ2

(√k+ℓ+√k)(√k−ℓ+√k)
and

(α − 1)2√k + ℓ + 2(α − 1)∆α(ℓ)
√
k +∆2

α(ℓ)
√
k − ℓ

=α2(√k + ℓ −√k +√k − ℓ −√k)
=α2ℓ

√
k − ℓ −

√
k + ℓ

(√k + ℓ +√k)(√k − ℓ +√k) ,
we get

γ(k) = ℓ
3

2

k
√
k
(ℓ2
√
k + ℓ

2k
√
k
+
−2α2ℓ2 + α2ℓ

√
k(√k − ℓ −√k + ℓ)

(√k + ℓ +√k)(√k +√k − ℓ) )v(k).
From Lemmas 3.4 and 3.5,

γ(k) < ℓ
3

2

k
√
k
( 4α2ℓ2

√
k+ℓ

2
√
k(√k+ℓ+√k)(√k+√k−ℓ) +

−2α2ℓ2+α2ℓ
√
k(√k−ℓ−√k+ℓ)

(√k+ℓ+√k)(√k+√k−ℓ) )v(k)

=
2α2ℓ

7

2

k
√
k(√k + ℓ +√k)(√k +√k − ℓ) (

√
k + ℓ√
k
−

√
k√

k + ℓ +
√
k − ℓ

− 1)v(k). (34)
By Lemma 3.5, we find γ(k) < 0, for all k ∈ [a,∞). Thus from Lemma 3.6 and
γ(k) < 0,
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∆α(ℓ)
⎛
⎝z(k)

[k−a
ℓ
]−1∏

r=0
(1 + β(j + a + rℓ))−1⎞⎠ < 0, for all k ∈ [a + ℓ,∞),

which is same as

α⌈
k+ℓ
ℓ
⌉∆ℓ

⎛⎜⎜⎝
z(k)

[k−a
ℓ
]−1
∏
r=0

(1+β(j+a+rℓ))−1

α
⌈ k
ℓ
⌉

⎞⎟⎟⎠ < 0, for all k ∈ [a + ℓ,∞),

i.e.

⎛⎜⎜⎝
z(k)

[ k−a
ℓ
]−1
∏
r=0

(1+β(j+a+rℓ))−1

α
⌈ k
ℓ
⌉

⎞⎟⎟⎠
is decreasing by ℓ steps.

If z(k) [
k−a
ℓ
]−1∏

r=0
(1 + β(j + a + rℓ))−1 > 0, for all k ∈ [a + ℓ,∞), then z(k) > 0,

for all k ∈ [a + ℓ,∞), from (30), we find ∆α(ℓ)w(k) > 0 and hence
w(k + ℓ) > αw(k), for all k ∈ [a + ℓ,∞), but this contradicts (26).
If there exists a real K ≥ a + ℓ such that

z(K + j) [
K−a

ℓ
]−1∏

r=0
(1 + β(j + a + rℓ))−1 = pj < 0 for all 0 ≤ j < ℓ, then

z(k) [
k−a
ℓ
]−1∏

r=0
(1 + β(j + a + rℓ))−1 < pj for all k ∈ [K,∞),

i.e.z(k) < pj [
k−a
ℓ
]−1∏

r=0
(1 + β(j + a + rℓ)).

However from (33), 1 + β(k) > (k − ℓ)/k > 0 and j = k−a− [k−a
ℓ
] ℓ, it follows that

z(k) < pj(j + a − ℓ)/(k − ℓ), and hence from (30), we find
∆α(ℓ)w(k) < pj(j + a − ℓ). Since w(k)→ 0, k ≥K + 2ℓ⇒ 1

ℓ
(k −K − ℓ) ≥ 1, we

get w(k + ℓ) < αw(k) + pj(j + a − ℓ) which yields w(k) < αw(k − ℓ) + pj(j + a − ℓ)
and hence for all k ∈ [K + 2ℓ,∞), w(k) < αw(K + ℓ)+ 1

ℓ
pj(j + a − ℓ)(k −K − ℓ).

Since k ≥K + 2ℓ⇒ k −K ≥ 2ℓ, 1

ℓ
(k −K − ℓ) ≥ 1. But this implies that

w(k) → −∞, and again we get a contradiction to (26). Combining the
above arguments, we find that our assumption v(k) > 0 for all k ∈ [a,∞) is not
correct, and this completes the proof.

Example 3.8. For the generalized difference equation ∆2

α(ℓ)u(k) = k
(n−2)
ℓ

((k +
ℓ)(k(1−2α)+2ℓ(1−(n−2)α))+α(k−(n−2)ℓ)(k−(n−1)ℓ)) (17) is not satisfied.
Hence u(k) ≠ 0 for all k ∈ (2ℓ,∞). Infact u(k) = k(3)

ℓ
∈ ℓ2(α(ℓ)) is a solution.

Theorem 3.9. Let for all (k,u) ∈ [0,∞) × R and α > 1 the function f(k,u) be
defined and

∣f(k,u)∣ ≤ ℓqk−q ∣u∣ , q >
5

2
. (35)

Then, if u(k) ∈ c0(α(ℓ)) is a solution of (1), there exists a positive k1 ≥ a (a ≥ 4ℓ)
such that u(k) = 0 for all k ∈ [k1,∞).
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Proof. Let u(k) be a solution of (1) such that lim
r→∞

∣u(a+j+rℓ)∣
α(r+1) = 0. Then,

lim
k→∞

∆α(ℓ)
u(k)

α
(⌈ k+ℓ

ℓ
⌉) = lim

k→∞
∆2

α(ℓ)
u(k)

α
(⌈ k+ℓ

ℓ
⌉) = 0 for all ℓ > 0. Thus, for this solution

also the relation (20) holds. Further, since there exists a constant cj > 0 such

that ∣u(k)∣
α(r+1) ≤ cj for all k ∈ [k1,∞), where 0 ≤ j = k − [k

ℓ
] ℓ < ℓ, we find that

∞∑
r=0

(r + 1) ∣f((k + rℓ), u(k + rℓ))∣
α(r+1)

≤
∞∑
r=0

(r + k

ℓ
ℓq(k + rℓ)−q ∣u(k + rℓ)∣

α(r+1)
)

=
∞∑
r=0

(k + rℓ)1−qℓq−1 ∣u(k + rℓ)∣
α(r+1)

≤cjℓ
q−1 ∞∑

r=0

(k + rℓ)1−q where j = k − [k
ℓ
] ℓ

=cjℓ
q−1 [k1−q + ∞∑

r=1

(k + rℓ)1−q]
=cjℓ

q−1 [k1−q + ℓ1−q ∞∑
r=1

(k
ℓ
+ r)1−q]

=cjℓ
q−1
⎡⎢⎢⎢⎢⎢⎣
k1−q + ℓ1−q

⎡⎢⎢⎢⎢⎣
(k
ℓ
)2−q

2 − q
+ r

⎤⎥⎥⎥⎥⎦
∞

k
ℓ

⎤⎥⎥⎥⎥⎥⎦
=cjℓ

q−1[k1−q+ k2−q

ℓ(q − 2)] < ∞, for all k ∈ [k1,∞).
Therefore, this solution also has the representation (20). Now as in Theorem
3.7. we define

v̄(k) = ∞∑
r=0
(r + 1)(k + rℓ)−q ∣u(k+rℓ)∣

α(r+2) =
∞∑
r=0

ℓ−q(r + 1)(k
ℓ
+ r)−q ∣u(k+rℓ)∣

α(r+2) .

Since q > 5

2
we find

v̄(k) ≤ ℓ−q ∞∑
r=0
(r + 1)(k

ℓ
+ r)−2 ∣u(k+rℓ)∣

α(r+2) = ℓ
2−q ∞∑

r=0
(r + 1)(k + r)−2 ∣u(k+rℓ)∣

α(r+2)

v̄(k) ≤ ℓ2−q ℓ
− 3

2√
k−ℓ {

∞∑
r=0

∣u(k+rℓ)∣2
α(r+1)2

}
1

2

.

Hence, we define
w̄(k) = ℓq− 1

2

√
k − ℓv̄(k), z̄(k) = 1

k−ℓ∆α(ℓ)w̄(k),
γ̄(k) = ℓ

q− 1

2

k
(ℓq√k+ℓ

2kq +
2α2

√
k
(√k + ℓ −√k)(√k − ℓ −√k)

+(α − 1)2√k + ℓ + 2(α − 1)∆α(ℓ)
√
k +∆2

α(ℓ)
√
k − ℓ) v̄(k),

β̄(k) = 2(k−ℓ)
k
√
k
∆α(ℓ)

√
k − ℓ

k
,

and apply similar analysis to see that there exists a positive integer k1 such that
u(k) = 0 for all k ∈ [k1,∞).
Example 3.10. For the generalized difference equation ∆2

α(ℓ)u(k) = k2(1 − α)2 +
2ℓ(1 − α)(2k + ℓ)+ 2ℓ2 (35) is not satisfied and hence u(k) ≠ 0 for all k ∈ (0,∞).
Infact u(k) = k2 is a solution which belongs to c0(α(ℓ)).
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