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Abstract. In this paper, we study the asymptotic behavior and boundedness of the
solutions of the difference equation

yn+1 =
α+ βλ−yn

γ + yn−1
, n = 0, 1, 2, . . . (1)

where λ > 1 and α, β, γ are positive real numbers, initial conditions y
−1, y0 are arbitrary

non-negative numbers.
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1. Introduction

Difference equation containing exponential terms have many applications in bi-
ology. Evolution of a perennial grass depends on the biomass, the litter mass
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and the total soil nitrogen was described by the difference equations

Bt+1 = cN
ea−bLt

1 + ea−bLt
, Lt+1 =

L2
t

Lt + d
+ ckN

ea−bLt

1 + ea−bLt
(2)

where B is the living biomass, L the litter mass, N the total soil nitrogen, t the
time and constants a, b, c, d > 0 and 0 < k < 1. Oscillatory and chaotic nature
of (2) was discussed in [17].

Global stability, boundedness nature and periodic character of the positive
solution of the difference equation

xn+1 = α+ βxn−1e
−xn , n = 0, 1, 2, . . .

was investigated by El-Metwally et all [6], where α > 0 and β > 0 are the
immigration rate and population growth respectively and the initial conditions
x−1 and x0 are arbitrary nonnegative numbers.

Boundedness and global asymptotic behavior of the solution of the difference
equations

xn+1 =
α+ βe−xn

γ + xn−1
, n = 0, 1, 2, . . . (3)

and

xn+1 =
αe−(nxn+(n−k)xn−k)

β + xn + (n− k)xn−k
, n = 0, 1, 2, . . .

were studied by Ozturk et all [14, 15], where α and β are positive numbers
k ∈ {1, 2, 3, . . .} and the x−k, x−(k−1), . . . , x−1, x0 are arbitrary numbers.

Boundedness and the persistence of the positive solutions, the existence, the
attractivity and the global asymptotic stability of the unique positive equilibrium
and the existence of periodic solutions concerning the biological model

xn+1 =
ax2n
xn + b

+ c
ek−dxn

1 + ek−dxn

was established in [16], where 0 < a < 1, b, c, d, k are positive constants and x0
is a real number.

Stability analysis of a nonlinear difference equation

yn+1 =
αe−yn + βe−yn−1

γ + αyn + βyn−1
, n = 0, 1, 2, . . .

was established in [3], where α, β and initial conditions are arbitrary positive
numbers.

Properties of solutions of various types of second and third order rational
difference equation was discussed in [11, 4]. Stability properties and conditions
for boundedness of nonlinear difference equations xn+1 = f(xn)g(xn−k) was
studied in [13] and asymptotic properties of solutions of the difference equation

yn =
f(yn−1,...,yn−k)
g(yn−1,...,yn−k)

, n = 0, 1, 2, . . . was studied in [2].
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Motivated by above studies, we generalize (3) and investigate the global at-
tractivity and boundedness of the solutions of the difference equations (1) for
λ > 1.

2. Preliminaries

Definition 2.1. [11] Let I ∈ R and let f : I × I → I be a continuous function.
Consider the difference equation

yn+1 = f(yn, yn−1), n = 0, 1, 2, · · · (4)

for the initial conditions y0, y−1 ∈ I. We say that ȳ is an equilibrium of (1) if
ȳ = f(ȳ, ȳ).

Definition 2.2. [11, Definition 1.1.1]

(i) The equilibrium ȳ of (1) is called locally stable if for every ε > 0, there
exists δ > 0 such that y−1, y0 ∈ I with |y0 − ȳ| + |y−1 − ȳ| < δ, then
|yn − ȳ| < ε for all n ≥ −1.

(ii) The equilibrium ȳ of (1) is called locally asymptotically stable if it is locally
stable and if there exists γ > 0 such that y−1, y0 ∈ I with |y0 − ȳ|+ |y−1 −
ȳ| < γ, then limn→∞ yn = ȳ.

(iii) The equilibrium ȳ of equilibrium (1) is called a global attractor if for every
y−1, y0 ∈ I we have limn→∞ yn = ȳ.

(iv) The equilibrium ȳ of (1) is called globally asymptotically stable if it is locally
stable and a global attractor.

(v) The equilibrium ȳ of equilibrium (1) is called unstable if it is not stable.

Definition 2.3. [11] Let s = ∂f
∂u

(ȳ, ȳ) and t = ∂f
∂v

(ȳ, ȳ) denote the partial deriva-
tives of f(u, v) evaluated at an equilibrium ȳ of (1). Then the equation

yn+1 = syn + tyn−1, n = 0, 1, 2, · · · (5)

is called the linearized equation associated with (1) about the equilibrium point
ȳ.

The characteristic equation of (5) is the equation

µ2 − sµ− t = 0 (6)

with characteristic roots µ± = s±
√
s2+4t
2 .

Definition 2.4. [11, Definition 1.1.2] The sequence {yn} is said to be periodic
with period p if yn+p = yn for n = 0, 1, 2, ..
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Theorem 2.5. [5, Theorem 1] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, 2, · · · (7)

where k ∈ {1, 2, 3, · · · }. Let I = [a, b] be some interval of real numbers and
assume that f : [a, b] × [a, b] → [a, b] is a continuous function satisfying the
following properties:

(i) f(u, v) is non-increasing in each argument.

(ii) If (m,M) ∈ [a, b] × [a, b] is a solution of the system m = f(M,M) and
M = f(m,m) then m =M .

Then (7) has a unique positive equilibrium ȳ and every solution of (7) con-
verges to ȳ.

Theorem 2.6. [11, Theorem 1.1.1] (Linearized stability)

(i) If both roots of quadratic equation (6) lie in unit disk |λ| < 1 then equilib-
rium ȳ of (1) is locally asymptotically stable.

(ii) If at least one of the roots of (6) has absolute value greater than one, then
the equilibrium ȳ of (1) is unstable.

(iii) A necessary and sufficient condition for both roots of (6) to lie in the open
unit disk |λ| < 1, is

|s| < 1− t < 2. (8)

In this case the locally asymptotically stable equilibrium point ȳ is also
called a sink.

(iv) A necessary and sufficient condition for both roots of (6) to have absolute
value greater than one is

|t| > 1 and |s| < |1− t|. (9)

In this case ȳ is called a repeller.

(v) A necessary and sufficient condition for one root of (6) to have absolute
value greater than one and for the other to have absolute value less than
one is

s2 + 4t > 0 and |s| > |1− t|. (10)

In this case unstable equilibrium point ȳ is called a saddle point.

3. Main Results

In this section, we discuss the stability of the solutions of equation (1). We show
that the positive equilibrium point of equation (1) is a global attractor with a
basin that depend on the conditions posed on the coefficients and on the variable
n.



Global Stability, Periodicity and Boundedness Behavior 319

The equilibrium points of equation (1) are the solutions of the equation

ȳ =
α+ β λ−ȳ

γ + ȳ
. (11)

Set f(y) = α+βλ−y

γ+y − y.

When y = 0, f(0) = α+β
λ

> 0 and limy→∞(α+βλ
−y

γ+y − y) = −∞.

Now f ′(y) = −[(γ+y)βλ−y lnλ+α+βλ−y ]
(γ+y)2 − 1 < 0. Therefore the equilibrium

point is unique.

Theorem 3.1. The equilibrium point ȳ is locally asymptotically stable if

β <λ

(2−δ)γ+γ

√

(δ−2)2+4δ( αδ
γ2 +1)

2δ

×





γ2(2− δ) + γ2
√

(δ − 2)2 + 4(αδ
γ2 + 1)

δ2
+
γ2

δ





(12)

and is unstable if

β >λ

(2−δ)γ+γ

√

(δ−2)2+4δ( αδ
γ2 +1)

2δ

×





γ2(2− δ) + γ2
√

(δ − 2)2 + 4(αδ
γ2 + 1)

δ2
+
γ2

δ





(13)

where δ = γ lnλ.

Proof. The linearized equation of (1) is xn+1 = sxn + txn−1, n = 0, 1, 2, . . . ,

where s = ∂f
∂u

(ȳ, ȳ), t = ∂f
∂v

(ȳ, ȳ). We have f(u, v) = α+βλ−u

γ+v , s = fu(ȳ, ȳ) =

−βλ−ȳ lnλ
γ+ȳ , t = fv(ȳ, ȳ) = − (α+βλ−̄y)

(γ+ȳ)2 = −ȳ
γ+ȳ . Therefore the linearized equation

is

xn+1 +
βγ−ȳ lnλ

γ + ȳ
xn +

ȳ

γ + ȳ
xn−1 = 0.

Suppose that the equilibrium point is locally asymptotically stable.

From (8), we get

βλ−ȳ lnλ

γ + ȳ
< 1 +

ȳ

γ + ȳ
< 2

⇒βλ−ȳ lnλ < 2ȳ + γ.

(14)

We have

ȳ(γ + ȳ) = α+ βλ−ȳ

⇒γȳ + ȳ2 − α = βλ−ȳ.
(15)
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Substituting (15) in (14), we get

ȳ2 +

(

γ −
2

lnλ

)

ȳ −
(

α+
γ

lnλ

)

< 0. (16)

(16) is in quadratic form and has two real equilibrium points. Solving it, we get

ȳ =

−(δ − 2)±

√

(δ − 2)2 + 4δ
(

α
γ
lnλ+ 1

)

2 lnλ
.

We choose the positive solution, substituting in (14) we get

β < λ
(2−δ)γ+γ

√

(δ−2)2+4δ(α
γ

lnλ+1)
2δ

×









γ2(2− δ) + γ2
√

(δ − 2)2 + 4δ
(

α
γ
lnλ+ 1

)

δ2
+
γ2

δ









⇒ β < λ

(2−δ)γ+γ

√

(δ−2)2+4δ( αδ
γ2 +1)

2δ





γ2(2− δ) + γ2
√

(δ − 2)2 + 4(αδ
γ2 + 1)

δ2
+
γ2

δ



 .

This completes proof of first part.

Suppose that the equilibrium point is unstable. By (10)

1

(γ + ȳ)2
β2λ−2ȳ ln λ2 + 4

(

−ȳ

γ + ȳ

)

> 0

⇒
β2λ−2ȳ lnλ2

(γ + ȳ)2
>

4ȳ

γ + ȳ

(17)

and

βλ−ȳ lnλ > γ + 2ȳ. (18)

Using (15), we get

(γȳ + ȳ2 − α) lnλ > 2ȳ + γ

⇒ȳ2 +

(

γ −
2

lnλ

)

ȳ −
(

α+
γ

lnλ

)

> 0.
(19)

The positive solution is

ȳ =

−(δ − 2) +

√

(δ − 2)2 + 4δ
(

α
γ
lnλ+ 1

)

2 lnλ
. (20)
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Substituting (20) in (18) we get,

β > λ

(2−δ)γ+γ

√

(δ−2)2+4δ( αδ
γ2 +1)

2δ

×





γ2(2 − δ) + γ2
√

(δ − 2)2 + 4(αδ
γ2 + 1)

δ2
+
γ2

δ



.

Similarly we can show that (17) is also satisfied.

Lemma 3.2. Let f(u, v) = α+βλ−u

γ+v and u, vε[0,∞). Then f(u, v) is a non-
increasing function both in u and v.

Proof. We have

fu(u, v) =
−βλ−u lnλ

γ + v
≤ 0 and fv(u, v) =

−(α+ βλ−u)

(γ + v)2
≤ 0.

This completes the proof.

The following theorem gives a sufficient condition for the boundedness of the
positive solutions of (1).

Theorem 3.3. The following statements are true:

(i) Every positive solution of equation (1) is bounded if α < yn.

(ii) The positive equilibrium point of equation (1) is bounded if α < ȳ1.

Proof. (i) Suppose that α < yn. Let {yn}
∞
n=1 be a positive solution of (1) for

n = 0, 1, 2, . . . . We have

0 < yn+1 =
α+ βλ−yn

γ + yn−1
<
α+ βλ−α

γ + yn−1
<
α+ βλ−α

γ
(21)

which shows that every positive solution of equation (1) is bounded.

(ii) Suppose ȳ is an equilibrium point of equation (1). Let α < ȳ1. Then

ȳ1 =
α+ βλ−ȳ1

γ + ȳ1
<
α+ βλ−α

γ
. (22)

Therefore ȳ1 is bounded.

Theorem 3.4. Equation (1) has no positive solutions of prime period two.

Proof. Let . . . , φ, ψ, φ, ψ, . . . be a period two solution of (1). Then

φ =
α+ βλ−ψ

γ + φ
and ψ =

α+ βλ−φ

γ + ψ

⇒ φ2 + γφ− βλ−ψ − α = 0 and ψ2 + γψ − βλ−φ − α = 0.
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Equating we get, φ2+γφ−βλ−ψ = ψ2−γψ−βλ−φ. Set F (z) = z2+γz−βλ−z−α.
Now F (ȳ) = ȳ2 + γȳ − βλ−y − α = 0. F ′(z) = 2z + γ + βλ−z lnλ > 0 which
shows that F (z) is increasing.

Theorem 3.5. Suppose that (12) holds and β < γ. Then the equilibrium point ȳ
of (1) is globally asymptotically stable.

Proof. From Lemma 3.2, f(u, v) is non-increasing in each of its arguments. Then

for any u, v ∈ [0,∞), we have 0 < f(u, v) < α+βλ−u

γ+v < α+βλ−α

γ
.

Let m = limn→∞ inf yn and M = limn→∞ sup yn and ε > 0 such that ε <

min{α+βλ
−α

γ
−M,m}. Then there exist no ∈ N such that m− ε ≤ yn ≤M + ε

for all n > n0. Since f is non-increasing, we get

α+ βλ−(M+ε)

γ + (M + ε)
≤ yn+1 ≤

α+ βλ−(m−ε)

γ + (m− ε)
, n ≥ n0 + 1.

Therefore

α+ βλ−(M+ε)

γ + (M + ε)
≤ m ≤M ≤

α+ βλ−(m−ε)

γ + (m− ε)
, n ≥ n0 + 1.

Since ε is arbitrary, we get

α+ βλ−M

γ +M
≤ m ≤M ≤

α+ βλ−m

γ +m
,n ≥ n0 + 1

Which gives α + βλ−M − γm ≤ mM ≤ α + βλ−m − γM . Since β < γ, we get
M ≤ m, hence M = m = ȳ1.

From Lemma 2.5 and (1) has a unique equilibrium point and every solution
of equation (1) converges to ȳ1. This shows that limn→∞ yn = ȳ1 and the proof
of the theorem is completed.
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