Southeast Asian Bulletin of Mathematics © SEAMS. 2017

A Note on Composition and Recursion

Oboifeng Dira Department of Mathematics, University of Botswana, Gaborone, Botswana P/bag 00704 Email: dira@mopipi.ub.bw

Received 28 April 2015 Accepted 28 October 2015

Communicated by Thomas Bier

AMS Mathematics Subject Classification(2000): 40C15, 11B25, 11B37

Abstract. Two results and some applications are presented concerning the COMPOSE operator of N Sloane applied to arithmetic progressions and to doubly recursive sequences.

Keywords: Recurrent integer sequence; Arithmetic progression; Composition of power series.

1. The Operator Compose and Power Series

In the OEIS N Sloane has introduced the operator COMPOSE for two sequences that performs the operation of composition of the two associated formal power series, see for example the references [1, 2].

In this note I investigate the self composition of an arithmetic progression with initial term 1 and step length d.

Also I study the self composition of a doubly recursive sequence $x_{n+1} = ax_n + bx_{n-1}$ with initial terms $x_0 = 0, x_1 = 1$.

It is proved that in both cases the resulting self composition is a sequence with a four fold recursion $x_{n+1} = c_0 x_n + c_1 x_{n-1} + c_2 x_{n-2} + c_3 x_{n-3}$ where the coefficients c_i , i = 0, 1, 2, 3 are explicit functions of the original step length d (or of a, b respectively).

The technique used is the composition of generating series and their associated formal power series.

.

Applications are the proof of an empirical observation of Harding in A229587 and the introduction of several new sequences not yet in the OEIS.

2. Arithmetic Progressions

The generating series for two arithmetic progression with initial term 1 in offset position one and with step lengths d, e respectively are given as

$$\begin{split} g(x) &= \frac{x + (e - 1)x^2}{(1 - x)^2} , f(x) = \frac{x + (d - 1)x^2}{(1 - x)^2}, \\ g(f(x)) \\ &= \frac{f(x) + (e - 1)f(x)^2}{(1 - f(x))^2} \\ &= \frac{(1 - x)^2(x + (d - 1)x^2) + (e - 1)x^2(1 + (d - 1)x)^2}{((1 - x)^2 - x - (d - 1)x^2)^2} \\ &= \frac{x + (d + e - 4)x^2 + (2de - 4d - 2e + 5)x^3 + (d - 1)(de - d - e + 2)x^4}{(1 - 3x - (d - 2)x^2)^2}. \end{split}$$

Note that in the denominator the number e does not enter.

In the particular case self composing g(x) given by

$$g(x) = \frac{x + (d-1)x^2}{(1-x)^2}$$

I get

$$g(g(x)) = \frac{g(x) + (d-1)g(x)^2}{(1-g(x))^2}$$

= $\frac{(1-x)^2(x+(d-1)x^2) + (d-1)x^2(1+(d-1)x)^2}{((1-x)^2 - x - (d-1)x^2)^2}$
= $\frac{x+(2d-4)x^2 + (2d^2 - 6d + 5)x^3 + (d-1)(d^2 - 2d + 2)x^4}{(1-3x - (d-2)x^2)^2}$

In the special case when d = e = 1 then we obtain the sequence A030267 and we can reconfirm its generating series as well as the characteristic polynomial $(1 - 3x + x^2)^2$ which leads to the recursive formula

$$a_{n+1} = 6a_n - 11a_{n-1} + 6a_{n-2} - a_{n-3}.$$

In the special case when d = e = 2 we obtain (except for the first term x) the as yet unknown generating series

$$\frac{x+x^3+2x^4}{(1-3x)^2}$$

of A229587 [3] and we can confirm the empirical relation $a_{n+1} = 6a_n - 9a_{n-1}$ for $n \ge 5$ given by Mr R H Harding.

For the cases $d = e \ge 3$ the resulting sequences seem to be new to OEIS, and we attach a short table of the first few cases.

d	g(x)	g(g(x))	OEIS
1	1, 2, 3, 4, 5, 6, 7	$1,\!4,\!14,\!46,\!145,\!444,\!1331,\!3926,\!11434$	A030267
2	$1, 3, 5, 78, 9, 11, \ldots$	1, 6, 28, 116, 444, 1620, 5724, 19764	A229587
3	$1, 4, 7, 10, 13, \dots$	$1,\!8,\!46,\!224,\!973,\!3986,\!15715,\!60326,\!227062$	D.N.E.
4	$1, 5, 9, 13, 17, 21, \ldots$	$1,\!10,\!68,\!376,\!1792,\!8016,\!34352,\!143024$	D.N.E.
5	$1, 6, 11, 16, 21, 26, \ldots$	1, 12, 94, 578, 2961, 14232, 65259, 290358,	D.N.E.
6	1,7,13,19,25,31,	1, 14, 124, 836, 4540, 23204, 112636, 530276,	D.N.E.
7	$1, 8, 15, 22, 29, 36, \ldots$	$1,\!16,\!158,\!1156,\!6589,\!35550,\!181259,\!896534$	D.N.E.

In the case $d \neq e$ there are many other examples which do appear in the OEIS. In the table below we have used the following notations:

We use D.N.E. to denote sequences that have not yet been published in the OEIS. We use the operator \triangleleft to denote left shift, i.e. $(1,3,5,7,9,...)^{\triangleleft} = (3,5,7,9,...)$. We use the juxtaposition follows: if have Axyz = (3,5,8,10,..) then we write 1,Axyz = (1,3,5,8,10,...).

For example in the case d = 1, e = 2 essentially the example A054444, 1, 5, 20, 71, 235, 744, 2285, 6865, 20284 is obtained, except for one shift which then has the generating function

$$\frac{x - x^2 + x^3}{(1 - 3x + x^2)^2}.$$

In the case $d \neq e$ there are many other examples which do appear in the OEIS.

7	$\mathcal{C}()$	1	$\langle \rangle$		ODIC
d	f(x)	e	g(x)	g(f(x))	OEIS
0	$1, 1, 1, 1, 1, 1, \ldots$	1	$1,2,3,4,5,\ldots$	$1, 3, 8, 20, 48, 112, \dots$	A001792
0	$1, 1, 1, 1, 1, 1, \dots$	2	$1, 3, 5, 7, 9, \dots$	$1,4,12,32,80,192,\ldots$	A001787
0	$1, 1, 1, 1, 1, 1, \dots$	3	1,4,7,10,	$1,5,16,44,112,272,\ldots$	A053220
0	$1, 1, 1, 1, 1, 1, \dots$	4	$1, 5, 9, 13, \ldots$	$1, 6, 20, 56, 144, 352, \dots$	A014480
0	$1, 1, 1, 1, 1, \dots$	-1	1,0,-1,-2,	$1, 1, 0, -4, -16, -48, -128, \dots$	1, A159964
0	$1, 1, 1, 1, 1, 1, \ldots$	-2	1,-1,-3,-5,	$1, 0, -4, -16, -48, -128, \dots$	A159964
0	$1, 1, 1, 1, 1, 1, \ldots$	-3	1,-2,-5,-8,	$1, -1, -8, -28, -80, -208, \dots$	A130129 $^{\sigma}$
1	1, 2, 3, 4, 5	0	$1, 1, 1, 1, 1, \dots$	$1, 3, 8, 21, 55, 144, \ldots$	A001906
1	$1, 2, 3, 4, 5, \ldots$	2	$1, 3, 5, 7, 9, \dots$	$1,5,20,71,235,744,\ldots$	A054444
2	$1, 3, 5, 7, 9, \ldots$	0	$1, 1, 1, 1, 1, \dots$	$1,\!4,\!12,\!36,\!108,\!\ldots$	A003946
3	$1, 4, 7, 10, 13, \ldots$	0	$1, 1, 1, 1, 1, \dots$	$1, 5, 16, 53, 175, 578, \ldots$	A108300
4	$1, 5, 9, 13, 17, \dots$	0	$1, 1, 1, 1, 1, \dots$	$1, 6, 20, 72, 256, 912, \ldots$	A189604
-1	1,0,-1,-2,-3,	0	1,1,1,1,	1,1,0,-3,-9,-18,-27,-27,0	A057681 [⊲]

For the special case d = 2 if a_n denotes the sequence associated to the composition $g \circ f$ then an explicit formula for a_n where $n \ge 3$ has been found (and included for e = 2 in A229587) as follows:

$$a_n = 4 \cdot 3^{n-4} \cdot [4e \cdot n - 3(2e - 3)]$$

3. Doubly Recursive Sequence With Offset 0, 1

Any sequence $x_{n+1} = ax_n + bx_{n-1}$ and $x_0 = 0, x_1 = 1$ has the generating series

$$g(x) = \frac{x}{1 - ax - bx^2} \; .$$

By self composing g(x), we have

$$g(g(x)) = \frac{g}{1 - ag - bg^2}$$

= $\frac{x(1 - ax - bx^2)}{(1 - ax - bx^2)^2 - ax(1 - ax - bx^2) - bx^2}$
= $\frac{x - ax^2 - bx^3}{1 - 3ax + (2a^2 - 3b)x^2 + 3abx^3 + b^2x^4}$.

For example for the Fibonacci numbers A000045 we obtain the composition sequence

$$1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, \dots$$

which does not seem to be recorded in OEIS.

In general the resulting composed sequence y_n then will have a four fold recursion $y_{n+1} = 3ay_n + (3b - 2a^2)y_{n-1} - 3aby_{n-2} - b^2y_{n-3}$, at least for $n \ge 3$.

For the cases $a, b \ge 1$ the resulting composition sequences seem to be all new to OEIS, and we attach a short table of the first few cases.

	1		ODIC		ODIC
a	b	g(x)	OEIS	g(g(x))	OEIS
1	2	$1, 1, 3, 5, 11, 21, 43, \ldots$	A001045	$1, 2, 8, 26, 94, 320, \ldots$	D.N.E.
2	1	$1, 1, 3, 7, 17, 41, \ldots$	A001333	1,2,8,30,118,470,	D.N.E.
2	2	$1, 1, 4, 10, 28, 76, \ldots$	A026150	1,2,10,41,184,824,	D.N.E.
2	3	$1, 1, 5, 13, 41, 121, \ldots$	A046717	$1, 2, 12, 52, 260, \dots$	D.N.E.
3	1	$1, 1, 4, 13, 43, 142, \ldots$	A003688	1,2,10,47,232,	D.N.E.
3	-1	$1, 1, 2, 5, 13, 34, 89, \dots$	A001519	$1, 2, 6, 21, 78, 299, \ldots$	D.N.E.
3	3	$1, 1, 6, 21, 81, 306, \ldots$	A108306	$1, 2, 14, 73, 426, \ldots$	D.N.E.
4	1	$1, 1, 5, 21, 89, 377, \ldots$	A015448	1,2,12,68,404,	D.N.E.
4	2	$1, 1, 6, 26, 116, 516, \ldots$	A164549	1,2,14,83,526,	D.N.E.
4	3	$1, 1, 7, 31, 145, 673, \ldots$	A086901	$1, 2, 16, 98, 658, \ldots$	D.N.E.
4	4	$1, 8, 36, 176, 848, \ldots$	A164545	$1, 2, 18, 113, 800, \dots$	D.N.E.

A Note on Composition and Recursion

4. Conclusion

In the previous sections the following result was shown.

Theorem 4.1.

(a) The self composition of an arithmetic progression starting with offset 1 and step length d is a fourfold recursion sequence a_n that satisfies

$$a_{n+1} = 6a_n + (2d - 13)a_{n-1} - (6d - 12)a_{n-2} - (d - 2)a_{n-3}$$

and has generating function

$$\frac{x + (2d - 4)x^2 + (2d^2 - 6d + 5)x^3 + (d - 1)(d^2 - 2d + 2)x^4}{(1 - 3x - (d - 2)x^2)^2}$$

In case d = 2 this reduces to the two fold recursion $a_{n+1} = 6a_n - 9a_{n-1}$ and the explicit formula $a_n = 4 \cdot 3^{n-4}(8n-3)$ and essentially (except for the first term) reproduces the sequence A229587.

(b) The self composition of a doubly recursive sequence with offset 0,1 and recursion $x_{n+1} = ax_n + bx_{n-1}$ is a fourfold recursion sequence y_n that satisfies

$$y_{n+1} = 3ay_n + (3b - 2a^2)y_{n-1} - 3aby_{n-2} - b^2y_{n-3} ,$$

and it has generating function

$$\frac{x - ax^2 - bx^3}{1 - 3ax + (2a^2 - 3b)x^2 + 3abx^3 + b^2x^4}$$

.

References

- [1] T. Bier, Some inversion formulas for functions and power series, Southeast Asian Bull. Math. 4 (1997)329-336
- [2] S. Plouffe, A method for obtaining the algebraic generating function from a series, FRSAC, Formal Power Series and Algebraic Combinatorics, Florence, 1993 and also in arXiv site: http://arxiv.org/abs/0912.0072 vl.
- [3] OEIS (The Encyclopeadia of Integer Sequences), Founded by N.J. Sloane, entry A 229587, entry by Ron. H. Hardin.