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Abstract. In this paper, we introduce the classes of strongly prime and one-sided
strongly prime submodules and use these classes to characterize Noetherian modules.
A finitely generated right R-module M is Noetherian if and only if every one-sided
strongly prime submodule is finitely generated. This result can be considered as a
generalization of Cohen’s Theorem in 1950.
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1. Introduction and Preliminaries

Throughout this paper, all rings are associative rings with identity and all mod-
ules are unitary right R- modules. Let R be a ring and M, a right R-module.

∗Corresponding author.
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Denote S = EndR(M), the endomorphism ring of the module M. A submod-
ule X of M is called a fully invariant submodule if f(X) ⊂ X, for any f ∈ S.
Especially, a right ideal of R is a fully invariant submodule of RR if it is a
two-sided ideal of R. The class of all fully invariant submodules of M is non-
empty and closed under intersections and sums. A right R-module M is called
a self-generator if it generates all its submodules. Following Sanh et al. [14], a
fully invariant proper submodule X of M is called a prime submodule of M if
for any ideal I of S = EndR(M), and any fully invariant submodule U of M, if
I(U) ⊂ X, then either I(M) ⊂ X or U ⊂ X. A fully invariant submodule X of
M is called a strongly prime submodule of M if for any ϕ ∈ S = EndR(M), any
m ∈ M, if ϕ(m) ∈ X, then either ϕ(M) ⊂ X or m ∈ X. The basic Theorem
2.1 in [14] shows that the class of prime submodules of a given module has some
properties similar to that of prime ideals in an associative ring. Following that
theorem, a fully invariant proper submodule X of M is prime if and only if for
any ϕ ∈ S, any m ∈ M, ϕSm ⊂ X implies that ϕ(M) ⊂ X or m ∈ X. Using
this property one can see that every strongly prime submodule is prime. It is
natural to ask a question that when a prime submodule is strongly prime and
we will answer it in section 2. For a commutative ring, the two notions of prime
and strongly prime ideals are coincided.

In this paper, we investigate the classes of strongly prime and one-sided
strongly prime submodules and use them to characterize Noetherian modules.

2. On Strongly Prime and One-Sided Strongly Prime Submodules

Definition 2.1. A proper fully invariant submodule U of M is called strongly
prime if for any f ∈ S, any m ∈M, f(m) ∈ U, then either f(M) ⊂ U or m ∈ U.
Especially, an ideal I of a ring R is strongly prime if for any a, b ∈ R, ab ∈ I,
then either a ∈ I or b ∈ I.

Definition 2.2. A proper submodule X of M is called one-sided strongly prime
if for any f ∈ S and m ∈ M such that f(X) ⊂ X and f(m) ∈ X, then either
f(M) ⊂ X or m ∈ X. In particular, a right ideal P  R is an one-sided strongly
prime right ideal if for any a, b ∈ R such that aP ⊂ P, ab ∈ P, then either a ∈ P
or b ∈ P.

The following proposition is clear by the remark above.

Proposition 2.3. Every strongly prime submodule is prime.

Proposition 2.4. Every maximal submodule is an one-sided strongly prime sub-
module. In particular, every maximal right ideal of a ring R is an one-sided
strongly prime right ideal.

Proof. Let U be a maximal submodule of M and ϕ ∈ S,m ∈ M such that
ϕ(U) ⊂ U and ϕ(m) ∈ U. Suppose that m 6∈ U. Then U +mR = M and hence
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ϕ(M) = ϕ(U) + ϕ(m)R ⊂ U, proving that U is an one-sided strongly prime
submodule.

Next, we will present some examples of strongly prime and one-sided strongly
prime submodules:

(1) Every prime ideal in a right duo ring is a strongly prime ideal. Indeed,
suppose that P is a prime ideal and ab ∈ P. Put C = {c ∈ R | ac ∈ P}. We can
verify that C is a right ideal. Since R is a right duo ring, C is a two-sided ideal.
Note that from ab ∈ P, we see that b ∈ C. Since C is a two-sided ideal of R, we
can see that Rb ⊂ C. This shows that aRb ⊂ P, proving that P is a strongly
prime ideal.

(2) Every prime submodule in a duo module is a strongly prime submodule.
In fact, suppose that U is a prime submodule andM, a duo module. Let ϕ(m) ∈
U for any ϕ ∈ S and m ∈ M. Then we have U ⊃ ϕ(m)R = ϕ(mR). Since M is
a duo module, we see that mR is a fully invariant submodule ofM. This implies
that S(mR) = mR. Hence ϕ(mR) = ϕS(mR) ⊂ U. By the primeness of U,
either ϕ(M) ⊂ U or m ∈ U, showing that U is a strongly prime submodule of
M.

(3) Let M3(k) be a matrix ring and k be a division ring. Let R be the
following subring of M3(k):

R :=





k k k
0 k 0
0 0 k



 .

Let P ⊂ R be the right ideal of R of the form P :=





0 0 0
0 k 0
0 0 k



 .

It is easy to verify that, if xP ⊂ P , then x12 = 0;x13 = 0;x23 = 0 and x32 = 0.
Suppose that xy ∈ P. Then x11y11 = 0;x11y12 = 0;x11y13 = 0;x21y11+x22y21 =
0;x21y13 + x22y23 = 0;x31y11 + x33y31 = 0 and x31y12 + x33y32 = 0. From
x12 = 0, x13 = 0, x23 = 0 and x32 = 0, we can see that either x ∈ P or y ∈ P,
proving that P is an one-sided strongly prime right ideal of R.

Definition 2.5. A right R-module M is called strongly prime if 0 is a strongly
prime submodule of M. A ring R is called a strongly prime ring if 0 is a strongly
prime ideal of R.

We have the following proposition.

Proposition 2.6. Let M be a quasi-projective right R-module. The following
statements are equivalent:

(1) X is a strongly prime submodule of M,

(2) M/X is a strongly prime module.

Proof. (1) ⇒ (2). Suppose that ϕ̄(m̄) = 0̄, where ϕ̄ ∈ End(M/X). This implies
that ϕ̄ν(m) = 0̄. Since M is a quasi-projective module, we can find f ∈ S such
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that νf = ϕ̄ν, where ν is the natural epimorphism from M to M̄ = M/X. By
(1), either f(M) ⊂ X or m ∈ X. If f(M) ⊂ X, then ϕ̄(M/X) = ϕ̄ν(M) = 0̄. If
m ∈ X, then we have ν(m) = m̄ = 0̄. Hence 0̄ is a strongly prime submodule of
M/X, showing that M/X is a strongly prime module.

(2) ⇒ (1). Let ϕ(m) ∈ X, for some ϕ ∈ S and m ∈ M. Then νϕ(m) = 0̄.
Since X is a fully invariant submodule of M , we can find an endomorphism
f ∈ S̄ = End(M/X) such that νϕ = fν. It follows that f(m̄) = 0̄, which is a
strongly prime submodule. Hence either f(M̄) = 0̄ or m̄ = 0̄. If f(M̄) = 0̄, then
fν(M) = 0̄. This shows that νϕ(M) = 0̄. Hence ϕ(M) ⊂ X. If m̄ = 0̄, then
m ∈ X. This proves that X is a strongly prime submodule.

Note that in the proof (2) ⇒ (1), we do not need the quasi-projectivity of
M. The following corollary is a direct consequence of proposition above.

Corollary 2.7. Let I be an ideal of the ring R. Then I is a strongly prime ideal
if and only if R/I is a strongly prime ring.

Lemma 2.8. Let M,N be right R-modules and f :M −→ N be an epimorphism.
Suppose that Kerf is a fully invariant submodule of M. Then,

(1) For any ϕ ∈ S, there exists φ ∈ S̄ = End(N) such that φf = fϕ.

(2) If V is a fully invariant submodule of N, then U = f−1(V ) is a fully
invariant submodule of M.

Proof. (1) Let y ∈ N. Then y = f(m) for some m ∈ M. Put ψ(y) = fϕ(m).
If y = f(m) = f(m′), then m − m′ ∈ Kerf. Since Kerf is a fully invariant
submodule of M,ϕ(m −m′) ∈ Kerf. Thus fϕ(m −m′) = 0, proving that ψ is
well-defined and moreover it is an R-homomorphism with fϕ = ψf.

(2) Suppose that V is a fully invariant submodule of N and U := f−1(V ).
Then by homomorphism theorem, for each ϕ ∈ S, there exists α ∈ S such that
fϕ = αf. Since Kerf is fully invariant, fϕ(U) = αf(U) = α(V ) ⊂ V. This
shows that ϕ(U) ⊂ f−1(V ) = U, i.e., U is a fully invariant submodule of M.

Lemma 2.9. Let M be a quasi-projective module and P, a strongly prime sub-
module of M . If A ⊂ P is a fully invariant submodule of M, then P/A is a
strongly prime submodule of M/A.

Proof. Let S̄ = EndR(M/A), ϕ ∈ S̄ and m + A ∈ M/A with ϕ(m + A) ⊂
P/A. By the quasi-projectivity of M , we can find an endomorphism f ∈ S
such that ϕν = νf where ν : M −→ M/A is the natural epimorphism. From
f(m) + A = νf(m) = ϕν(m) = ϕ(m + A) ∈ P/A, we see that f(m) ∈ P. By
hypothesis, either m ∈ P or f(M) ⊂ P. This implies that either m + A ∈ P/A
or ϕ(M/A) = (f(M) +A)/A ⊂ P/A, showing that P/A is strongly prime.

Proposition 2.10. Let M be a quasi-projective module and f : M −→ N be an
epimorphism such that Kerf is a fully invariant submodule of M. Then,
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(1) If Y is a strongly prime submodule of N, then X = f−1(Y ) is a strongly
prime submodule of M.

(2) If X is a strongly prime submodule of M, then f(X) is a strongly prime
submodule of N.

Proof. (1) By Lemma 2.8, X = f−1(Y ) is a fully invariant submodule of M.
It is easy to see that X is different M. Suppose that ϕ ∈ S and ϕ(m) ∈ X.
We will show that either ϕ(M) ⊂ X or m ∈ X. From Lemma 2.8 again, there
exists γ ∈ S

′

= End(N) such that γf = fϕ. From ϕ(m) ∈ X, we can see
that fϕ(m) ∈ f(X) = Y. Since γf = fϕ, we have γf(m) ∈ Y. By assumption,
we must have either f(m) ∈ Y or γ(N) ⊂ Y. If γ(N) ⊂ Y, then γf(M) ⊂ Y.
It follows that fϕ(M) ⊂ Y. Hence ϕ(M) ⊂ f−1(Y ) = X. If f(m) ∈ Y, then
m ∈ f−1(Y ) = X. Therefore X is a strongly prime submodule.

(2) Note that f(X) is a fully invariant submodule of N. Suppose that
f(X) = N = f(M). Then we have M ⊂ X + Kerf = X, a contra-
diction. This implies that f(X) is different N. Let γ(n) ∈ f(X), where
γ ∈ S′ = End(N). We will show that γ(N) ⊂ f(X) or n ∈ f(X). Since M
is a quasi-projective module, there is ϕ ∈ S such that γf = fϕ. From this,
we can see that γ(n) = γ(f(f−1)(n)) = fϕ(f−1(n)) ⊂ f(X). It follows that
ϕ(f−1(n)) ⊂ X +Kerf = X. If X is a strongly prime submodule, then we have
either ϕ(M) ⊂ X or f−1(n) ∈ X. If ϕ(M) ⊂ X, then fϕ(M) ⊂ f(X). Thus
γf(M) ⊂ f(X) and hence γ(N) ⊂ f(X). If f−1(n) ∈ X, then n ∈ f(X). This
shows that f(X) is a strongly prime submodule.

Recall from [17] that a submodule X of a right R-module M is said to have
”insertion factor property” (briefly, an IFP-submodule) if for any endomorphism
ϕ of M and any element m ∈ M, if ϕ(m) ∈ X, then ϕSm ⊂ X. A right ideal I
is an IFP- right ideal if it is an IFP submodule of RR, that is for any a, b ∈ R,
if ab ∈ I, then aRb ⊂ I. A right R-module M is called an IFP-module if 0 is an
IFP-submodule of M. A ring is IFP if 0 is an IFP-ideal. For more details, we
refer the readers to [17]. We give the relationship between a strongly prime and
prime submodule by the following theorem.

Theorem 2.11. Let M be an R-module. A submodule X of M is a strongly prime
submodule if and only if it is prime and IFP.

Proof. Suppose that X is a strongly prime submodule of M. For any ϕ ∈ S and
for any m ∈ M, if ϕS(m) ⊂ X, then ϕ(m) ∈ X. Since X is a strongly prime
submodule, we have either ϕ(M) ⊂ X or m ∈ X. This implies that X is a prime
submodule. We assume that ϕ(m) ∈ X. We need to prove that ϕS(m) ⊂ X.
Since ϕ(m) ∈ X, we can see that either ϕ(M) ⊂ X or m ∈ X. If m ∈ X, then
we have g(m) ∈ g(X) ⊂ X, for all g ∈ S. This means that S(m) ⊂ X. Therefore
ϕS(m) ⊂ X. Suppose that ϕ(M) ⊂ X. We can see that ϕS(M) = ϕ(M) ⊂ X.
This follows that ϕS(m) ⊂ X, as desired.

Suppose that X is a prime submodule and has IFP. If ϕ(m) ∈ X, then we
want to show that either ϕ(M) ⊂ X or m ∈ X. Since X has IFP, we have
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ϕS(m) ⊂ X. By the primeness of X, we can see that either ϕ(M) ⊂ X or
m ∈ X. This shows that X is a strongly prime submodule, as required.

Corollary 2.12. An ideal I of a ring R is a strongly prime ideal if and only if it
is prime and IFP.

Theorem 2.13. LetM be a right R-module. If X is a strongly prime submodule of
M , then IX = {f ∈ S|f(M) ⊂ X} is a strongly prime ideal of S. Conversely, if
M is a self-generator and IX is a strongly prime ideal of S, then X is a strongly
prime submodule.

Proof. Suppose that X is a strongly prime submodule. From Theorem 2.11, we
see that X is prime and IFP. By [14, Theorem 1.10], IX is a prime ideal of S.
It is well known from [17, Lemma 2] that if X has IFP, then IX is an IFP-right
ideal of S. Hence IX is a strongly prime ideal of S, by Corollary 2.12.

Conversely, suppose that M is a self-generator and IX is a strongly prime
ideal of S. Then IX is prime and IFP. By Theorem 1.10 in [14], we see that X
is prime. Similarly, from Lemma 2 in [17], X has IFP. Applying Theorem 2.11,
X is a strongly prime submodule, as desired.

Theorem 2.14. Let M be a right R-module. If X is an one-sided strongly prime
submodule of M, then IX is an one-sided strongly prime right ideal of S. Con-
versely, if M is a self-generator and IX is an one-sided strongly prime right ideal
of S, then X is an one-sided strongly prime submodule of M.

Proof. Suppose that X is an one-sided strongly prime submodule and ϕ, α ∈ S
such that ϕIX ⊂ IX and ϕα ∈ IX . Then ϕα(m) ∈ X for all m ∈ M. Since M
is a self-generator, we have X =

∑

f∈IX
f(M). Hence ϕ(X) ⊂ X. We assume

that ϕ 6∈ IX . Since X is an one-sided strongly prime submodule, we must have
α(m) ∈ X, for all m ∈ M. This shows that α ∈ IX . Hence IX is an one-sided
strongly prime right ideal of S.

Conversely, suppose that IX is an one-sided strongly prime right ideal of
S. Since M is a self-generator, we have IX(M) = X. Assume that ϕ(X) ⊂
X,ϕ(m) ∈ X and m 6∈ X. We wish to prove that ϕ(M) ⊂ X. From our as-
sumption, we can see that ϕIX ⊂ IX . Put mR =

∑

ψ∈A ψ(M), for some subset
A of S. Then X ⊃ ϕ(m)R = ϕ(mR) = ϕ(

∑

ψ∈A ψ(M)) =
∑

ψ∈A ϕψ(M). This
implies that ϕψ(M) ⊂ X for all ψ ∈ A. Since IX is an one-sided strongly prime
right ideal and m 6∈ X, we have ϕ ∈ IX . This shows that X is an one-sided
strongly prime submodule of M , as required.

3. Characterizations of Noetherian Modules

Theorem 3.1. LetM be a finitely generated right R-module. ThenM is a Noethe-
rian right R-module if and only if every one-sided strongly prime submodule of
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M is finitely generated.

Proof. One way is clear. Suppose on the contrarily that there is a submodule
A of M which is not finitely generated. By Zorn’s Lemma, the set F = {X ⊂
M |A ⊂ X and X is not finitely generated } has a maximal element, A0 says.
Since M is finitely generated, A0 is a proper submodule of M. We now prove
that A0 is one-sided strongly prime. Suppose that there are ϕ ∈ S,m ∈ M
such that ϕ(m) ∈ A0 with ϕ(A0) ⊂ A0 but ϕ(M) 6⊂ A0 and m 6∈ A0. Then
A0 + ϕ(M) contains properly A0, and hence it is finitely generated, that is
A0+ϕ(M) = x1R+x2R+ · · ·+xnR for some x1, x2, . . . , xn ∈M. Let K = {a ∈
M |ϕ(a) ∈ A0}. By assumption, A0 ⊂ K and m ∈ K. Since m 6∈ A0,K contains
properly A0 + mR and hence it is finitely generated. Since xi ∈ A0 + ϕ(M),
we can write xi = bi + ϕ(mi), where bi ∈ A0 and mi ∈ M. By definition,
ϕ(K) ⊂ A0. It follows that b1R + b2R + · · · + bnR ⊂ A0. We now prove that
A0 ⊂ b1R+b2R+· · ·+bnR+ϕ(K). For any w ∈ A0, we have w ∈ A0+ϕ(M).We
can write w =

∑n
i=1

xiri =
∑n

i=1
(bi + ϕ(mi))ri =

∑n
i=1

biri +
∑n

i=1
ϕ(miri) +

ϕ(
∑n

i=1
miri). Since w ∈ A0 and

∑n

i=1
biri ∈ A0, we have ϕ(

∑n

i=1
miri) ∈ A0

and hence
∑n

i=1
miri ∈ K. This implies that w ∈ b1R+ b2R+ · · ·+ bnR+ϕ(K).

Therefore b1R+b2R+· · ·+bnR+ϕ(K) ⊂ A0. This proves that A0 = b1R+b2R+
· · ·+ bnR+ϕ(K). Since K is finitely generated, we can see that ϕ(K) is finitely
generated and hence A0 is finitely generated, which is a contradiction. Therefore,
every submodule of M is finitely generated, proving that M is Noetherian.

Note that one-sided strongly prime right ideals are called completely prime
right ideals in [13]. The following Corollary can be considered as an immediately
consequence of our theorem.

Corollary 3.2. [13, Theorem 3.8] A ring R is right Noetherian if and only if
every one-sided strongly prime right ideal is finitely generated.

Recall that a right R- moduleM is called a duo module if every submodule of
M is a fully invariant submodule of M. A ring is called a right duo ring if every
right ideal is a two-sided ideal. It is easy to see that a fully invariant one-sided
strongly prime submodule of M is a strongly prime submodule of M. Thus, if
M is a duo module, then every one-sided strongly prime submodule ofM is also
a strongly prime submodule of M. This leads to another corollary.

Corollary 3.3. A finitely generated, duo right R- module is Noetherian if and
only if every strongly prime submodule of M is finitely generated.

From this corollary, putting M = RR, we get:

Corollary 3.4. [3] If R is a left (resp. right) duo ring and suppose that every
prime ideal in R is finitely generated, then R is left (resp. right) Noetherian.
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Note that the definition of strongly prime ideals coincides with the usual
definition of prime ideals in the commutative case. Therefore, the following
Corollary is a direct consequence of Theorem 3.1.

Corollary 3.5. [4, Theorem 2] A commutative ring R with identity is Noetherian
if and only if every prime ideal of R is finitely generated.
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