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Abstract. A right ideal I of a ring R is an IFP right ideal if for any a, b ∈ R, if

ab ∈ I, then aRb ⊂ I. A ring R is called an IFP ring if 0 is an IFP ideal of R. In this

paper, we will introduce the notion of IFP modules as a generalization of IFP rings.

Many good properties of IFP rings can be transferred to IFP modules. We also give a

generalization of Anderson’s Theorem.
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1. Introduction

Prime ideals play an interesting role in studying the structure of rings. Many
authors want to transfer this notion to modules. However, with these notions
they do not get some properties similar to that of prime ideals in rings. Recently,
we have successfully introduced a new notion of prime submodules for a given
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module. Many good properties of prime ideals can be transferred to prime
submodules.

The main purpose of this paper is to investigate the class of IFP submodules
for a given module and we use it to generalize the Anderson’s Theorem, following
that, if R is a commutative ring and if every minimal prime ideal over an ideal
I of R is finitely generated, then there are only a finitely many minimal prime
ideals over I. In 2008, C. Huh, N.K. Kim and Y. Lee [7], generalized Anderson’s
Theorem for non-commutative rings. They proved that this result is also true
for homomorphically IFP-rings. In this paper, we introduce the notion of IFP-
modules and fully IFP-modules and prove that ifM is a finitely generated quasi-
projective and fully IFP right R-module which is a self-generator and if every
minimal prime submodules over a fully invariant submodule U of M is finitely
M -generated, then there are only finitely many minimal prime submodules over
U.

Throughout this paper, all rings are associative ring with identity 1 6= 0 and
all modules are unitary right R-modules. We write MR (resp., RM) to indicate
that M is a right (resp., left) R-module and S = End(MR), its endomorphism
ring. A proper submodule X of M is called a fully invariant submodule of M
if for any f ∈ S, we have f(X) ⊂ X. Following [7], a fully invariant proper
submodule X of M is called prime submodule of M if for any ideal I of S and
any fully invariant submodule U of M , if I(U) ⊂ X, then either I(M) ⊂ X
or U ⊂ X. The fully invariant submodule X of M is called a strongly prime

submodule of M if for any ϕ ∈ S and m ∈M, ϕ(m) ∈ X imples that ϕ(M) ⊂ X
or m ∈ X. Clearly, every strongly prime submodule of M is prime.

A prime submodule X of M is called a minimal prime submodule if there
are no prime submodules of M properly contained in X. A right R-module M
is called a self-generator if it generates all its submodules. General background
can be found in [2, 3, 10, 4, 5].

2. IFP Modules and Their Endomorphism Rings

Definition 2.1. A submodule of a right R-module M is said to have ”insertion

factor property” (briefly, an IFP-submodule) if for any endomorphism ϕ of M
and any element m ∈ M, if ϕ(m) ∈ X, then ϕSm ∈ X. A right ideal I is an
IFP-right ideal if it is an IFP-submodule of RR, that is for any a, b ∈ R, if
ab ∈ I, then aRb ⊂ I. A right R-module M is called an IFP-module if 0 is an
IFP-submodule of M. A ring R is IFP if 0 is an IFP-ideal.

By definition, we can see that any intersection of a family of IFP-submodules
is again IFP. Clearly, every ideal in a commutative ring is IFP. For a non-
commutative ring, we will show that an ideal I of the ring R is strongly prime
if and only if it is prime and IFP.

We start with the following proposition.
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Proposition 2.2. Let X be a submodule of a right R-module M. If X is an-IFP

submodule and M is quasi-projective,then M/X is an IFP-module. Conversely,

if M/X is IFP and X is fully invariant, then X is an IFP-submodule of M.

Proof. Suppose that X is an IFP-submodule of M and ϕ(m̄) = 0, where ϕ̄ ∈
S̄ = End(M/X) and m̄ ∈M/X. By the quasi-projectivity ofM, there is a ϕ ∈ S
such that νϕ = ϕν, where ν :M →M/X is the natural epimorphism. It follows
that ϕ(m) ∈ X. Let ξ be any endomorphism of M/X. Then as above, there is
ξ ∈ S such that ξν = νξ. By assumption, ϕξ(m) ∈ X. This leads to ϕ̄ξ̄(m̄) = 0,
proving that M/X is an IFP module.

Suppose that X is a fully invariant submodule of M, with M/X is IFP. Let
ϕ(m) ∈ X, where ϕ ∈ S and m ∈ M. Since X is fully invariant, there is ϕ̄ ∈ S̄
such that ϕ̄ν = νϕ. It follows that ϕ̄(m̄) = 0. By assumption, we get ϕ̄ξ̄(m̄) = 0,
for any ξ ∈ S, where ξ̄ν = νξ. This leads to the fact that ϕS(m) ⊂ X, proving
our proposition.

Lemma 2.3. If X is an IFP submodule of M, then IX is an IFP right ideal of

S. The converse is true if M is a self-generator.

Proof. Let ϕψ ∈ IX . Then, ϕ(ψ(m)) ∈ X for any m ∈ M. By hypothesis,
ϕξ(ψ(m)) ∈ X, for any ξ ∈ S and any m ∈ M. It follows that ϕSψ ⊂ IX ,
showing that IX is IFP.

Conversely, let ϕ(m) ∈ X, where ϕ ∈ S, and m ∈ M. Let U = ϕ−1(X).
Since M is a self generator, we get U =

∑
i∈A ψi(M), for some subset A of

S. Hence m =
∑n

k=1 ψik(mik), where ik ∈ A and mik ∈ M. Thus ϕ(m) =∑n
k=1 ϕψik(mik). For any ξ ∈ S, we get ϕξψik ∈ IX for k = 1, . . . , n, by assump-

tion. It follows that ϕS(m) ⊂ X, proving our lemma.

Proposition 2.4. Let X be a fully invariant proper submodule of a right R-module

M. Then X is a strongly prime submodule of M if and only if it is prime and

IFP.

Proof. Suppose that X is a strongly prime submodule of M. For any ϕ ∈ S and
for any m ∈ M, if ϕS(m) ⊂ X, then ϕ(m) ∈ X. Since X is a strongly prime
submodule, we have either ϕ(M) ⊂ X or m ∈ X. This implies that X is a prime
submodule. We assume that ϕ(m) ∈ X. We need to prove that ϕS(m) ⊂ X.
Since ϕ(m) ∈ X, we can see that either ϕ(M) ⊂ X or m ∈ X. If m ∈ X, then
we have g(m) ∈ g(X) ⊂ X, for all g ∈ S. This means that S(m) ⊂ X. Therefore
ϕS(m) ⊂ X. Suppose that ϕ(M) ⊂ X. We can see that ϕS(M) = ϕ(M) ⊂ X.
This follows that ϕS(m) ⊂ X, as desired.

Suppose that X is a prime submodule and has IFP. If ϕ(m) ∈ X, then we
want to show that either ϕ(M) ⊂ X or m ∈ X. Since X has IFP, we have
ϕS(m) ⊂ X. By the primeness of X, we can see that either ϕ(M) ⊂ X or
m ∈ X. This shows that X is a strongly prime submodule, as required.
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We now study the relationship between an IFP module and its endomorphism
ring.

Theorem 2.5. Let M be a right R-module and S its endomorphism ring. If

M is an IFP-module, then S is an IFP-ring. The converse is true if M is a

self-generator.

Proof. Let ϕψ = 0 ∈ S. Then ϕ(ψ(m)) = 0 for all m ∈ M. If M is IFP, then
for any ξ ∈ S, we have ϕξ(ψ(m)) = 0 for all m ∈ M. It follows that ϕSψ = 0,
showing that S is an IFP-ring.

Conversely, since I0 = {f ∈ S|f(M) = 0 ⊂ M} = 0, is an IFP-ideal, it
follows that 0 is an IFP-submodule of M by Lemma 2.3, proving our theorem.

The following theorem gives some characterizations of IFP modules.

Theorem 2.6. Let M be a right R-module and S = End(M). The following

conditions are equivalent:

(i) M is an IFP-module;

(ii) For any m ∈M, lS(m) is an ideal of S;

(iii) For any ϕ ∈ S, ker(ϕ) is a fully invariant submodule of M ;

If M is quasi-projective, then the above conditions are equivalent to:

(iv) For any ϕ ∈ S, ker(ϕ) is an IFP-ideal of S;

(v) M/ ker(I) is an IFP-module for any subset I of S;

If M is a self-generator, then the above conditions (i), (ii) and (iii) are equiv-

alent to:

(vi) For any m ∈M, lS(m) is an IFP-ideal of S;

(vii) S/lS(A) is an IFP-ring for any subset A ⊂M.

Proof. (i)⇒(ii). Let ϕ ∈ lS(m) and ξ ∈ S, where m ∈ M. The ϕ(m) = 0. By
(i), we have ϕξ(m) = 0. It follows that ϕξ ∈ lS(m), proving that lS(m) is a
two-sided ideal of S.

(ii)⇒(i). Let ϕ(m) = 0 where ϕ ∈ S and m ∈M. Since lS(m) is an ideal, for
any ξ ∈ S, we have ϕξ ∈ lS(m). This shows that M is an IFP-module.

(i)⇒(iii). Let ϕ ∈ S. For any m ∈ ker(ϕ), we get ϕ(m) = 0. By assumption,
ϕξ(m) = 0 for all ξ ∈ S. This shows that ξ(ker(ϕ)) ⊂ ker(ϕ), i.e., ker(ϕ) is a
fully invariant submodule of M.

(iii)⇒(i). With ϕ(m) = 0 we have m ∈ ker(ϕ), which is fully invariant in M.
Thus for any ξ ∈ S, ξ(m) ∈ ker(ϕ), and hence ϕξ(m) = 0, proving that M is an
IFP-module.

(i)⇒(iv). Let ψ ∈ S, m ∈ M such that ψ(m) ∈ ker(ϕ). Then (ϕψ)(m) = 0.
By (i), we get that ϕψξ(m) = 0 for all ξ ∈ S. This shows that ψS(m) ⊂ ker(ϕ),
showing that ker(ϕ) is an IFP-submodule of M.
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(iv)⇒(v). We note that ker(I) =
⋂

f∈I ker(f), and each ker(f) is an IFP-
submodule of M, and hence ker(I) is an IFP-submodule of M. SinceM is quasi-
projective, by applying Proposition 2.2, we can see that M/ ker(I) is an IFP-
module.

(v)⇒(i). This part is clear by taking I = {1M}, 1M is the identity map of
M.

(i)⇒(vi). Let m ∈ M and ϕψ ∈ lS(m), where ϕ, ψ ∈ S. Then ϕ(ψ(m)) = 0.
By assumption, ϕSψ(m) = 0. It follows that ϕSψ ⊂ lS(m), as required.

(vi)⇒(vii). Since lS(A) =
⋂

a∈A lS(a) for any subset A of M, we see that
lS(A) is an IFP ideal of S, and therefore S/lS(A) is an IFP-ring.

(vii)⇒(i). Taking A = M, then it is clear that S is an IFP-ring. Since M is
a self-generator, by applying Theorem 2.5 we can see that M is an IFP-module.

The following Corollary is a direct consequence of the above theorem.

Corollary 2.7. For a ring R, the following conditions are equivalent:

(i) R is an IFP-ring;

(ii) For any a ∈ R, lR(a) is an ideal of R;

(iii) For any a ∈ R, rR(a) is an ideal of R;

(iv) For any a ∈ R, lR(a) is an IFP-ideal of R;

(v) For any a ∈ R, rR(a) is an ideal of R;

(vi) For any a ∈ R, R/rR(a) is an IFP-ring;

(vii) For any a ∈ R, R/lR(a) is an IFP ring.

3. A Generalization of Anderson’s Theorem

In 1994, D.D. Anderson proved that if R be a commutative ring and I an ideal
of R, and all the prime ideals minimal over I are finitely generated, then there
are only finitely many prime ideals minimal over I. In [6], C. Huh, N.K. Kim
and Y. Lee extended Anderson’s theorem for noncommutative rings, following
that, for a homomorphically IFP ring R and a proper ideal I of R, if every
prime ideal minimal over I is finitely generated, then there are only finitely
many prime ideals minimal over I. In this section, we introduce the notion of
fully IFP modules and give a generalization of Anderson’s Theorem.

Definition 3.1. A module M is called a fully IFP module if M/U is IFP for

every proper fully invariant submodule U of M. A ring is called a fully IFP ring

if R/I is IFP for every proper ideal I of R.

Note that fully IFP rings is called homomorphically IFP rings in [6]. Next,
we study the relationship between a fully IFP module and its endomorphism
ring. By the definition, if M is fully IFP, then it is an IFP-module.
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Theorem 3.2. Let M be a finitely quasi-projective right R-module which is a

self-generator. Then, M is a fully IFP if and only if S is a fully IFP ring.

Proof. Suppose that M is a fully IFP module. Let J be a proper ideal of S. It
follows from [10, Theorem 18.4] that J(M) is a proper fully invariant submodule
ofM. By assumption,M/J(M) is IFP. It follows from Proposition 2.2 that J(M)
is an IFP-submodule ofM. By Lemma 2.3, IJ(M) is an IFP right ideal of S. Hence
S/J is an IFP, proving that S is a fully IFP ring.

Conversely, suppose that S is a fully IFP ring. Let U be a proper fully
invariant submodule ofM. Then clearly IU is a proper ideal of S. By assumption,
we have S/IU is an IFP. Since M is a self-generator, it would imply that M/U
is an IFP. Thus M is a fully IFP module. The proof of our theorem is now
complete.

Proposition 3.3. [8, Proposition 2.1] Let M be a right R-module which is a

self-generator. Then,

(i) If X is a minimal prime submodule of M, then IX is a minimal prime

ideal of S.

(ii) If P is a minimal prime ideal of S, then X := P (M) is a minimal prime

submodule of M and IX = P.

For following theorem, we refer to Huh et al. [6].

Theorem 3.4. [6, Theorem 3] Let R be a homomorphically IFP ring and I a

proper ideal of R. If every minimal prime ideal over I is finitely generated then

there are only finitely many minimal prime ideals over I.

Motivating this result we can prove the following theorem as a generalization
of Anderson’s theorem.

Theorem 3.5. Let M be a fully IFP which is a self-generator and U, a proper

fully invariant of M. Suppose that every minimal prime submodule over U is

finitely generated, then there are only finitely many minimal prime submodules

over U.

Proof. Since M is a fully IFP module, by Theorem 3.2, S is a fully IFP ring.
By [10, Theorem 18.4], IU is a proper ideal of S. By Theorem 3.4, there are only
finitely many minimal prime ideals over IU . Applying Proposition 3.3, we can
see that there are only finitely many minimal prime submodules over U. This
completes our proof.

The following Corollary is a direct consequence of the above theorem.

Corollary 3.6. Let M be a homomorphically IFP module which is a self-
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generator. If every minimal prime submodule of M is finitely generated, then

there are only finitely many minimal prime submodules of M.
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