Nonexistence of Solutions of Certain Type of Second Order Generalized α-Difference Equation in $\ell_{2(\alpha(\ell))}$ and $c_{0(\alpha(\ell))}$ Spaces

D. S. Dilip

Department of Mathematics, St.John's College, Anchal - 691 306, Kerala, India
Email: mr.dilipmaths@rediffmail.com
M. Maria Susai Manuel

Department of Science and Humanities,
R.M.D. Engineering College,

Kavaraipettai - 601 206, Tamil Nadu, India
Email: mmariasusai@gmail.com
G. Britto Antony Xavier and G. Dominic Babu

Department of Mathematics, Sacred Heart College,
Tirupattur - 635 601, Vellore District
Tamil Nadu, India
Email: brittoshc@gmail.com

Received 13 March 2014
Accepted 14 December 2014

Communicated by S.S. Cheng

AMS Mathematics Subject Classification(2000): 39A12
Abstract. In this paper, the authors discuss the nonexistence of solutions of second order generalized α-difference equation

$$
\begin{equation*}
\Delta_{\alpha(\ell)}^{2} u(k)+f(k, u(k))=0, k \in[a, \infty), a>0, \alpha>1 . \tag{1}
\end{equation*}
$$

in $\ell_{2(\alpha(\ell))}$ and $c_{0(\alpha(\ell))}$ spaces, where $\Delta_{\alpha(\ell)} u(k)=u(k+\ell)-\alpha u(k)$ and $\ell \in(0, \infty)$.

Keywords: Generalized α-difference equation; Generalized α-difference operator.

1. Introduction

The basic theory of difference equations is based on the operator Δ defined as $\Delta u(k)=u(k+1)-u(k), k \in \mathbb{N}=\{0,1,2,3, \cdots\}$. Eventhough many authors $([1,4$, $12,18]$) have suggested the definition of Δ as

$$
\begin{equation*}
\Delta u(k)=u(k+\ell)-u(k), k \in \mathbb{R}, \ell \in \mathbb{R}-\{0\} \tag{2}
\end{equation*}
$$

no significant progress has taken place on this line. But recently, E. Thandapani, M.M.S. Manuel, G.B.A.Xavier [7] considered the definition of Δ as given in (2) and developed the theory of difference equations in a different direction. For convenience, the operator Δ defined by (2) is labelled as Δ_{ℓ} and by defining its inverse Δ_{ℓ}^{-1}, many interesting results and applications in number theory (see [5]-[7],[10, 9],[16, 17]) were obtained. By extending the study related to the sequences of complex numbers and ℓ to be real, some new qualitative properties of the solutions like rotatory, expanding, shrinking, spiral and weblike of difference equations involving Δ_{ℓ} were obtained. The results obtained using Δ_{ℓ} can be found in ([8]). Jerzy Popenda and B.Szmanda ([13],[14]) defined Δ as $\Delta_{\alpha} u(k)=u(k+1)-\alpha u(k)$ and based on this definition they have studied the qualitative properties of solutions of a particular difference equation and no one else has handled this operator. Here, the generalized definition of the operator is taken as

$$
\begin{equation*}
\Delta_{\alpha(\ell)} u(k)=u(k+\ell)-\alpha u(k) \tag{3}
\end{equation*}
$$

and by defining its inverse, several interesting results on number theory were obtained [11].
ℓ_{2} and c_{0} solutions of second order difference equation of (1) when $\ell=1$ and $\alpha=1$ was discussed in [15]. Nonexistence of solutions of (1) when $\alpha=1$ was discussed in [5] and [6]. In this paper, we discuss nonexistence of solutions in $\ell_{2(\alpha(\ell))}$ and $c_{0(\alpha(\ell))}$ spaces for the second order generalized α-difference equation (1).

Throughout this paper we use the following notations.
(i) $[k]$ denotes the integer part of k,
(ii) $\mathbb{N}=\{0,1,2,3, \ldots\}, \mathbb{N}(a)=\{a, a+1, a+2, \ldots\}$, for any real a,
(iii) $\mathbb{N}_{\ell}(j)=\{j, j+\ell, j+2 \ell, \ldots\}$ and \mathbb{R} is the set of all real numbers.

2. Preliminaries

In this section, we present some basic definitions which will be useful for the subsequent discussion.

Definition 2.1. Let $u(k), k \in[0, \infty)$ be a real or complex valued function and $\ell \in(0, \infty)$. Then, the generalized α-difference operator $\Delta_{\alpha(\ell)}$ on $u(k)$ is defined as

$$
\begin{equation*}
\Delta_{\alpha(\ell)} u(k)=u(k+\ell)-\alpha u(k) \tag{4}
\end{equation*}
$$

When $\alpha=1$, the generalized α-difference operator $\Delta_{\alpha(\ell)}$ becomes the generalized difference operator Δ_{ℓ}. When $\alpha=1$ and $\ell=1$, then $\Delta_{\alpha(\ell)}$ is the usual difference operator Δ.

Definition 2.2. [7] Let $u(k), k \in[0, \infty)$ be a real or complex valued function and $\ell \in(0, \infty)$. Then, the inverse operator Δ_{ℓ}^{-1} is defined as follows.

$$
\begin{equation*}
\text { If } \Delta_{\ell} v(k)=u(k), \text { then } v(k)=\Delta_{\ell}^{-1} u(k)+c_{j} \tag{5}
\end{equation*}
$$

where c_{j} is a constant for all $k \in \mathbb{N}_{\ell}(j), j=k-\left[\frac{k}{\ell}\right] \ell$.
If $\lim _{k \rightarrow \infty} u(k)=0$, then we can take $c_{j}=0$.

Definition 2.3. The inverse of the Generalized α-difference operator denoted by $\Delta_{\alpha(\ell)}^{-1}$ on $u(k)$ is defined as, if $\Delta_{\alpha(\ell)} v(k)=u(k)$, then

$$
\begin{equation*}
\Delta_{\alpha(\ell)}^{-1} u(k)=v(k)-\alpha^{\left[\frac{k}{\ell}\right]} c_{j} . \tag{6}
\end{equation*}
$$

where c_{j} is a constant for all $k \in \mathbb{N}_{\ell}(j), j=k-\left[\frac{k}{\ell}\right] \ell$.
Definition 2.4. [5] A function $u(k), k \in[a, \infty)$ is said to be in $\ell_{2(\ell)}$-space if

$$
\begin{equation*}
\sum_{\gamma=0}^{\infty}|u(a+j+\gamma \ell)|^{2}<\infty \text { for all } j \in[0, \ell) \tag{7}
\end{equation*}
$$

If $\lim _{r \rightarrow \infty}|u(a+j+r \ell)|=0$ for all $j \in[0, \ell)$, then $u(k)$ is said to be in the $c_{0(\ell)-\text { space. }}$.

Definition 2.5. [7] Generalized polynomial factorial for $\ell>0$ is defined as

$$
\begin{equation*}
k_{\ell}^{(n)}=k(k-\ell)(k-2 \ell) \cdots(k-(n-1) \ell) . \tag{8}
\end{equation*}
$$

Theorem 2.6. For $\ell>0$, if $\lim _{k \rightarrow \infty} u(k)=0$, then

$$
\begin{equation*}
\Delta_{\ell}^{-1} u(k)=-\sum_{r=0}^{\infty} u(k+r \ell), \text { for all } \quad k \in[0, \infty) \tag{9}
\end{equation*}
$$

Proof. Let $z(k)=\sum_{r=0}^{\infty} u(k+r \ell)$.
$\Delta_{\ell} z(k)=z(k+\ell)-z(k)=\sum_{r=0}^{\infty} u(k+\ell+r \ell)-\sum_{r=0}^{\infty} u(k+r \ell)$.
Since $\lim _{k \rightarrow \infty} u(k)=0$, we get $\Delta_{\ell} z(k)=-u(k)$ and the proof follows from Definition 2.2.

Theorem 2.7. If $\lim _{k \rightarrow \infty} \frac{u(k)}{\alpha^{(r+1)}}=0$ and $\ell>0$, then

$$
\begin{equation*}
\Delta_{\alpha(\ell)}^{-1} u(k)=-\sum_{r=0}^{\infty} \frac{u(k+r \ell)}{\alpha^{(r+1)}}, \text { for all } \quad k \in[0, \infty), \alpha>1 \tag{10}
\end{equation*}
$$

Proof. Assume $z(k)=\sum_{r=0}^{\infty} \frac{u(k+r \ell)}{\alpha^{(r+1)}}$.
Then, $\Delta_{\alpha(\ell)} z(k)=z(k+\ell)-\alpha z(k)=\sum_{r=0}^{\infty} \frac{u(k+\ell+r \ell)}{\alpha^{(r+1)}}-\sum_{r=0}^{\infty} \frac{u(k+r \ell)}{\alpha^{r}}=-u(k)$.
Now, the proof follows from $\lim _{k \rightarrow \infty} u(k)=0$ and Definition 2.3.

Lemma 2.8. Let $u(k)$ and $v(k)$ be any two functions. Then, $\forall k \in[a, \infty)$

$$
\begin{align*}
& \Delta_{\alpha(\ell)}\{u(k) v(k)\} \\
= & u(k+\ell) \Delta_{\alpha(\ell)} v(k)+u(k+\ell) v(k)(\alpha-1)+v(k) \Delta_{\alpha(\ell)} u(k) \\
= & v(k+\ell) \Delta_{\alpha(\ell)} u(k)+v(k+\ell) u(k)(\alpha-1)+u(k) \Delta_{\alpha(\ell)} v(k) . \tag{11}
\end{align*}
$$

Theorem 2.9. [5] For all $(k, u) \in[a, \infty) \times \mathbb{R}$ the function $f(k, u)$ be defined and

$$
\begin{equation*}
|f(k, u)| \leq \frac{\ell^{2}}{2} k^{-2}|u| \tag{12}
\end{equation*}
$$

Then, if $u(k) \in \ell_{2(\ell)}$ is a solution of (1), there exists $k_{1} \geq a,(a \geq 2 \ell)$ such that $u(k)=0$ for all $k \in\left[k_{1}, \infty\right)$.

3. Main Results

In this section, we present the condition for nonexistence of nontrivial solutions of (1).

Definition 3.1. A function $u(k), k \in[a, \infty)$ is said to be in $\ell_{2(\alpha(\ell))}$ space if

$$
\begin{equation*}
\sum_{r=0}^{\infty}\left|\frac{u(a+j+r \ell)}{\alpha^{(r+1)}}\right|^{2}<\infty, \text { for all } j \in[0, \ell) \tag{13}
\end{equation*}
$$

If $\lim _{r \rightarrow \infty} \frac{|u(a+j+r \ell)|}{\alpha^{(r+1)}}=0$ for all $j \in[0, \ell)$ and $a \in[0, \infty)$, then $u(k)$ is said to be in the $c_{0(\alpha(\ell))}$ space.

Example 3.2. For $n \in \mathbb{N}(1), k^{n}$ and $k_{\ell}^{(n)}$ are in $\ell_{2(\alpha(\ell))}$ and $c_{0(\alpha(\ell))}$ spaces.
Lemma 3.3. For $k \in(0, \infty), \ell>0, \sum_{r=0}^{\infty}(k+r \ell)^{-2} \leq \frac{1}{\ell(k-\ell)}$.

Proof. $\Delta_{\ell} \frac{1}{k-\ell}=-\frac{\ell}{(k-\ell) k}$ yields $\Delta_{\ell}^{-1} \frac{-1}{(k-\ell) k}=\frac{1}{\ell(k-\ell)}$. Now, the proof follows from Theorem 2.6 and $\frac{1}{(k-r \ell)^{2}} \leq \frac{1}{(k+(r-1) \ell)(k+r \ell)}$.

Lemma 3.4. Let $a \geq 2 \ell, \alpha>1, k \in[a, \infty)$ and $r(k)=\frac{4}{(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k}+\sqrt{k-\ell})}$. Then $k r(k) \alpha^{2}>1$.

Proof. Multiplying and dividing $r(k)$ by $(\sqrt{k+\ell}-\sqrt{k})(\sqrt{k}-\sqrt{k-\ell})$, we get

$$
\begin{align*}
r(k)= & \frac{4}{\ell^{2}} \sqrt{k} \sqrt{k}\left[\left(1+\frac{\ell}{k}\right)^{\frac{1}{2}}-1\right]\left[1-\left(1-\frac{\ell}{k}\right)^{\frac{1}{2}}\right] \\
= & \frac{4 k}{\ell^{2}}\left[1+\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\frac{1}{4!} \frac{1}{4} \frac{3}{2} \frac{5}{2}\left(\frac{\ell}{k}\right)^{4}+\cdots-1\right] \\
& \times\left[1-\left(1-\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}-\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\frac{1}{4!} \frac{1}{4} \frac{3}{2} \frac{5}{2}\left(\frac{\ell}{k}\right)^{4}-\cdots\right)\right] . \tag{14}
\end{align*}
$$

We notice that, in the first expression of the above equation the sum of each pairwise positive and its consecutive negative terms yields a positive value. Hence

$$
\begin{aligned}
& \text { we obtain. } \\
& \begin{aligned}
r(k)>\frac{4 k}{\ell^{2}} & {\left[\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}\right]\left[\frac{1}{2} \frac{\ell}{k}+\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\frac{1}{4!} \frac{1}{4} \frac{3}{2} \frac{5}{2}\left(\frac{\ell}{k}\right)^{4}+\cdots\right] } \\
= & \frac{4}{\ell^{2}}\left[\frac{\ell}{2}-\frac{\ell}{2} \frac{1}{4} \frac{\ell}{k}\right]\left[\frac{1}{2} \frac{\ell}{k}+\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\cdots\right] \\
= & \frac{4}{\ell^{2}} \frac{\ell}{2}\left[\frac{1}{2} \frac{\ell}{k}+\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\frac{1}{4!} \frac{1}{4} \frac{3}{2} \frac{5}{2}\left(\frac{\ell}{k}\right)^{4}+\cdots\right] \\
& -\frac{4}{\ell^{2}} \frac{\ell}{2} \frac{1}{4} \frac{\ell}{k}\left[\frac{1}{2} \frac{\ell}{k}+\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\cdots\right] \\
= & \frac{1}{k}+\frac{2}{\ell}\left[\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\frac{1}{4!} \frac{1}{4} \frac{3}{2} \frac{5}{2}\left(\frac{\ell}{k}\right)^{4}+\cdots\right] \\
& -\frac{2}{\ell}\left[\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{2!} \frac{1}{4} \frac{1}{4}\left(\frac{\ell}{k}\right)^{3}+\frac{1}{3!} \frac{1}{4} \frac{1}{4} \frac{1}{4}\left(\frac{\ell}{k}\right)^{4}+\cdots\right] \\
= & \frac{1}{k}+\frac{2}{4 \ell}\left[\frac{1}{3!}\left(\frac{3}{2}-\frac{3}{4}\right)\left(\frac{\ell}{k}\right)^{3}+\frac{1}{4!} \frac{3}{2}\left(\frac{5}{2}-\frac{4}{4}\right)\left(\frac{\ell}{k}\right)^{4}+\cdots\right] .
\end{aligned}
\end{aligned}
$$

Since second term of above is positive, we obtain $r(k)>\frac{1}{k}$. Now, the proof is obvious.

Lemma 3.5. Let $a \geq 2 \ell, k \in[a, \infty)$ and $d(k)=\frac{\sqrt{k+\ell}}{\sqrt{k}}-\frac{\sqrt{k}}{\sqrt{k+\ell+} \sqrt{k-\ell}}$. Then $d(k)<1$.
Proof. Multiplying and dividing the $2^{n d}$ term of $d(k)$ by $\sqrt{k+\ell}-\sqrt{k-\ell}$ and from the Binomial theorem for rational index, we find

$$
\begin{aligned}
d(k)= & 1+\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\cdots \infty \\
& -\frac{k}{2 \ell}\left[1+\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\cdots \infty\right. \\
& \left.-\left(1-\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}-\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\cdots \infty\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & 1+\frac{1}{2} \frac{\ell}{k}-\frac{1}{2!} \frac{1}{4}\left(\frac{\ell}{k}\right)^{2}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}-\cdots \infty \\
& -\frac{k}{2 \ell}\left[\frac{\ell}{k}+\frac{1}{3!} \frac{1}{4} \frac{3}{2}\left(\frac{\ell}{k}\right)^{3}+\cdots \infty\right] .
\end{aligned}
$$

In the first expression of the above equation, each sum of negative term and the consecutive positive term of $d(k)$ is negative. Hence, we obtain $d(k)<1+\frac{1}{2} \frac{\ell}{k}-\frac{1}{2}=\frac{1}{2}+\frac{1}{2} \frac{\ell}{k}<1$, which completes the proof.

Lemma 3.6. Let $a \geq 2 \ell, k \in[a+\ell, \infty)$ and $j=k-a-\left[\frac{k-a}{\ell}\right] \ell$. If

$$
\begin{equation*}
\Delta_{\alpha(\ell)} z(k) \leq \gamma(k)+\alpha \beta(k) z(k) \tag{15}
\end{equation*}
$$

and $\frac{-\ell}{k}<\beta(k)<\frac{-\ell^{2}}{k^{2}}$ for all $k \in[a, \infty)$, then

$$
\begin{equation*}
\Delta_{\alpha(\ell)}\left(z(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}\right) \leq \gamma(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]}(1+\beta(j+a+r \ell))^{-1} \tag{16}
\end{equation*}
$$

where $j=k-a-\left[\frac{k-a}{\ell}\right] \ell$.
Proof. From the inequality (15) and $1+\beta(k)>0$, we find $\frac{z(k+\ell)}{1+\beta(k)}-\alpha z(k) \leq \frac{\gamma(k)}{1+\beta(k)}$, which yields,

$$
\begin{aligned}
& \frac{z(k+\ell)}{1+\beta(k)} \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}-\alpha z(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1} \\
& \leq \frac{\gamma(k)}{1+\beta(k)} \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}
\end{aligned}
$$

Now (16) follows by assigning $j+a+\left[\frac{k-a}{\ell}\right] \ell=k$.

The following theorem gives the condition for nonexistence of nontrivial solutions of (1).

Theorem 3.7. Let for all $(k, u) \in[a, \infty) \times \mathbb{R}$ and $\alpha>1$ the function $f(k, u)$ be defined and

$$
\begin{equation*}
|f(k, u)| \leq \frac{\ell^{2}}{2} k^{-2}|u| \tag{17}
\end{equation*}
$$

Then, if $u(k) \in \ell_{2(\alpha(\ell))}$ is a solution of (1), there exists a real $k_{1} \geq a(a \geq 2 \ell)$ such that $u(k)=0$ for all $k \in\left[k_{1}, \infty\right)$.

Proof. Since $u(k)$ is a solution of (1) and satisfies Definition 3.1, we find,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Delta_{\alpha(\ell)} \frac{u(k)}{\alpha^{\left(\left\lceil\frac{k+\ell}{\ell}\right\rceil\right)}}=\lim _{k \rightarrow \infty} \Delta_{\alpha(\ell)}^{2} \frac{u(k)}{\alpha^{\left(\left\lceil\frac{k+2 \ell}{\ell}\right\rceil\right)}}=0 . \tag{18}
\end{equation*}
$$

Hence, taking $\Delta_{\alpha(\ell)}^{-1}$ on equation (1) and using Theorem 2.6, we find

$$
\begin{equation*}
\Delta_{\alpha(\ell)} u(k)=\sum_{r=0}^{\infty} \frac{f(k+r \ell, u(k+r \ell))}{\alpha^{(r+1)}} . \tag{19}
\end{equation*}
$$

Again taking $\Delta_{\alpha(\ell)}^{-1}$ and by Theorem 2.6, we obtain

$$
\begin{equation*}
u(k)=-\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{f(k+r \ell+s \ell, u(k+r \ell+s \ell))}{\alpha^{(r+s+2)}} \tag{20}
\end{equation*}
$$

which yields

$$
\begin{equation*}
u(k)=-\sum_{r=0}^{\infty}(r+1) \frac{f(k+r \ell, u(k+r \ell))}{\alpha^{(r+2)}}, k \in[a, \infty) . \tag{21}
\end{equation*}
$$

Therefore, from (17), we obtain

$$
\begin{equation*}
|u(k)| \leq \frac{\ell^{2}}{2} v(k) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
v(k)=\sum_{r=0}^{\infty}(r+1)(k+r \ell)^{-2}\left|\frac{u(k+r \ell)}{\alpha^{(r+2)}}\right| \text { for all } k \in[a, \infty) \tag{23}
\end{equation*}
$$

Obviously $v(k) \geq 0$ for all $k \in[a, \infty)$ and $\lim _{k \rightarrow \infty} v(k)=0$ by Definition 3.1. If $v(k+j)=0$, for all $j \in[0, \ell)$, for some $k=k_{1} \geq a$, then

$$
(r+1)(k+j+r \ell)^{-2}\left(\frac{u(k+j+r \ell)}{\alpha^{(r+2)}}\right)=0, \text { for all } r=0,1,2, \ldots
$$

Hence $u(k)=0$, for all $k \geq k_{1}$. In this case the proof is complete. Now, we suppose that $v(k)>0$, for all $k \in[a, \infty)$. From (23) we obtain, $\Delta_{\alpha(\ell)} v(k)=-\sum_{r=0}^{\infty}(k+r \ell)^{-2}\left|\frac{u(k+r \ell)}{\alpha^{(r+1)}}\right|$ and $\Delta_{\alpha(\ell)}^{2} v(k)=k^{-2}|u(k)|$. From (22), we find

$$
\begin{equation*}
\Delta_{\alpha(\ell)}^{2} v(k) \leq \frac{\ell^{2}}{2} k^{-2} v(k), \text { for all } k \in[a, \infty) \tag{24}
\end{equation*}
$$

From the definition of $v(k), a \geq 2 \ell, \frac{r+1}{\alpha(k+r \ell)} \leq \frac{1}{\ell}$ and Schwartz's inequality, we obtain

$$
\begin{aligned}
v(k) & \leq \ell^{-1} \sum_{r=0}^{\infty}(k+r \ell)^{-1}\left|\frac{u(k+r \ell)}{\alpha^{(r+1)}}\right| \\
& \leq \ell^{-1}\left(\sum_{r=0}^{\infty}(k+r \ell)^{-2}\right)^{\frac{1}{2}}\left(\sum_{r=0}^{\infty}\left|\frac{u(k+r \ell)}{\alpha^{(r+1)}}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

By Lemma 3.3, we get $v(k) \leq \ell^{-\frac{3}{2}} \frac{1}{\sqrt{k-\ell}}\left(\sum_{r=0}^{\infty}\left|\frac{u(k+r \ell)}{\alpha^{(r+1)}}\right|^{2}\right)^{\frac{1}{2}}$.
Thus it follows that

$$
\begin{equation*}
w(k)=\ell^{\frac{3}{2}} \sqrt{k-\ell} v(k) \leq\left(\sum_{r=0}^{\infty}\left|\frac{u(a+j+r \ell)}{\alpha^{(r+1)}}\right|^{2}\right)^{\frac{1}{2}} . \tag{25}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
w(k) \rightarrow 0 \text { and } w(k)>0 \text { for all } k \in[a, \infty) . \tag{26}
\end{equation*}
$$

Applying Lemma 2.8 to (25) twice, we arrive at

$$
\begin{align*}
\Delta_{\alpha(\ell)}^{2} w(k)= & \ell^{\frac{3}{2}}\left(\sqrt{k+\ell} \Delta_{\alpha(\ell)}^{2} v(k)+2(\alpha-1) \sqrt{k+\ell} \Delta_{\alpha(\ell)} v(k)\right. \\
& +2 \Delta_{\alpha(\ell)} v(k) \Delta_{\alpha(\ell)} \sqrt{k}++\sqrt{k+\ell} v(k)(\alpha-1)^{2} \\
& \left.+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k} v(k)+v(k) \Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right) \tag{27}
\end{align*}
$$

Again from Lemma 2.8 and (25), we get

$$
\begin{equation*}
\Delta_{\alpha(\ell)} v(k)=\ell^{-\frac{3}{2}}\left(\frac{1}{\sqrt{k}} \Delta_{\alpha(\ell)} w(k)+\frac{(\alpha-1)}{\sqrt{k}} \Delta_{\alpha(\ell)} w(k)+w(k) \Delta_{\alpha(\ell)} \frac{1}{\sqrt{k-\ell}}\right) \tag{28}
\end{equation*}
$$

From (27), (28) and by Lemma 2.8, we find that

$$
\begin{aligned}
& \Delta_{\alpha(\ell)}\left(\frac{1}{k-\ell} \Delta_{\alpha(\ell)} w(k)\right) \\
&= \frac{1}{k} \Delta_{\alpha(\ell)}^{2} w(k)+\frac{(\alpha-1)}{k} \Delta_{\alpha(\ell)} w(k)+\Delta_{\alpha(\ell)} \frac{1}{k-\ell} \Delta_{\alpha(\ell)} w(k) \\
&=\frac{\ell^{\frac{3}{2}}}{k}\left\{\sqrt{k+\ell} \Delta_{\alpha(\ell)}^{2} v(k)+2(\alpha-1) \sqrt{k+\ell} \Delta_{\alpha(\ell)} v(k)+2 \Delta_{\alpha(\ell)} v(k) \Delta_{\alpha(\ell)} \sqrt{k}\right. \\
&\left.+\sqrt{k+\ell} v(k)(\alpha-1)^{2}+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k} v(k)+v(k) \Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right\} \\
&+\frac{(\alpha-1)}{k} \Delta_{\alpha(\ell)} w(k)+\left(\frac{k(1-\alpha)-\ell}{k(k-\ell)}\right) \Delta_{\alpha(\ell)} w(k) \\
&= \frac{\ell^{\frac{3}{2}}}{k}\left\{\sqrt{k+\ell} \Delta_{\alpha(\ell)}^{2} v(k)+2 \ell^{\frac{-3}{2}}((\alpha-1) \sqrt{k+\ell}\right. \\
&\left.+\Delta_{\alpha(\ell)} \sqrt{k}\right)\left[\frac{1}{\sqrt{k}} \Delta_{\alpha(\ell)} w(k)+\frac{(\alpha-1)}{\sqrt{k}} w(k)+w(k) \Delta_{\alpha(\ell)} \frac{1}{\sqrt{k-\ell}}\right] \\
&+\sqrt{k+\ell} v(k)(\alpha-1) v(k)(\alpha-1)^{2}+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k} v(k) \\
&\left.+v(k) \Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right\}+\left\{\frac{\alpha-1}{k}+\frac{k(1-\alpha)-\ell}{k(k-\ell)}\right\} \Delta_{\alpha(\ell)} w(k) \\
& \leq \frac{\ell^{\frac{3}{2}}}{k}\left\{\frac{\ell^{2} \sqrt{k+\ell}}{2 k^{2}} v(k)+\frac{2 \alpha^{2}}{\sqrt{k}}(\sqrt{k+\ell}-\sqrt{k})(\sqrt{k-\ell}-\sqrt{k}) v(k)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+(\alpha-1)^{2} \sqrt{k+\ell} v(k)+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k} v(k)+v(k) \Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right\} \\
& +\alpha\left(\frac{2(k-\ell)}{k \sqrt{k}}(\sqrt{k+\ell}-\sqrt{k})-\frac{\ell}{k}\right) \frac{1}{k-\ell} \Delta_{\alpha(\ell)} w(k)
\end{aligned}
$$

which in view of $(24),(26)$ gives

$$
\begin{equation*}
\Delta_{\alpha(\ell)} z(k) \leq \gamma(k)+\alpha \beta(k) z(k) \tag{29}
\end{equation*}
$$

where

$$
\begin{gather*}
z(k)=\frac{1}{k-\ell} \Delta_{\alpha(\ell)} w(k) \tag{30}\\
\gamma(k)=\frac{\ell^{\frac{3}{2}}}{k}\left(\frac{\ell^{2} \sqrt{k+\ell}}{2 k^{2}}+\frac{2 \alpha^{2}}{\sqrt{k}}(\sqrt{k+\ell}-\sqrt{k})(\sqrt{k-\ell}-\sqrt{k})\right. \\
\left.+(\alpha-1)^{2} \sqrt{k+\ell}+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k}+\Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right) v(k) \tag{31}
\end{gather*}
$$

and

$$
\begin{equation*}
\beta(k)=\frac{2(k-\ell)}{k \sqrt{k}} \Delta_{\ell} \sqrt{k}-\frac{\ell}{k} . \tag{32}
\end{equation*}
$$

Since $\frac{2(k-\ell)}{k \sqrt{k}} \Delta_{\ell} \sqrt{k}>0$, from $\left(1+\frac{\ell}{k}\right)^{\frac{1}{2}}<1+\frac{1}{2} \frac{\ell}{k}$, we obtain

$$
\begin{equation*}
-\frac{\ell}{k}<\beta(k)<-\frac{\ell^{2}}{k^{2}}, k \in[a, \infty) \tag{33}
\end{equation*}
$$

Further, since $(\sqrt{k+\ell}-\sqrt{k})(\sqrt{k-\ell}-\sqrt{k})=-\frac{\ell^{2}}{(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k-\ell}+\sqrt{k})}$ and

$$
\begin{aligned}
& (\alpha-1)^{2} \sqrt{k+\ell}+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k}+\Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell} \\
= & \alpha^{2}(\sqrt{k+\ell}-\sqrt{k}+\sqrt{k-\ell}-\sqrt{k}) \\
= & \alpha^{2} \ell \frac{\sqrt{k-\ell}-\sqrt{k+\ell}}{(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k-\ell}+\sqrt{k})},
\end{aligned}
$$

we get

$$
\gamma(k)=\frac{\ell^{\frac{3}{2}}}{k \sqrt{k}}\left(\frac{\ell^{2} \sqrt{k+\ell}}{2 k \sqrt{k}}+\frac{-2 \alpha^{2} \ell^{2}+\alpha^{2} \ell \sqrt{k}(\sqrt{k-\ell}-\sqrt{k+\ell})}{(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k}+\sqrt{k-\ell})}\right) v(k) .
$$

From Lemmas 3.4 and 3.5,
$\gamma(k)<\frac{\ell^{\frac{3}{2}}}{k \sqrt{k}}\left(\frac{4 \alpha^{2} \ell^{2} \sqrt{k+\ell}}{2 \sqrt{k}(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k}+\sqrt{k-\ell})}+\frac{-2 \alpha^{2} \ell^{2}+\alpha^{2} \ell \sqrt{k}(\sqrt{k-\ell}-\sqrt{k+\ell})}{(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k}+\sqrt{k-\ell})}\right) v(k)$

$$
\begin{equation*}
=\frac{2 \alpha^{2} \ell^{\frac{7}{2}}}{k \sqrt{k}(\sqrt{k+\ell}+\sqrt{k})(\sqrt{k}+\sqrt{k-\ell})}\left(\frac{\sqrt{k+\ell}}{\sqrt{k}}-\frac{\sqrt{k}}{\sqrt{k+\ell}+\sqrt{k-\ell}}-1\right) v(k) . \tag{34}
\end{equation*}
$$

By Lemma 3.5, we find $\gamma(k)<0$, for all $k \in[a, \infty)$. Thus from Lemma 3.6 and $\gamma(k)<0$,
$\Delta_{\alpha(\ell)}\left(z(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}\right)<0$, for all $k \in[a+\ell, \infty)$,
which is same as

i.e. $\left(\frac{z(k) \frac{\left[\frac{k-a}{\ell}\right]-1}{\prod_{r=0}}(1+\beta(j+a+r \ell))^{-1}}{\left.\alpha \left\lvert\, \frac{k}{\ell}\right.\right]}\right)$ is decreasing by ℓ steps.

If $z(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}>0$, for all $k \in[a+\ell, \infty)$, then $z(k)>0$, for all $k \in[a+\ell, \infty)$, from (30), we find $\Delta_{\alpha(\ell)} w(k)>0$ and hence $w(k+\ell)>\alpha w(k)$, for all $k \in[a+\ell, \infty)$, but this contradicts (26).
If there exists a real $K \geq a+\ell$ such that
$z(K+j) \prod_{r=0}^{\left[\frac{K-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}=p_{j}<0$ for all $0 \leq j<\ell$, then
$z(k) \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))^{-1}<p_{j} \quad$ for all $k \in[K, \infty)$,
i.e. $z(k)<p_{j} \prod_{r=0}^{\left[\frac{k-a}{\ell}\right]-1}(1+\beta(j+a+r \ell))$.

However from (33), $1+\beta(k)>(k-\ell) / k>0$ and $j=k-a-\left[\frac{k-a}{\ell}\right] \ell$, it follows that $z(k)<p_{j}(j+a-\ell) /(k-\ell)$, and hence from (30), we find
$\Delta_{\alpha(\ell)} w(k)<p_{j}(j+a-\ell)$. Since $w(k) \rightarrow 0, k \geq K+2 \ell \Rightarrow \frac{1}{\ell}(k-K-\ell) \geq 1$, we get $w(k+\ell)<\alpha w(k)+p_{j}(j+a-\ell)$ which yields $w(k)<\alpha w(k-\ell)+p_{j}(j+a-\ell)$ and hence for all $k \in[K+2 \ell, \infty), w(k)<\alpha w(K+\ell)+\frac{1}{\ell} p_{j}(j+a-\ell)(k-K-\ell)$. Since $k \geq K+2 \ell \Rightarrow k-K \geq 2 \ell, \frac{1}{\ell}(k-K-\ell) \geq 1$. But this implies that $w(k) \rightarrow-\infty$, and again we get a contradiction to (26). Combining the above arguments, we find that our assumption $v(k)>0$ for all $k \in[a, \infty)$ is not correct, and this completes the proof.

Example 3.8. For the generalized difference equation $\Delta_{\alpha(\ell)}^{2} u(k)=k_{\ell}^{(n-2)}((k+$ $\ell)(k(1-2 \alpha)+2 \ell(1-(n-2) \alpha))+\alpha(k-(n-2) \ell)(k-(n-1) \ell))(17)$ is not satisfied. Hence $u(k) \neq 0$ for all $k \in(2 \ell, \infty)$. Infact $u(k)=k_{\ell}^{(3)} \in \ell_{2(\alpha(\ell))}$ is a solution.

Theorem 3.9. Let for all $(k, u) \in[0, \infty) \times \mathbb{R}$ and $\alpha>1$ the function $f(k, u)$ be defined and

$$
\begin{equation*}
|f(k, u)| \leq \ell^{q} k^{-q}|u|, q>\frac{5}{2} \tag{35}
\end{equation*}
$$

Then, if $u(k) \in c_{0(\alpha(\ell))}$ is a solution of (1), there exists a positive $k_{1} \geq a(a \geq 4 \ell)$ such that $u(k)=0$ for all $k \in\left[k_{1}, \infty\right)$.

Proof. Let $u(k)$ be a solution of (1) such that $\lim _{r \rightarrow \infty} \frac{|u(a+j+r \ell)|}{\alpha^{(r+1)}}=0$. Then, $\lim _{k \rightarrow \infty} \Delta_{\alpha(\ell)} \frac{u(k)}{\alpha\left(\left[\frac{k+\ell}{\ell} \backslash\right)\right.}=\lim _{k \rightarrow \infty} \Delta_{\alpha(\ell)}^{2} \frac{u(k)}{\alpha\left(\left|\frac{k+\ell}{\ell}\right|\right)}=0$ for all $\ell>0$. Thus, for this solution also the relation (20) holds. Further, since there exists a constant $c_{j}>0$ such that $\frac{|u(k)|}{\alpha^{(r+1)}} \leq c_{j}$ for all $k \in\left[k_{1}, \infty\right)$, where $0 \leq j=k-\left[\frac{k}{\ell}\right] \ell<\ell$, we find that

$$
\begin{aligned}
\sum_{r=0}^{\infty}(r+1) \frac{|f((k+r \ell), u(k+r \ell))|}{\alpha^{(r+1)}} & \leq \sum_{r=0}^{\infty}\left(r+\frac{k}{\ell} \ell^{q}(k+r \ell)^{-q} \frac{|u(k+r \ell)|}{\alpha^{(r+1)}}\right) \\
& =\sum_{r=0}^{\infty}(k+r \ell)^{1-q} \ell^{q-1} \frac{|u(k+r \ell)|}{\alpha^{(r+1)}} \\
& \leq c_{j} \ell^{q-1} \sum_{r=0}^{\infty}(k+r \ell)^{1-q} \text { where } j=k-\left[\frac{k}{\ell}\right] \ell \\
& =c_{j} \ell^{q-1}\left[k^{1-q}+\sum_{r=1}^{\infty}(k+r \ell)^{1-q}\right] \\
& =c_{j} \ell^{q-1}\left[k^{1-q}+\ell^{1-q} \sum_{r=1}^{\infty}\left(\frac{k}{\ell}+r\right)^{1-q}\right] \\
& =c_{j} \ell^{q-1}\left[k^{1-q}+\ell^{1-q}\left[\frac{\left(\frac{k}{\ell}\right)^{2-q}}{2-q}+r\right]_{\frac{k}{\ell}}^{\infty}\right] \\
& =c_{j} \ell^{q-1}\left[k^{1-q}+\frac{k^{2-q}}{\ell(q-2)}\right]<\infty, \text { for all } k \in\left[k_{1}, \infty\right) .
\end{aligned}
$$

Therefore, this solution also has the representation (20). Now as in Theorem 3.7. we define
$\bar{v}(k)=\sum_{r=0}^{\infty}(r+1)(k+r \ell)^{-q} \frac{|u(k+r \ell)|}{\alpha^{(r+2)}}=\sum_{r=0}^{\infty} \ell^{-q}(r+1)\left(\frac{k}{\ell}+r\right)^{-q} \frac{|u(k+r \ell)|}{\alpha^{(r+2)}}$.
Since $q>\frac{5}{2}$ we find
$\bar{v}(k) \leq \ell^{-q} \sum_{r=0}^{\infty}(r+1)\left(\frac{k}{\ell}+r\right)^{-2} \frac{|u(k+r \ell)|}{\alpha^{(r+2)}}=\ell^{2-q} \sum_{r=0}^{\infty}(r+1)(k+r)^{-2} \frac{|u(k+r \ell)|}{\alpha^{(r+2)}}$
$\bar{v}(k) \leq \ell^{2-q} \frac{\ell^{-\frac{3}{2}}}{\sqrt{k-\ell}}\left\{\sum_{r=0}^{\infty} \frac{|u(k+r \ell)|^{2}}{\alpha^{(r+1)^{2}}}\right\}^{\frac{1}{2}}$.
Hence, we define
$\bar{w}(k)=\ell^{q-\frac{1}{2}} \sqrt{k-\ell} \bar{v}(k), \bar{z}(k)=\frac{1}{k-\ell} \Delta_{\alpha(\ell)} \bar{w}(k)$,
$\bar{\gamma}(k)=\frac{\ell^{q-\frac{1}{2}}}{k}\left(\ell^{q} \frac{\sqrt{k+\ell}}{2 k^{q}}+\frac{2 \alpha^{2}}{\sqrt{k}}(\sqrt{k+\ell}-\sqrt{k})(\sqrt{k-\ell}-\sqrt{k})\right.$
$\left.+(\alpha-1)^{2} \sqrt{k+\ell}+2(\alpha-1) \Delta_{\alpha(\ell)} \sqrt{k}+\Delta_{\alpha(\ell)}^{2} \sqrt{k-\ell}\right) \bar{v}(k)$,
$\bar{\beta}(k)=\frac{2(k-\ell)}{k \sqrt{k}} \Delta_{\alpha(\ell)} \sqrt{k}-\frac{\ell}{k}$,
and apply similar analysis to see that there exists a positive integer k_{1} such that $u(k)=0$ for all $k \in\left[k_{1}, \infty\right)$.

Example 3.10. For the generalized difference equation $\Delta_{\alpha(\ell)}^{2} u(k)=k^{2}(1-\alpha)^{2}+$ $2 \ell(1-\alpha)(2 k+\ell)+2 \ell^{2}(35)$ is not satisfied and hence $u(k) \neq 0$ for all $k \in(0, \infty)$. Infact $u(k)=k^{2}$ is a solution which belongs to $c_{0(\alpha(\ell))}$.

References

[1] R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 2000.
[2] Saber N. Elaydi, An Introduction to Difference Equations, Second Edition, Springer, New York, 1999.
[3] Xianyong Huang, Zhiting Xu, Nonoscillatory solutions of certain higher order neutral difference equations, Southeast Asian Bull. Math. 32 (3) (2008) 445-458.
[4] Walter G. Kelley, Allan C. Peterson, Difference Equations, An Introduction with Applications, Academic Press inc, New York, 1991.
[5] Maria Susai Manuel, Adem Kilicman, G. Britto Antony Xavier et al., On the solutions of second order generalized difference equations, Advances in Difference Equations 2012 (2012), 105.
[6] Maria Susai Manuel, Adem Kilicman, G. Britto Antony Xavier, R. Pugalarasu, D.S. Dilip, An application on the second order generalized difference equations, Advances in Difference Equations 2013 (2013), 35.
[7] Maria Susai Manuel, G. Britto Antony Xavier, E. Thandapani, Theory of generalized difference operator and its applications, Far East Journal of Mathematical Sciences 20 (2006) 163-171.
[8] Maria Susai Manuel, G. Britto Antony Xavier, E. Thandapani, Qualitative properties of solutions of certain class of difference equations, Far East Journal of Mathematical Sciences 23 (2006) 295-304.
[9] Maria Susai Manuel, G. Britto Antony Xavier, V.Chandrasekar, Generalized difference operator of the second kind and its application to number theory, International Journal of Pure and Applied Mathematics 47 (2008) 127-140.
[10] Maria Susai Manuel, G. Britto Antony Xavier, D.S. Dilip, V. Chandrasekar, General partial sums of reciprocals of products of consecutive terms of arithmetic progression, International Journal of Computational and Applied Mathematics 4 (2009) 259-272.
[11] Maria Susai Manuel, V.Chandrasekar, G.Britto Antony Xavier, Solutions and applications of certain class of α-difference equation, International Journal of Applied Mathematics 24 (2011) 943-954.
[12] Ronald E. Mickens, Difference Equations, Van Nostrand Reinhold Company, New York, 1990.
[13] Jerzy Popenda, Blazej Szmanda, On the oscillation of solutions of certain difference equations, Demonstratio Mathematica XVII (1984) 153-164.
[14] Jerzy Popenda, Oscillation and nonoscillation theorems for second-order difference equations, Journal of Mathematical Analysis and Applications 123 (1987) 34-38.
[15] Jerzy Popenda, E. Schmeidal, Some properties of solutions of difference equations, Fasciculi Mathematici 13 (1981) 89-98.
[16] R. Pugalarasu, M. Maria Susai Manuel, V. Chandrasekar, G.Britto Antony Xavier, Theory of generalized difference operator of n-th king and its applications in number theory (Part I), International Journal of Pure and Applied Mathematics 64 (2010) 103-120.
[17] R. Pugalarasu, M. Maria Susai Manuel, V. Chandrasekar, G. Britto Antony Xavier, Theory of generalized difference operator of n-th king and its applications in number theory (Part II), International Journal of Pure and Applied Mathematics 64 (2010) 121-132.
[18] Z.Q. Zhu, S.S. Cheng, Frequet oscillations in a neutral difference equation, Southeast Asian Bull. Math. 29 (3) (2005) 627-634.

