Quality Engineering with Balanced Fractional Factorial Experimental Designs

Man V.M. Nguyen
Department of Mathematics, Faculty of Science, Mahidol University, 272, Rama VI, 10400, Bangkok, Thailand
Center of Excellence in Mathematics (CEM), Ministry of Education, 272, Rama VI, 10400, Bangkok, Thailand
Email: man.ngu@mahidol.edu

Received 13 July 2019
Accepted 15 May 2020
Communicated by Edy Tri Baskoro

AMS Mathematics Subject Classification(2000): 05B15, 05C15, 20B35, 62K15

Abstract

Balanced fractional factorial designs or Orthogonal arrays (OAs) are popular structures in Quality Engineering and Statistical Quality Control. Orthogonal arrays of strength at least 2 have useful properties that can be employed for experimental designs, manufacturing, quality technology and for scientific discoveries in general.

In this paper, we introduce a graph method and a group-theoretic approach for constructing mixed OAs of any strength, with a given parameter set of run-size and factor levels.

Keywords: Coloring of graph; Factorial designs; Orthogonal arrays; Subgroups of symmetric groups.

1. Introduction

Factorial experimental designs play essential roles in Quality Engineering, specifically in mass manufacturing and sustainable economic development, with a bunch of approaches, methods and techniques since the 1950s. Quality Engineering concerns about achieving quality and productivity at the same time, based on the fundamental idea of continuous improvement (called kaizen by the Japanese). In industrial manufacturing, the manufacturer would theoretically try to achieve 6 -sigma quality level, corresponding to the ideal error ratio 3.4

PPM (parts per million, see [16]).

Table 1: Design of Experiments (DOE)- the quality ladder (Kenett [10])

Statistical methods	Management approach
DOE, TQM, Six-sigma	Quality by Design (1980s- now)
Statistical Quality Control	Process Improvement (1960-90's)
Sampling	Inspection (1950-60's)
Data Accumulation	Fire Fighting (before WW 2)

Statistical methods for quality engineering have been developed through few milestones, shown in the above table, by contributions of American scholars and engineers as Walter A. Shewhart, W. Edwards Deming, Joseph M. Juran, a few renown Indian statisticians as C.R. Rao, R.C. Bose, and many Japanese pioneers as Kaoru Ishikawa and Dr. Genichi Taguchi.

Six Sigma, particularly designed to work across all processes and industries, is a strategic engineering management paradigm originally developed at Motorola. However, Six Sigma draws heavily on the previous quality paradigms and methodologies, such as statistical quality control and total quality managementTQM, see [6].

We are interested in mathematical constructions of a combinatorial structure, called balanced fractional factorial designs or orthogonal array, a special kind of factorial experimental designs (a subclass of designs of experiments or DOE).

Orthogonal arrays (OAs) with strength $t>1$ (or t-balanced fractional factorial designs) have statistically good features which can be employed not only in experimental designs, industries and services $[16,17]$, algebraic coding theory, software engineering [5], but also in emerging and fast-developed areas such as statistical disclosure control [4], computational biology, particularly DNA microarray experiments [7, 8], and in applications of statistical quality management and control, see Wu and Hamada [24] for more information.

Definition 1.1. Formally, we fix d finite sets $Q_{1}, Q_{2}, \ldots, Q_{d}$ called factors, where $1<d \in \mathbb{N}$. The elements of a factor are called its levels. The (full) factorial design (also factorial experiment design- FED) with respect to these factors is the Cartesian product $D=Q_{1} \times Q_{2} \times \ldots \times Q_{d}$.

A fractional design or fraction F of D is a subset consisting of elements of D (possibly with multiplicities). Put $r_{i}:=\left|Q_{i}\right|$ be the number of levels of the ith factor. We say that F is symmetric if $r_{1}=r_{2}=\cdots=r_{d}$, otherwise F is mixed.

Moreover, F is said to be strength t orthogonal array ($O A$) or t-balanced fractional designs if, for each choice of t coordinates (columns) from F, each combination of coordinate values from those columns occurs equally often; here t is a natural number.

The main aim of experimental design is to identify an unknown function $\phi: D \rightarrow \mathbb{R}$ on a full design D, which is a mathematical model of some quantity of interest (favor, usefulness, best-buy, quality, ...) that is be computed or optimized. OAs can provide smaller (and so more economic) fractional designs, which still allow us to identify the most important features of ϕ. Specifically, strength 3 OAs permit estimation of all the main effects of the experimental factors, without confounding them with the two-factor interactions. Strength 4 OAs, furthermore allow us to separately estimate all two-factor interactions.

A comprehensive reference on the use of orthogonal arrays (OAs) as factorial design in diverse problems of statistical parameter optimization is provided by Wu and Hamada [24]. Stufken and Tang [23] provided a complete solution to enumerating non-isomorphic two-level OAs of strength t with $t+2$ constraints for any t and any run size $N=\lambda 2^{t}$. Bulutoglu and Margot [3] recently formulated an integer linear programming (ILP) method for classifying OAs of strength 3 and 4 with run size at most 162 .

A few specific construction methods of OAs have been proposed in Brouwer et al. [2], Nguyen [14] and [15]; and OAs with strength at least 2 are online reported by Sloane [22]. Moreover, a parallel computing approach can return lexicographically minimum column (LMC) matrices, more details can be found in Phan et al. [18, 19] and Schoen et al. [20].

The major motivation of this work is to combine a graph-coloring method and a group-theoretic approach for constructing mixed orthogonal arrays (OAs) with any strength. We will specifically discuss about describing OAs by colored graphs and then present a group theory-based solution for the factor extension problem of a given orthogonal array.

Section 2 recalls background and states the design extension problem. We define canonical orthogonal arrays using colored graphs in Section 3; and transformations (isomorphism) of an OA in Section 4. Next we present an integer linear formulation with the row permutation group of a design F to compute an extension $[F \mid X]$ in Section 5, and last but not least, employ localizing the formation of vector solutions X in Section 6. Section 7 concludes the paper with a few comments.

2. The Balanced Fractional Factorial Design Construction Problem

Some standard constructions of orthogonal arrays are reviewed in [9, 14].
Let $s_{1}>s_{2}>\cdots>s_{m}$ be the distinct factor sizes of an orthogonal array F, originally determined by the number of levels r_{i}. Assume that F has exactly a_{i} factors with s_{i} levels, where $s_{i} \neq s_{j}$ if $i \neq j=1, \ldots, m$; now the total number of factors is $d=a_{1}+a_{2}+\ldots+a_{m}$. We rewrite $O A\left(N ; r_{1}, r_{2}, \cdots, r_{d} ; t\right)$ as $O A\left(N ; s_{1}^{a_{1}} \cdot s_{2}^{a_{2}} \cdots s_{m}^{a_{m}} ; t\right)$ for a mixed array of strength t, with N runs.

The design type T of F is described by either $r_{1} \cdot r_{2} \cdots r_{d}$ or $s_{1}^{a_{1}} \cdot s_{2}^{a_{2}} \cdots s_{m}^{a_{m}}$.

We take the r_{i} in nonincreasing order, so that they are related to the s_{k} by

$$
\begin{aligned}
s_{1} & =r_{1}=\cdots=r_{a_{1}}, s_{2}=r_{a_{1}+1}=\cdots=r_{a_{1}+a_{2}}, \cdots \\
s_{m} & =r_{a_{1}+a_{2}+\cdots+a_{m-1}+1}=\cdots=r_{a_{1}+a_{2}+\cdots+a_{m}}=r_{d}
\end{aligned}
$$

For example, the matrix F below is a $4 \cdot 2^{3}$ mixed OA of strength 3:

$$
F=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]^{T}
$$

We can narrow down the set of candidate arrays by using the divisibility.

Lemma 2.1. (Divisibility) In an $O A\left(N ; r_{1} \cdot r_{2} \cdots r_{d} ; t\right)$, the run size N must be divisible by the least common multiple (lcm) of all numbers $\prod_{i \in I} r_{i}$ where $|I|=t$.

An efficient way to construct strength t arrays is by starting with a full array with t factors, then extending it column by column. So generally, we formulate the design extension problem as:

Given a strength t orthogonal array F_{0} with N runs and d factors, extend it to a strength t orthogonal array $F=\left[F_{0} \mid X\right]$ with $d+1$ factors, where X is a new factor (or column).

A few specific construction methods for this problem are reported in [2, 15], among those are an arithmetic method giving the unique $O A\left(64 ; 4^{4} \cdot 2^{6} ; 3\right.$) (by the Rao bound [9]) and a Latin square construction to list $O A\left(96 ; 6 \cdot 4^{2} \cdot 2^{5} ; 3\right)$.

Lemma 2.2. (The Rao bound) Assume that an $O A\left(N ; r_{1}, r_{2}, \cdots r_{d} ; t\right)$ exists.
(i) If strength t is even, then $N \geq \sum_{j=0}^{t / 2} \sum_{|I|=j} \Pi_{i \in I}\left(r_{i}-1\right)$.
(ii) If strength t is odd, then

$$
N \geq 1+\sum_{j=1}^{(t-1) / 2} \sum_{|I|=j} \Pi_{i \in I}\left(r_{i}-1\right)+\max _{j}\left(\left(r_{j}-1\right) \sum_{|I|=\frac{t-1}{2}, j \notin I} \prod_{i \in I}\left(r_{i}-1\right)\right)
$$

Example 2.3.
(i) For an $O A\left(N ; 3^{5} \cdot 2 ; 3\right), N$ must be a multiple of $\operatorname{lcm}(3 \cdot 3 \cdot 3,2 \cdot 3 \cdot 3)=54$, by the divisibility. This run size fulfills the Rao bound as well, since

$$
\begin{aligned}
N & \geq 1+a_{1} \cdot\left(r_{1}-1\right)+a_{2} \cdot\left(r_{2}-1\right)+a_{1} \cdot\left(r_{1}-1\right)\left(r_{2}-1\right)+\left(a_{2}-1\right)\left(r_{2}-1\right)^{2} \\
& \geq 1+1 \cdot(2-1)+5 \cdot(3-1)+1 \cdot(2-1)(3-1)+(5-1)(3-1)^{2}=30
\end{aligned}
$$

(ii) An $O A\left(96 ; 6 \cdot 4^{b} \cdot 2^{a} ; 3\right)$ is valid only for cases of a, b satisfying few conditions that $a+b \geq 3, b \leq 2$, and $a+3 b \leq 15$. Does an $O A\left(96 ; 6 \cdot 4^{2} \cdot 2^{6} ; 3\right)$ exist?

The design resolution R (the length of the shortest word in the defining relation) of a design is a useful way to classify fractional factorial designs according to the alias patterns they produce (see [24]). For regular designs (one can be defined by generator words), their strength $t=R-1$. However, orthogonal arrays include both regular designs and irregular designs!

Resolution III designs: designs in which no main effects are aliased with any other main effect, but main effects are aliased with two-factor interactions, and some two-factor interactions may be aliased with each other.
Resolution IV designs: designs in which no main effect is aliased with any other main effect or 2-factor interactions, but 2-factor interactions can be aliased with each other. Both resolution III, IV designs are useful in factor screening.
Resolution V designs: no main effect or two-factor interaction is aliased with any other main effect or two-factor interaction, but two-factor interactions are aliased with three-factor interactions.

3. Canonical Orthogonal Arrays with Colored Graphs

We introduce the concept of canonical orthogonal arrays, then use it to classify non-isomorphic arrays of given design type and run size. We first encode an array as a colored graph, then use the software package nauty, by B. Mckay [13] to find the canonical labeling graph of the colored graph and decode the result back to an array. Testing isomorphism between arrays is reduced to testing isomorphism between their colored graphs. Precisely, we describe a way to translate an array to a graph and show how to color that graph. Then we present a method to get back (demerge) an array from a colored graph. Thirdly, we find the canonical graph of a colored graph using nauty. We close this part by computing the canonical orthogonal array of a given orthogonal array.

3.1. The Graph of an Orthogonal Array

A design D with d factors is viewed as a set R of d-tuples $v=\left(p_{1}, \ldots, p_{d}\right)$, where $p_{i} \in Q_{i}$ for level sets Q_{1}, \ldots, Q_{d}. So each d-tuple from R represents a row of D. A (undirected) graph $G=(V, E)$ is constructed from this OA as

$$
\begin{equation*}
V=R \cup S \cup C \tag{1}
\end{equation*}
$$

where R is the set of row-vertices (one vertex per row), $C:=\left\{x_{1}, \ldots, x_{d}\right\}$ is the set of columns (one vertex for each column-factor), and $S:=\bigcup_{i=1}^{d} Q_{i}$ is the set
of levels (symbols) per column (one vertex per level per column). Then

$$
|V|=|R|+\left(\sum_{i}^{d}\left|Q_{i}\right|\right)+d=N+\sum_{i}^{d} r_{i}+d .
$$

Let

$$
\begin{aligned}
& E_{1}:=\bigcup_{1 \leq i \leq d}\left\{\left\{v, p_{i}\right\}: v=\left(p_{1}, \ldots, p_{d}\right) \in R \text { and } p_{i} \in Q_{i}\right\}, \\
& E_{2}:=\bigcup_{1 \leq i \leq d}\left\{\left\{s, x_{i}\right\}: s \in Q_{i}\right\}
\end{aligned}
$$

Then the edge set and its size respectively are

$$
\begin{equation*}
E=E_{1} \cup E_{2} \subseteq(R \times S) \cup(S \times C),|E|=d|R|+\sum_{i}^{d}\left|Q_{i}\right|=d N+\sum_{i}^{d} r_{i} . \tag{2}
\end{equation*}
$$

Since R, S, C are cocliques (ie, vertices in each set are not adjacent with each other), G is a tripartite graph with the vertex partition $R \cup S \cup C$. Let $n_{S}:=|S|$ be the number of symbols, and $N=|R|$ the run size of D. The adjacency matrix A of G has the following pattern:

$$
A=\left[\begin{array}{c|c|c}
0 & R S & 0 \\
\hline S R & 0 & S C \\
\hline 0 & C S & 0
\end{array}\right]
$$

where $R S$ is the $N \times n_{S}$-adjacency matrix formed by the row-symbol adjacency, $S R=R S^{T}$, and $S C=C S^{T}$, where $C S$ is the $d \times n_{S}$ adjacency matrix formed by the column-symbol adjacency. We call a vertex with valency i an i-vertex, and write $V(x)$ for the neighbors of a vertex $x \in V$.

To use the package nauty, we need to number the vertices of G. We number the row-vertices R first, then the symbol-vertices S and finally the columnvertices C. We color the resulting graph G by the following coloring rules:
(i) all vertices of R have color A ; here A is called the row color;
(ii) all vertices of S have color B; here B is called the symbol color;
(iii) factors x_{1}, \ldots, x_{d} have the same color if and only if the corresponding level sets have the same cardinality: $\operatorname{color}\left(x_{i}\right)=\operatorname{color}\left(x_{j}\right) \Longleftrightarrow\left|Q_{i}\right|=\left|Q_{j}\right|$. Figure 1 shows the colored graph of a 6 runs orthogonal array.

Denote by $\mathcal{F}_{T, N}=\mathrm{OA}(N ; T ; t)$ the class of all orthogonal arrays with given type $T=s_{1}^{a_{1}} \cdot s_{2}^{a_{2}} \cdots s_{m}^{a_{m}}$, of strength $t \geq 1$, and run size N. If the array $D \in \mathcal{F}_{T, N}$, then the set of column-vertices C is a disjoint union of color classes C_{1}, \ldots, C_{m}, called the column-color classes, and the total number of colors of G is $2+m$. Also note that each row-vertex is adjacent to precisely d symbol-vertices, and each symbol-vertex is adjacent to exactly one column-vertex. Remark that

Figure 1: The colored graph of a 6 runs orthogonal array
the partition (R, S, C) is not a color partition, and $d=\sum_{i=1}^{m}\left|C_{i}\right|$. Recall that $n_{S}=|S|$. We write

$$
\begin{align*}
f:= & {[} \tag{3}\\
& {[1, \ldots, N],\left[N+1, \ldots, N+n_{S}\right], } \\
& {\left.\left[N+n_{S}+1, \ldots, N+n_{S}+a_{1}\right], \ldots,\left[N+n_{S}+1+\sum_{i=1}^{m-1} a_{i}, \ldots,|V|\right]\right] }
\end{align*}
$$

for the color partition (determining row, symbol and column-vertices, respectively); and denote the colored graph just obtained by G_{D}.

Example 3.1. Let D be the $O A\left(6 ; 3^{1} \cdot 2^{2} ; 1\right)$

$$
D=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 2 & 2 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right]^{T}
$$

Then $N=6, n_{S}=7, d=3, m=2$, and the vertices

$$
V=R \cup S \cup C=\{1,2, \ldots, 6,7, \ldots 13,14,15,16\}
$$

The color classes have sizes $6,7,1,2$, with corresponding vertices

$$
f:=\{\{1,2,3,4,5,6\},\{7,8,9,10,11,12,13\},\{14\},\{15,16\}\}
$$

The symbol permutation $(0,1)$ on column 2 of array D is performed by its corresponding permutation $p_{S}=(10,11)$ on symbol-vertices 10,11 of the colored graph G_{D}. Switching columns 2 and 3 of D has counterpart $p_{C}=(15,16)$ on column-vertices. And permuting rows 1 and 2 can be done by the permutations on row-vertices $p_{R}=(1,2)$.

Let \mathcal{G} be the set of all colored graphs. Define the map

$$
\Phi: \mathcal{F}_{T, N} \longrightarrow \mathcal{G}, \quad D \longmapsto \Phi(D)=G_{D}
$$

taking an array D to the corresponding colored graph G_{D} described above.

Lemma 3.2. Φ is an injection.

Now we characterize more clearly the image $\Phi\left(\mathcal{F}_{T, N}\right) \subseteq \mathcal{G}$. We write $v(u)$ for the valency of a vertex $u \in V$. Recall that $S=Q_{1} \cup Q_{2} \cup \ldots \cup Q_{d}$, where $\left|Q_{i}\right|=r_{i}$ for $i=1, \ldots, d$; and $C=C_{1} \cup \ldots \cup C_{m}$, where $\left|C_{k}\right|=a_{k}$, for $k=1, \ldots, m$.

Lemma 3.3. Let D be a design with factors Q_{i} and with run size N. Then
(i) G_{D} is tripartite with the vertex partition (R, S, C) given by (1) and with $|R|=N,|S|=\sum_{k=1}^{m} a_{k} s_{k}$, and $|C|=\sum_{k=1}^{m} a_{k}$.
(ii) Every vertex $r \in R$ has valency d.
(iii) The valency of a column-vertex c in C is s_{k}, where k is the unique element of $\{1, \ldots, m\}$ such that $c \in C_{k}$.
(iv) The valency of a symbol-vertex: if $s \in S$ then there is a unique $c \in C_{k}$ such that $\{s, c\} \in E$ for some $k \in\{1, \ldots, m\}$; then

$$
v(s)=\frac{N}{v(c)}+1=\frac{N}{s_{k}}+1
$$

$\left[\right.$ since $t \geq 1$, there are exactly $\frac{N}{s_{k}}$ rows in D having symbol s in column $\left.c\right]$.
(v) Relationship between R and C : if $r \in R$, and $c \in C$, there exists a unique shortest path of length 2 from r to c through a vertex in S.

Definition 3.4.

(i) Given parameters U, N, the colored graphs which satisfy properties (i)-(v) of Lemma 3.3 are called the colored graphs of type U, N. They form a subset of \mathcal{G}, written $\mathcal{G}_{U, N}$.
(ii) By Lemma 3.3 (i), vertices of R, S, C in a graph in $\mathcal{G}_{U, N}$ are called the row-vertices, the symbol-vertices and the column-vertices respectively.

3.2. Demerging a Colored Graph

How can we make an orthogonal array which is associated with a colored graph? This array-making process is called demerging a colored graph. What we want to do now is to demerge a colored graph $g \in \mathcal{G}_{U, N}$.

We firstly find the column-vertex set C of g. It may happen that some vertices have the same valency even if they belong to distinct colors (row and column colors, for instance). This can usually be solved by computing the intersection of their neighbor sets. More precisely, we have the following claim.

Lemma 3.5. Suppose that $\frac{N}{s_{k}} \in \mathbb{N}$ for all $k \in\{1, \ldots, m\}$, in which $\frac{N}{s_{k}}>1$ for at least a number k. Then, a subset C of the vertex set V of a graph g in $\mathcal{G}_{U, N}$ is the column-vertex set if and only if the valencies of vertices in C are $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ and their neighbor sets are mutually disjoint subsets of V.

Proof. Use Lemma 3.3.

For instance, consider a strength 1 array $F:=O A\left(4 ; 4^{4} ; 1\right)$
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3\end{array}\right]$
in which $\frac{N}{s_{1}}=1$. The row and column vertices of the colored graph G_{F} are not distinguishable. We will see later that this kind of array requires a subtle treatment to demerge the colored graph.

Proposition 3.6. (Constructing an array from a colored graph) Given parameters $T=s_{1}^{a_{1}} \cdot s_{2}^{a_{2}} \cdots s_{m}^{a_{m}}$ and run size N, such that $\frac{N}{s_{k}} \in \mathbb{N}$ for all $k \in\{1, \ldots, m\}$, and such that there is at least one k for which $\frac{N}{s_{k}}>1$, we have $\Phi\left(\mathcal{F}_{T, N}\right)=\mathcal{G}_{U, N}$.

Proof. See [14, Proposition 40].

Corollary 3.7. Provided that $\frac{N}{s_{k}} \in \mathbb{Z}^{\times}$for all $k \in\{1, \ldots, m\}$, and that there is at least a number $\frac{N}{s_{k}}>1$, the mapping Φ is already an injection (Lemma 3.2), now we have that Φ^{k} is a bijection between the set $\mathcal{F}_{T, N}$ of fractions of type U, N and the set $\mathcal{G}_{U, N}$ of colored graphs of type U, N.

The inverse mapping Φ^{-1} from $\mathcal{G}_{U, N}$ to $\mathcal{F}_{T, N}$ is called the demerging mapping of $\mathcal{G}_{U, N}$. Any orthogonal array $D \in \mathcal{F}_{T, N}$ of strength $t \geq 2$ is determined uniquely by its companion graph $G_{D} \in \mathcal{G}_{U, N}$. Indeed, if strength $t \geq 2$ then $\frac{N}{s_{i} s_{k}} \geq 1$ for all $i, k=1, \ldots, m$. So $\frac{N}{s_{k}}>1$ for each $k=1, \ldots, m$.

Lemma 3.8. Let G_{F}, G_{D} be the two colored graphs which are formed by two
fractions $F, D \in \mathbb{F}=\mathbb{F}_{T, N}$. Then F and D are isomorphic arrays if and only if G_{F} and G_{D} are isomorphic graphs.

Example 3.9. We construct an $O A\left(6 ; 3 \cdot 2^{2} ; 1\right)$ from the colored graph described by Figure 1 in Appendix C. Here $m=2, d=3, s_{1}=3, s_{2}=2$, the column vertex set $C=\{14,15,16\}$ since their neighbor sets $\{7,8,9\},\{10,12\}$, and $\{11,13\}$ are mutually disjoint.

Vertices $1,2, \ldots 6$, for instance, also have valency 3 , but they cannot represent the first column-vertex (3-level column) since their neighbors are not disjoint. Now the first column-vertex is 14 , its neighbor $V(14)=\{7,8,9\}$ (represent levels $0,1,2$ in column 1) lead us to row-vertices 1,$2 ; 3,5$ and 4,6 respectively. The symbol vertices are $[[7,8,9],[10,12],[11,13]]$; those correspond to levels $0,1,2$ in column 1, levels 0,1 in column 2 and levels 0,1 in column 3 of F. The array is obtained as

$$
F=\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right]^{T}
$$

3.3. Finding Canonical Graphs

For any colored graph G, denote by canon (G) the canonical labeling graph computed using the package nauty [13]. It consists of a vertex relabeling permutation, p, say and new adjacencies. Hence, canon (G) is determined fully by these adjacencies. The vertex-relabeling p is of the form $p=p_{R} p_{S} p_{C_{1}} p_{C_{2}} \cdots p_{C_{m}}$, where $p_{R}, p_{S}, p_{C_{1}}, p_{C_{2}}, \ldots, p_{C_{m}}$ are permutations on sets $R, S, C_{1}, C_{2}, \ldots, C_{m}$ respectively. Indeed this fact follows from the requirement of preserving $m+2$ color classes that we input to the nauty computation. We define $G_{F}:=\Phi(F)$ and $G_{D}:=\Phi(D)$ be the colored graphs of arrays F and D respectively.

As a result of Lemma 3.8, we have the following corollary.

Corollary 3.10. F and D are isomorphic arrays $\Longleftrightarrow \operatorname{canon}\left(G_{F}\right)=\operatorname{canon}\left(G_{D}\right)$.
Notice that if $G \in \mathcal{G}_{U, N}$ then canon $(G) \in \mathcal{G}_{U, N}$. Let D^{*} be the canonical labeling orthogonal array of an orthogonal array D. Then $G_{D} \in \mathcal{G}_{U, N}$, and $G_{D^{*}} \in \mathcal{G}_{U, N}$. Now D^{*} can be constructed using the scheme below:

$$
D \longrightarrow G_{D} \longrightarrow \operatorname{canon}\left(G_{D}\right) \longrightarrow D^{*}
$$

in which the first arrow represents the mapping Φ. The third arrow computing D^{*}, is done by the demerging map Φ^{-1}. For orthogonal arrays of strength $t \geq 2$, the canonical array D^{*} is uniquely determined by canon $\left(G_{D}\right)$.

3.4. Computing Canonical Orthogonal Arrays

We may build the canonical orthogonal array D^{*} from the adjacencies of the graph canon $\left(G_{D}\right)$ that came from nauty. Since the relabeling permutation p preserves color classes, we do not need to rearrange vertices in the canonical graph canon $\left(G_{D}\right)$. We can apply the demerging scheme (using the demerging mapping). But if we list adjacencies of vertices in G_{D} in the order: rows R, symbols S, columns C, then we can also do the following:
(i) Locate column-vertices: Column-vertices in canon (G), denoted by $C v$, occupy rows from $N+n_{S}+1$ to $n:=|V|$ of B;
(ii) specify row-vertices: row-vertices occupy rows from 1 to N;
(iii) from row-vertices we are able to build up the array D^{*} row by row by tracking the symbol-vertices which are listed in the corresponding row. Notice that levels of each column must be numbered in the decreasing order, but not necessarily between columns.

Example 3.11. Let D be an the full $O A\left(16 ; 4^{1} \cdot 2^{2} ; 3\right)$. Then the run size $N=16$, the number of factors $d=3$, there are $n_{S}=8$ symbol vertices, there are $m=2$ distinct levels, so the vertices

$$
V=R \cup S \cup C=\{\{1,2, \ldots, 15,16\},\{17, \ldots 20,21,22,23,24\},\{25,26,27\}\} .
$$

The color classes have sizes $16,8,1,2$, with the corresponding vertices

$$
\begin{aligned}
f:=\{ & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}, \\
& \{17,18,19,20,21,22,23,24\},\{25\},\{26,27\}\} .
\end{aligned}
$$

The relabeling permutation $p=(2,3)(6,9,7,13,14,8)(10,11,15,12)(22,23,24)$, the column vertices $C v=[25,26,27]$, and the symbol-vertices

$$
S v=[[17,18,19,20],[21,22],[23,24]] .
$$

For the row $u=[17,22,24]$, we refer to symbol-vertices, ie, symbols 0 in column 1, symbol 1 in column 2, and symbol 1 in column 3 . We obtain its companion run $[0,1,1] \in D^{*}$. The new adjacencies of the canonical graph are given in Table 2.

4. Transformations (Isomorphisms) of Orthogonal Arrays

It is not immediately obvious how to define isomorphisms of a factorial design, given in Definition 1.1. In fact, there is more than one sensible definition that could be made. We give the definition that is most useful for our purposes in this section, see Appendix B for generic concepts.

Recall that $T:=r_{1} \cdot r_{2} \cdots r_{d}$ is a design type, equivalently we could group a_{i} factors with the same s_{i} levels in $T:=s_{1}^{a_{1}} \cdot s_{2}^{a_{2}} \cdots s_{m}^{a_{m}}, s_{i} \neq s_{j}$ when $i \neq j$. Denote by $\mathrm{OA}(N ; T)$ the set of all OAs with given type T and run size $N \in \mathbb{N}$. Set

Table 2: Adjacency relations of a colored graph

17	21	22					
17	22	24					
17	21	23					
17	23	24					
18	21	22					
19	21	22					
20	21	22					
18	21	23					
18	22	24					
19	22	24					
20	22	24					
19	21	23					
20	21	23					
18	23	24					
19	23	24					
20	23	24					
1	2	3	4	25			
5	8	9	14	25			
6	10	12	15	25			
7	11	13	16	25			
1	3	5	6	7	8	12	13
1	2	5	6	7	9	10	11
3	4	8	12	13	14	15	16
3	26	27					
2	4	9	10	11	14	15	16
17	18	19	20				
21	24						
22	23						
20							

$U:=\left\{(i, j, x) \mid i=1, \ldots, N, j=1, \ldots, d, x \in Q_{j}\right\}$, and call it the underlying set of $\mathrm{OA}(N ; T)$. In other words, U consists of all possible triples of a row i, a column j, and an entry $F_{i j}$ for any matrix $F \in \mathrm{OA}(N ; T)$. The k-th column index set $J_{k} \subseteq \mathbb{N}_{d}:=\{1,2, \cdots, d\}$ precisely consists of column indices of factors having s_{k} levels, for each $k=1, \ldots, m$.

We can now encode any $F \in \mathrm{OA}(N ; T)$ by its lookup table

$$
\operatorname{Lt}(F):=\left\{\left(i, j, F_{i j}\right) \mid i=1, \ldots, N, j=1, \ldots, d\right\} \subseteq U
$$

The encoding map $L t$ from $\mathrm{OA}(N ; T)$ to the power set of U is clearly injective. The image of $L t$ consists of all sets $S \subseteq U$ with the following property:

$$
\begin{equation*}
\#\{x \mid(i, j, x) \in S\}=1 \text { for all } i=1, \ldots, N \text { and } j=1, \ldots, d \tag{4}
\end{equation*}
$$

We next define group actions on the set U :
(i) The row permutation group is $R:=\operatorname{Sym}_{N}$. It acts via $\phi_{R}: R \rightarrow \operatorname{Sym}(U)$ defined by

$$
(i, j, x)^{\phi_{R}(r)}=\left(i^{r}, j, x\right)
$$

(ii) The column permutation group is $C:=\prod_{k=1}^{m} C_{k}$ where $C_{k}:=\operatorname{Sym}\left(J_{k}\right)$.

It acts via $\phi_{C}: C \rightarrow \operatorname{Sym}(U)$ defined by

$$
(i, j, x)^{\phi_{C}(c)}=\left(i, j^{c}, x\right)
$$

(iii) The level permutation group is $L:=\prod_{j=1}^{d} L_{j}$, here $L_{j}=\operatorname{Sym}_{r_{j}}$, switching levels of all columns of F. Denote l_{j} by the projection of l onto L_{j}. Then L acts via $\phi_{L}: L \rightarrow \operatorname{Sym}(U)$ defined by

$$
(i, j, x)^{\phi_{L}(l)}=\left(i, j, x^{l_{j}}\right)
$$

Definition 4.1. The full group G of fraction transformations of U is defined as

$$
\begin{equation*}
G:=\phi_{R}(R) \quad \phi_{C}(C) \quad \phi_{L}(L) \leq \operatorname{Sym}(U) \tag{5}
\end{equation*}
$$

G is generated by the isomorphism images of the row, column and level permutation groups in $\operatorname{Sym}(U)$. By Property (4) we can prove that, for any array $F \in \mathrm{OA}(N ; T)$ and $g \in G$, there exists a unique $F^{\prime} \in \mathrm{OA}(N ; T)$ with $L t\left(F^{\prime}\right)=L t(F)^{g}$. Hence, G acts faithfully on $\mathrm{OA}(N ; T)$ via the mapping π : $G \rightarrow \operatorname{Sym}(\mathrm{OA}(N ; T))=\operatorname{Sym}(U)$ defined by

$$
F^{g}=F^{\pi(g)}:=L t^{-1}\left(L t(F)^{g}\right)
$$

The newly defined G is a permutation group acting on the space $\mathrm{OA}(N ; T)$.
To describe the structure of the group G, we need to know the relationship between the three types of permutations. It is clear that the column permutations $c \in C:=\prod_{k=1}^{m} C_{k}$ and the level permutations $l \in L:=\prod_{k=1}^{m} L_{k}$ act independently on distinct sections. As expected for isomorphisms, they preserve the strength of a fraction.

Proposition 4.2. [Properties of G] Indeed we have the following properties:
(i) Column-Column relation. Column permutations in distinct sections commute, ie, $\left[C_{k}, C_{h}\right]=1, \forall k \neq h$.
(ii) Level-Level relation. Level permutations of columns in distinct sections commute, ie, $\left[L_{k}, L_{h}\right]=1, \forall k \neq h$.
(iii) Row-Column relation. Row permutations commute with column ones, ie,

$$
\begin{equation*}
[R, C]=1 \tag{6}
\end{equation*}
$$

(iv) Row-Level relation. Row permutations commute with level ones, ie,

$$
\begin{equation*}
[R, L]=1 \tag{7}
\end{equation*}
$$

(v) Column-Level relation. Let $c \in C$ be a column permutation and let $l=$ $l_{1} \cdots l_{d}$ be a level permutation. Then c commutes with l if, and only if, $l_{i}=l_{j}$ whenever i and j are in the same cycle of c.
As a result, the subgroup generated by column permutations in section k and level permutations in that section is a wreath product

$$
\operatorname{Sym}_{s_{k}} \prec C_{k}=L_{k} \rtimes \operatorname{Sym}_{a_{k}} .
$$

Proof. See [14, Proposition 34].
Corollary 4.3. We see that G is nearly a direct product of symmetric groups and a wreath product of symmetric groups. Precisely, the full group G or the permutation group acting on the space $\mathrm{OA}(N ; T)$ can be identified with the wreath product

$$
\begin{equation*}
G=R \times(C \ltimes L), \quad \text { where } C \ltimes L=\prod_{k=1}^{m} \operatorname{Sym}_{s_{k}} \imath C_{k} . \tag{8}
\end{equation*}
$$

As a result, the order of G can be calculated from $O A$ parameters, as

$$
|G|=N!a_{1}!\cdots a_{m}!\left(s_{1}!\right)^{a_{1}} \cdots\left(s_{m}!\right)^{a_{m}}
$$

The next concept plays a crucial role in the remaining parts.

Definition 4.4. Let F and F^{\prime} be in $\mathrm{OA}(N ; T)$.
(i) An isomorphism from F to F^{\prime} is $g \in G$ such that $F^{g}=F^{\prime}$.
(ii) The automorphism group of an orthogonal array $F \in \mathrm{OA}(N ; T)$ is the normalizer of F in the group G, i.e., $\operatorname{Aut}(F):=\left\{g \in G \mid F^{g}=F\right\}$.
(iii) Any subgroup $A \leq \operatorname{Aut}(F)$ is called a group of automorphisms of F.

5. An Integer Linear Formulation for the Design Extension

We now formulate necessary conditions for extending a known orthogonal array $F=O A\left(N ; r_{1} \cdots r_{d} ; t\right)$ of strength t by a factor X to get a new design $[F \mid X]$ with the same strength. Assume $t=3$, given an array $F=O A\left(N ; r_{1} \cdots r_{d} ; 3\right)$ with columns S_{1}, \ldots, S_{d}, where S_{i} has r_{i} levels $(i=1, \ldots, d)$.

An s-level factor X is orthogonal to a pair of factors $\left(S_{i}, S_{j}\right)$ of F, written $X \perp\left[S_{i}, S_{j}\right]$, if the frequency of all tuples $(a, b, x) \in\left[S_{i}, S_{j}, X\right]$ is $N /\left(r_{i} r_{j} s\right)$. Extending F by X means constructing an $O A\left(N ; r_{1} \cdots r_{d} \cdot s ; 3\right)$, denoted by $[F \mid X]$. By the definition of OAs, $[F \mid X]$ exists if and only if X is orthogonal to any pair of columns of F. We can find a set P of necessary constraints for the existence of array $[F \mid X]$ in terms of polynomials in the coordinate indeterminates of X, by the following rules.
(i) Calculate frequencies of 3-tuples, and locate positions of pairs of $\left(S_{i}, S_{j}\right)$.
(ii) Set the sums of coordinate indeterminates of X (corresponding to these positions) equal to the product of those frequencies with the constant $0+$ $1+2+\ldots+s-1=\frac{s(s-1)}{2}$. The number of equations of P then is $\sum_{i \neq j}^{d} r_{i} r_{j}$, since each pair of $\left(S_{i}, S_{j}\right)$ can be coded by a new factor with $r_{i} r_{j}$ levels. If $s=2$, the constraints P are in fact the sufficient conditions for the existence of X.
For instance, let $F=O A\left(16 ; 4 \cdot 2^{2} ; 3\right)=\left[S_{1}\left|S_{2}\right| S_{3}\right]$ be a full design. By transformation rule (ii), the sums of coordinates of X corresponding to the $Y=\left[S_{1}, S_{2}\right]$ symbols and the $Z=\left[S_{2}, S_{3}\right]$ symbols must equal a multiple of the appropriate frequencies. That means:

$$
\begin{aligned}
X \perp\left[S_{1}, S_{2}\right] \Leftrightarrow & X \perp Y \Leftrightarrow x_{1}+x_{2}=\ldots=x_{15}+x_{16}=\lambda \cdot(0+1)=1, \ldots \\
X \perp\left[S_{2}, S_{3}\right] \Leftrightarrow & x_{1}+x_{5}+x_{9}+x_{13}=\ldots=x_{4}+x_{8}+x_{12}+x_{16} \\
& =\mu \cdot(0+1)=2
\end{aligned}
$$

One solution of P is given in the last row of the matrix below:

$$
\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3
\end{array}\right]^{T}
$$

Generally, the set P of linear constraints with integer coefficients is described by the matrix equation $A X=b$, in which $A \in \operatorname{Mat}_{m_{1}, \mathrm{~N}}(\mathbb{N})$,

$$
\begin{equation*}
X=\left(x_{1}, \ldots, x_{N}\right) \in\{0,1, \ldots, s-1\}^{N} \subseteq \mathbb{N}^{N} \tag{9}
\end{equation*}
$$

is a vector of unknowns, $b \in \mathbb{N}^{m_{1}}$, and $m_{1}:=\sum_{i \neq j}^{d} r_{i} r_{j}=|P|$. Since each orthogonal array is isomorphic to an array having the first row zero, we let $x_{1}=0$ throughout. By Gaussian elimination, we get the reduced system

$$
\begin{equation*}
M X=c \tag{10}
\end{equation*}
$$

where $M \in \operatorname{Mat}_{m, N}(\mathbb{Z})$, the set of all $m \times N\left(m \leq m_{1}\right)$ matrices with integral entries, $c \in \mathbb{Z}^{m}$, and the vector of unknowns $X=\left(0, x_{2}, \ldots, x_{N}\right) \in \mathbb{Z}^{N}$.

The extension

$$
K:=[F \mid X]=O A\left(N ; r_{1} \cdots r_{d} \cdot s ; t\right)
$$

clearly depends on solving the integer linear system (10) M.X $=c$ in terms of $X=\left(x_{j}\right) \in\{0,1, \ldots, s-1\}^{N}$ for $j=1, \ldots, N$. This approach is useful if a few constraints, structures or pruning techniques would be found and used to delete out some (not all) isomorphic vectors in each isomorphic class, and we then retain isomorph-free vectors. From that point, the search for all isomorph-free designs becomes feasible.

Fix an array $F \in \mathrm{OA}(N ; T ; t)$, recall from Definition 4.4 that the automorphism group of F is $\operatorname{Aut}(F):=\left\{g \in G \mid F^{g}=F\right\}$, where G is the full group of
isomorphisms, see Equation (5). We first define the row permutation group of a fractional design F.

Let $g \in \operatorname{Aut}(F)$. Then g induces a permutation g_{1} in the full group G_{K} of K, see Formula (8). Let g_{R} be the row permutation component of g, then g_{R} is also the row permutation component of g_{1}. Due to Definition 4.4, we have

Theorem 5.1. For an automorphism $g \in \operatorname{Aut}(F)$, g induces a row permutation $g_{1} \in G_{K}$ and generates the image $K^{g_{1}}$ which is isomorphic to K.

Proof. Formula (5) says any permutation g acting on F has the decomposition $g=g_{R} g_{C} g_{S}$ where g_{C} and g_{S} are the column and symbol permutations acting on F, respectively. Besides, the row permutation g_{R} induces a row permutation $g_{1} \in G_{K}$, we furthermore have

$$
\begin{equation*}
K^{g_{1}}=[F \mid X]^{g_{1}}=\left[F^{g} \mid X^{g_{R}}\right]=\left[F \mid X^{g_{R}}\right] \tag{11}
\end{equation*}
$$

since g already fixes F, and only g_{R} acts on the column X by moving its coordinates. As a result, $K^{g_{1}}=\left[F \mid X^{g_{R}}\right]$ is isomorphic to $K:=[F \mid X]$.

Definition 5.2. Let $H:=\operatorname{Row}(\operatorname{Aut}(F))$ be the group of all row permutations g_{R} extracted from the group $\operatorname{Aut}(F)$. We call H the row permutation group of F.

The direct product of H and τ is very useful for pruning later on, given by

$$
\begin{equation*}
\sigma:=H \times \tau \tag{12}
\end{equation*}
$$

where $\tau:=\operatorname{Sym}_{s}$, the symbol permutation group acting on the X 's coordinates.

6. Localizing the Formation of Vector Solutions

It is now obvious that, by recursion, the process of building vector solution X can be brought back to strength 1 derived designs. We can effectively prune $Z(P)$ from those smallest sub-designs by searching for some subgroups of the row permutation group $H=\operatorname{Row}(\operatorname{Aut}(F))$ acting on strength 1 derived designs. Those subgroups, discussed in next parts, must have the property that they act separately on the row-index sets corresponding to the derived designs.

Fix $I_{N}:=[1,2, \ldots, N]$ the row-index list of F, and recall $r_{1} \geq r_{2} \geq \ldots \geq r_{d}$. We explicitly distinguish the list I_{N} with $\{1,2, \ldots, N\}$ in this section. Then H acts naturally on X^{\prime} indices. Furthermore, we employ the following.

Definition 6.1. We say a row permutation $g_{R} \in H$ acts fixed-point free, or globally on X if it moves every index from the whole set $\{1,2, \ldots, N\}$.

Otherwise, if the moved points of g_{R} form a proper subset J of $\{1, \ldots, N\}$, i.e., it fixes point-wise the complement 'list' of J in I_{N}, we say g_{R} acts locally at that subset J.

The first step is to localize the formation of a vector X of the form (9) by taking the derived designs of strength $t-1$. We get the r_{1} derived designs $F_{1}, \ldots, F_{r_{1}}$, each of which is an $O A\left(r_{1}^{-1} N ; r_{2} \cdots r_{d} ; t-1\right)$. Clearly, if a solution vector X exists, then it is formed by r_{1} sub-vectors u_{i} of length $\frac{N}{r_{1}}$:

$$
\begin{equation*}
X=\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right], \text { where } u_{i}=\left(x_{\frac{(i-1) N}{r_{1}}+1}, \ldots, x_{\frac{i N}{r_{1}}}\right) \tag{13}
\end{equation*}
$$

Denote by V_{i} the set of all sub-vectors u_{i} which can be added to the i th derived design F_{i} to form an $O A\left(r_{1}^{-1} N ; r_{2} \cdots r_{d} \cdot s ; t-1\right)$. Let $V=V_{1} \times V_{2} \times \ldots \times V_{r_{1}}$.

We propose an algorithm for finding all non isomorphic solution $X \in V$.

Algorithm 1 Find all non isomorphic vectors X in $[F \mid X]$
 EXTEND-ONE-FACTOR (F)

Input: F is a strength t design;
Output: All non-isomorphic extensions of F to $[F \mid X]$
a/ Find all candidate sub-vectors $u_{i} \in V_{i}, i=1, \ldots, r_{1}$, using associated permutation subgroups
b/ Discard (prune) them as many as possible by using subgroups of H
c/ Plug those u_{i} s together, then compute the representatives of the $\sigma=H \times \tau$ orbits in V, the solution space $Z(P)$ of P.

6.1. Forming Permutation Subgroups of the Derived Designs

We viewed $F \in O A\left(N ; r_{1} \cdot r_{2} \cdots r_{d} ; 3\right)$ as an $N \times d$-matrix with the $[l, j]$-entry is written as $F[l, j]$. For each derived design F_{i} w. r. t. the first column of F, the row-index set of F_{i}, denoted by $\operatorname{Row} \operatorname{Ind}\left(F_{i}\right)$ for $1 \leq i \leq r_{1}$, is defined as

$$
\operatorname{RowInd}\left(F_{i}\right):=\{l \in\{1,2, \ldots, N\}: F[l, 1]=i-1\}
$$

Definition 6.2. The stabilizer in H of F_{i} is defined by

$$
\begin{align*}
N_{H}\left(F_{i}\right) & :=\operatorname{Normalizer}\left(H, \operatorname{RowInd}\left(F_{i}\right)\right) \\
& =\left\{h \in H: \operatorname{RowInd}\left(F_{i}\right)^{h}=\operatorname{RowInd}\left(F_{i}\right)\right\} \tag{14}
\end{align*}
$$

In this way, we find r_{1} subgroups of H corresponding to the derived designs F_{i}. But it can happen that $\operatorname{RowInd}\left(F_{l}\right)^{h} \neq \operatorname{RowInd}\left(F_{l}\right)$ for some $h \in N_{H}\left(F_{i}\right)$ and $1 \leq l \neq i \leq r_{1}$. To make sure that the row permutations act independently on the F_{i}, we need the following structure.

Definition 6.3. The group of row permutations acting locally on each F_{i} is defined as:

$$
\begin{equation*}
L\left(F_{i}\right):=\operatorname{Centralizer}\left(N_{H}\left(F_{i}\right), J\left(F_{i}\right)\right) \tag{15}
\end{equation*}
$$

where $J\left(F_{i}\right):=I_{N} \backslash \operatorname{RowInd}\left(F_{i}\right)$ is the sublist of I_{N} consisting of elements not in $\operatorname{RowInd}\left(F_{i}\right)$. The $L_{i}:=L\left(F_{i}\right)$ acts locally on RowInd $\left(F_{i}\right)$, i.e. it acts on the row-indices of F_{i} and fixes pointwise any row-index outside F_{i}. These subgroups L_{i} - of the group $H=\operatorname{Row}(\operatorname{Aut}(F))$ - are called the row permutation subgroups associated with strength 2 derived designs.

These subgroups can be determined further as follows.
For an integer $m=1,2, \ldots, t-1$ and for $j=1,2, \ldots m$, denote by

$$
\begin{equation*}
F_{i_{1}, \ldots, i_{m}}:=O A\left(\frac{N}{r_{1} r_{2} \cdots r_{m}} ; r_{m+1} \cdots r_{d} ; t-m\right) \tag{16}
\end{equation*}
$$

the derived designs of F taken with respect to symbols i_{1}, \ldots, i_{m}, where symbol i_{j} in column j and $i_{j}=1, \ldots, r_{j}$. Define the row-index set of $F_{i_{1}, \ldots, i_{m}}$ by

$$
\begin{equation*}
\operatorname{RowInd}\left(F_{i_{1}, \ldots, i_{m}}\right):=\bigcap_{j=1}^{m}\left\{l \in\{1,2, \ldots, N\}: F[l, j]=i_{j}-1\right\} \tag{17}
\end{equation*}
$$

Definition 6.4. Let $J\left(F_{i_{1}, \ldots, i_{m}}\right):=I_{N} \backslash \operatorname{RowInd}\left(F_{i_{1}, \ldots, i_{m}}\right)$. Generalizing (14) and (15) gives:

$$
\begin{align*}
N_{H}\left(F_{i_{1}, \ldots, i_{m}}\right) & :=\operatorname{Normalizer}\left(H, \operatorname{RowInd}\left(F_{i_{1}, \ldots, i_{m}}\right)\right), \\
L\left(F_{i_{1}, \ldots, i_{m}}\right) & :=\operatorname{Centralizer}\left(N_{H}\left(F_{i_{1}, \ldots, i_{m}}\right), J\left(F_{i}\right)\right), \text { for } 1 \leq i_{j} \leq r_{j} . \tag{18}
\end{align*}
$$

$L\left(F_{i_{1}, \ldots, i_{m}}\right)$ is called the subgroup associated with the derived design $F_{i_{1}, \ldots, i_{m}}$. We say $L\left(F_{i_{1}, \ldots, i_{m}}\right)$ acts locally on the derived design $F_{i_{1}, \ldots, i_{m}}$, and write $L_{i_{1}, \ldots i_{m}}:=L\left(F_{i_{1}, \ldots, i_{m}}\right)$, for $1 \leq i_{j} \leq r_{j}, j=1,2, \ldots m$.

For $t=3$, we compute these subgroups for $m=1$ and $m=2$. If $m=1$, we have s_{1} subgroups $L\left(F_{i}\right)$ acting locally on strength 2 derived designs; and if $m=2$, then $s_{1} s_{2}$ subgroups $L\left(F_{i, j}\right)$ acting locally on strength 1 designs.

6.2. Using Permutation Subgroups of the Derived Designs

We now show how to use the subgroups $L_{i_{1}, \ldots, i_{m}}$. Recall that $Z(P)$ is the set of all natural solutions X. From Equation (11) in Theorem $5.1, K^{g}$ is an isomorphic array of $K=[F \mid X]$, hence the vector X^{g} can be pruned from $Z(P)$, for any solution X and any permutation $g \in \operatorname{Aut}(F)$.

We use the following notations in the remaining parts. For a fixed m-tuple of symbols i_{1}, \ldots, i_{m}, let $V_{i_{1}, \ldots, i_{m}}$ be the set of solutions of fraction

$$
F_{i_{1}, \ldots, i_{m}}=O A\left(\left(r_{1} r_{2} \cdots r_{m}\right)^{-1} N ; r_{m+1} \cdots r_{d} ; t-m\right), \text { for } 1 \leq m \leq t-1
$$

For any sub-vector $u \in V_{i_{1}, \ldots, i_{m}}$, from (17) and (13), let

$$
\begin{aligned}
I(u) & :=\operatorname{RowInd}\left(F_{i_{1}, \ldots, i_{m}}\right) ; \quad J(u):=I_{N} \backslash I(u) \\
Z(u) & :=\left\{\left(x_{j}\right): j \in J(u) \text { and } \exists X \in Z(P) \text { s.t. } X[I(u)]=u\right\}
\end{aligned}
$$

here $X[I(u)]:=\left(x_{i}: i \in I(u)\right)$. For instance, if $m=1$ and $u \in V_{1}$ then

$$
Z(u)=\left\{\left[u_{2} ; \ldots ; u_{r_{1}}\right]: X=\left[u ; u_{2} ; \ldots ; u_{r_{1}}\right] \in Z(P)\right\} .
$$

Theorem 6.5. (Main Theorem) For any pair of sub-vectors $u, v \in V_{i_{1}, \ldots, i_{m}}$, if $v=u^{g_{R}}$ for some row permutation $g_{R} \in L_{i_{1}, \ldots, i_{m}}$, we have $Z(u)=Z(v)$.

We prove this theorem in two claims. In Theorem 6.6, without loss of generality, it suffices to give the proof for the first strength 2 derived array. Then Theorem 6.7 shows the induction step.

Theorem 6.6. [Case $m=1$] Let u_{1} and v_{1} be two arbitrary sub-solutions in V_{1}, ie, they form strength 2 OAs $\left[F_{1} \mid u_{1}\right]$ and $\left[F_{1} \mid v_{1}\right]$ of the form $O A\left(r_{1}^{-1} N ; r_{2} \cdots r_{d}\right.$. $s ; 2)$. Let

$$
\begin{aligned}
Z_{X}\left(u_{1}\right) & =\left\{\left[u_{2} ; \ldots ; u_{r_{1}}\right]: X=\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right] \in Z(P)\right\}, \\
Z_{Y}\left(v_{1}\right) & =\left\{\left[v_{2} ; \ldots ; v_{r_{1}}\right]: Y=\left[v_{1} ; v_{2} ; \ldots ; v_{r_{1}}\right] \in Z(P)\right\} .
\end{aligned}
$$

Suppose that there exists a nontrivial subgroup, say $L\left(F_{1}\right)$, and if $v_{1}=u_{1}^{h}$ for some $h \in L_{1}$, we have $Z_{X}\left(u_{1}\right)=Z_{Y}\left(v_{1}\right)$.

Proof. Pick up a nontrivial permutation h in $L\left(F_{1}\right)$. Then it acts locally on $\operatorname{RowInd}\left(F_{1}\right)$. By symmetry, we just check that $Z_{X}\left(u_{1}\right) \subseteq Z_{Y}\left(v_{1}\right)$. We choose any sub-vector

$$
\boldsymbol{u}^{*}:=\left[u_{2} ; \ldots ; u_{r_{1}}\right] \in Z_{X}\left(u_{1}\right)
$$

Then $X=\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right]$ is in $Z(P)$. We view $h \in \operatorname{Aut}(F)$, so

$$
\begin{aligned}
D^{h} & =[F \mid X]^{h}=\left[F^{h} \mid X^{h}\right]=\left[F \mid X^{h}\right]=\left[F \mid\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right]^{h}\right] \\
& =\left[F \mid\left[u_{1}^{h} ; u_{2} ; \ldots ; u_{r_{1}}\right]\right]=\left[F \mid\left[v_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right]\right] .
\end{aligned}
$$

This implies that $\left[v_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right]$ is a solution. Hence $u^{*} \in Z_{Y}\left(v_{1}\right)$.

As a result, we can wipe out all solutions $Y=\left[v_{1} ; v_{2} ; \ldots ; v_{r_{1}}\right] \in Z(P)$ if $v_{1} \in u_{1}^{L_{1}}$, the $L_{1^{-}}$orbit of u_{1} in V_{1}. In other words, if we get $V_{1} \neq \emptyset$, then it suffices to find the first sub-vector of vector X by selecting $\left|V_{1}\right| /\left|L_{1}\right|$ representatives u_{1} from the L_{1} - orbits in V_{1}. Furthermore, the above proof is independent of the original choice of derived design. Hence it can be done simultaneously at all solution sets $V_{1}, V_{2}, \ldots, V_{r_{1}}$, using the subgroups $L_{1}, \ldots, L_{r_{1}}$.

We call this procedure, that results from the Main Theorem, the local pruning process using strength 2 derived designs. Next, if $t \geq 3$ we extend the proof of Theorem 6.6 to cases $2 \leq m \leq t-1$.

Theorem 6.7. [Case $m>1$] For any pair of sub-vectors $u, v \in V_{i_{1}, i_{2}}$, if $v=u^{g_{R}}$ for some $g_{R} \in L_{i_{1}, i_{2}}$, we have $Z(u)=Z(v)$.

Proof. See Appendix A for a proof.

6.3. Operations on Derived Designs

The above localizing idea can be enhanced further when we consider each derived design as an agent that receives data from its lower strength derived designs, make some appropriate operations, then pass the result to its parent design. We name this operation an agent-based localization. Specifically, notice that strength 1 and strength t designs require special operations. Precisely, at the global scale of strength t design, it suffices to find only the representatives of the $H \times \tau$-orbits [see Formula (12)] in the solution space $Z(P)$ of P.

We now formalize our new agent-based localization. Recall from Formula (16) that the symbols $i_{1}, \ldots, i_{m}\left(1 \leq i_{j} \leq r_{j}\right)$ indicate the derived design having symbol i_{j} in column j, for $j=1, \ldots, m$. From Equation (18), $L_{i_{1}, \ldots, i_{m}}$ are the subgroups associated with the derived designs $F_{i_{1}, \ldots, i_{m}}$ having strength $t-m$. When $m=t-1$, write $L_{i_{1}, \ldots, i_{t-1}}$ for the subgroup associated with the strength 1 derived design $F_{i_{1}, \ldots, i_{t-1}}$. The agents of derived designs can be described as follows.

At initial designs $F_{i_{1}, \ldots, i_{t-1}}$ (Initial step when $m=t-1$):
Input: $F_{i_{1}, \ldots, i_{t-1}}$;
Operation:

1. form $V_{i_{1}, \ldots, i_{t-1}}$, the set of all strength 1 vectors of length
$\left.\left(r_{1} r_{2} \cdots r_{t-1}\right)^{-1} N\right)$ being appended to $F_{i_{1}, \ldots, i_{t-1}}$,
2. compute $L_{i_{1}, \ldots, i_{t-1}}$, and
3. find the representatives of $L_{i_{1}, \ldots, i_{t-1}}$ - orbits in the set $V_{i_{1}, \ldots, i_{t-1}}$;

Output: these representatives, ie, solutions of $F_{i_{1}, \ldots, i_{t-1}}$.
At strength k derived designs $(1<k \leq t-1)$: let $m:=t-k$, we have
Input: the solutions having length $\left(r_{1} r_{2} \cdots r_{m} \cdot r_{m+1}\right)^{-1} N$ of strength $k-1$
sub-designs; and the subgroup $L_{i_{1}, \ldots, i_{m}}$;
Operation:

1. form sub-solutions having length $\left.\left(r_{1} r_{2} \cdots r_{m}\right)^{-1} N\right)$ of $F_{i_{1}, \ldots, i_{m}}$,
2. prune these solutions by $L_{i_{1}, \ldots, i_{m}}$;

Output: representatives of the $L_{i_{1}, \ldots, i_{m}}$ - orbits in the set $V_{i_{1}, \ldots, i_{m}}$.
At the (global) design F :

Input: the sub-vectors from strength $t-1$ derived designs;
Operation: find the representatives of σ-orbits in the Cartesian product $V=V_{1} \times V_{2} \times \ldots \times V_{r_{1}}=\{$ vectors X of length $N\}$ where V_{i} had been already pruned by the subgroup $L_{i}(i=1,2, \ldots, m)$;
Output: Two steps
a/ (Isomorph-free test 1) returns solution vectors X which are nonisomorphic up to $\sigma=H \times \tau$, see Equation (12);
b/ (Isomorph-free test 2) forms orthogonal arrays $K=[F \mid X]$ of the same strength t, then select only non-isomorphic arrays, by computing their canonical arrays, (see Section 3).

$$
\text { We brief ideas in Algorithm 2, Pruning-Uses-Symmetry }(F, d)
$$

```
Algorithm 2 Pruning uses subgroups of derived designs
Pruning-Uses-Symmetry ( \(F, d\) )
Input: \(F\) is a strength \(t\) design; \(d\) is the number of columns required
Output: All non-isomorphic extensions of \(F\)
\(\diamond\) STEP 1: Local pruning at strength \(k\) derived designs.
1a) Find sub-vectors of \(F_{i_{1}, \ldots, i_{m}}\), for \(m:=t-k\), and \(k=1, \ldots, t-1\),
1b) prune these sub-vectors locally and simultaneously by using \(L_{i_{1}, \ldots, i_{m}}\),
1c) concatenate these sub-vectors to get sub-vectors in \(V_{i_{1}, \ldots, i_{m-1}}\).
Comment: For \(t=3\), in Step 1), form subvectors \(u_{i, j} \in V_{i, j}\) simultaneously at the \(r_{1} r_{2}\) sets \(V_{i, j}\), then concatenate \(u_{i, j}\left(1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}\right)\) to get \(u_{i} \in V_{i}\).
```

\diamond STEP 2: Pruning at strength t design F.
2a) Select the representative vectors X from the $\sigma=H \times \tau$-orbits of V
Comment: Each vector in V is formed by sub-vectors found from Step 1
2b) append non-isomorphic vectors X to F to get strength t OAs $[F \mid X]$,
2c) get back non-isomorphic arrays into a list $L f$, return $L f$ (find nonisomorphic OAs by computing distinct canonical arrays, see Section).
\diamond STEP 3: Repeating step.
If \# current columns $<d$ Call Pruning-Uses-Symmetry (f, d) for $f \in L f$
Else Return $L f$ EndIf

Example 6.8. Let $U:=[[3,1],[2,3]], F=O A\left(24 ; 3.2^{3} ; 3\right)$,

$$
F=\left[\begin{array}{llllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]^{T}
$$

$\operatorname{Aut}(F)$ has order 12288. Compute the group $H=\operatorname{Row}(\operatorname{Aut}(F))$ (from Definition), and update $H=\operatorname{Stabilizer}(H,[1])$, which is a permutation group of size 768 . The three strength 2 derived designs give 8,8 , and 16 candidates respectively, so we must check $8.8 .16=|V|=1024$ cases. The row permutation subgroups of these strength 2 derived designs with orders $8,1,16$ are

$$
\begin{aligned}
L_{0}= & {[(),(7,8),(5,6),(5,6)(7,8),(3,4),(3,4)(7,8),(3,4)(5,6),(3,4)(5,6)(7,8)], } \\
L_{1}= & {[()], L_{2}=[(),(23,24),(21,22),(21,22)(23,24),(19,20),(19,20)(23,24),} \\
& (19,20)(21,22),(19,20)(21,22)(23,24),(17,18),(17,18)(23,24), \\
& (17,18)(21,22),(17,18)(21,22)(23,24),(17,18)(19,20), \\
& (17,18)(19,20)(23,24),(17,18)(19,20)(21,22), \\
& (17,18)(19,20)(21,22)(23,24)] .
\end{aligned}
$$

The subspaces are pruned to $1,8,1$ vectors respectively; we then check 8 cases.

7. Summary And Closing Comments

A few unknown mixed OAs that previous well-known methods failed to construct (e.g. the strength 3 mixed balanced design $O A\left(96 ; 6 \cdot 4^{2} \cdot 2^{c} ; 3\right)$, with $c>5$, see Nguyen $[2,15]$), now can be found by our combined approach (of graph and group-theoretic methods). Some of their non-isomorphic arrays are listed in the following Table 3.

Table 3: \quad New strength 3 mixed OAs of sizes $N \leq 100$.

In [15], by the Latin squares method, only one $O A\left(80 ; 5 \cdot 4 \cdot 2^{6} ; 3\right)$ and one $O A\left(96 ; 6 \cdot 4^{2} \cdot 2^{5} ; 3\right)$ were found. For the most interesting one with size at most 100 , the series of $O A\left(96 ; 6 \cdot 4^{2} \cdot 2^{6} ; 3\right)$ can not be built up by the Latin squares and
other methods, but thank to the group-theoretic approach we currently obtain at least 8 non-isomorphic OAs, and theirs distinct automorphism group sizes are 2,4 and 8 . We have used multiplicity notation for automorphism group orders. The (IS) construction means employing the Integer linear formulation and Symmetries of automorphism groups of OAs, fully developed in this paper.

We have discussed mathematical aspects of factor enlarging problem of OAs with strength at least 2 , provided a fix number N of experiments. Our approach combining permutation groups and other formulations provides a generic framework for enumerating mixed OAs of any strength with all feasible factor levels and with run sizes N satisfying the Rao bound. However, we currently restrict checking the approach for sizes $N<100$ experiments only.

The dual of the problem, namely fixing the factors and the strength, and try to find better lower bounds of the run sizes also is very interesting and challenging. Techniques from Bose-Mesner or Terwilliger algebras, in the excellent survey by Bannai et al. [1], and other approaches as semidefinite programming (see $[11,21]$) could be promising leads to go.

Acknowledgement. The author appreciates partial supports by Center of Excellence in Mathematics, Thailand and Faculty of Science, Mahidol University, Thailand during completion of this article. He thanks the Organizers of the Fifth Biannual International Conference on Group Theory 2019 (5BIGTC- 2019, ITB, Indonesia) for motivating this write up.

Appendix A: A Proof of Theorem 6.7

For any pair of sub-vectors $u, v \in V_{i_{1}, i_{2}}$, if $v=u^{g_{R}}$ for some $g_{R} \in L_{i_{1}, i_{2}}$, we have $Z(u)=Z(v)$. We prove this result for $t=3$ and $m=2$ only. For arbitrary $t>3$, and $m>2$, the proof is a straightforward generalization.
(i) Similar to the proof of Theorem 6.6, without loss of generality, we consider the first derived design $F_{1}=O A\left(n ; r_{2} \cdots r_{d} ; 2\right)$ where $n=N / r_{1}$. Taking derived designs of F_{1} with respect to the second column (having r_{2} levels), we get r_{2} strength 1 arrays, denoted by $f_{1}:=F_{1,1}, f_{2}:=F_{1,2}$, $\ldots, f_{r_{2}}:=F_{1, r_{2}}$, each is $O A\left(r_{2}^{-1} n ; r_{3} \cdots r_{d} ; 1\right)$. Any u_{1} in V_{1} can be written as $u_{1}=\left[u_{1,1} ; u_{1,2} ; \ldots ; u_{1, r_{2}}\right]$, a concatenation of r_{2} sub-vectors $u_{1, j}$ of length $\frac{n}{r_{2}}$, where

$$
u_{1, j}=\left(x_{\frac{(j-1) n}{r_{2}}+1}, \ldots, x_{\frac{j n}{r_{2}}}\right) \quad \text { for } j=1, \ldots, r_{2}
$$

(ii) Known that the subgroup $L\left(f_{j}\right):=\operatorname{Centralizer}\left(N_{H}\left(f_{j}\right), J\left(f_{j}\right)\right)$ [see from Equations (17) and (18)] consists of row permutations acting locally on

$$
\operatorname{RowInd}\left(f_{j}\right)=\left\{\frac{(j-1) n}{r_{2}}+1, \ldots, \frac{j n}{r_{2}}\right\} \text {, for } j=1, \ldots, r_{2}
$$

Hence the subgroup $L\left(f_{j}\right)$ fixes $J\left(f_{j}\right)=[1, \ldots, N] \backslash \operatorname{RowInd}\left(f_{j}\right)$ pointwise.
(iii) Since V_{1} is the Cartesian product of the subsets $V_{1, j}:=\left\{u_{1, j}\right\}$, we prove $V_{1, j}$ using $L\left(f_{j}\right)$, for all $j=1, \ldots, r_{2}$. Start with $j=1$. Let $u_{1,1}, v_{1,1}$ be two arbitrary sub-vectors in $V_{1,1}$. They can be used to make strength 1 arrays $\left[f_{1} \mid u_{1,1}\right]$ and $\left[f_{1} \mid v_{1,1}\right]$ being of the form $O A\left(r_{2}^{-1} n ; r_{3} \cdots r_{d} \cdot s ; 1\right)$. Let

$$
\begin{aligned}
Z_{X}\left(u_{1,1}\right) & :=\left\{\left[\left[u_{1,2} ; \ldots ; u_{1, r_{2}}\right] ; u_{2} ; \ldots ; u_{r_{1}}\right]\right\} \\
Z_{Y}\left(v_{1,1}\right) & :=\left\{\left[\left[v_{1,2} ; \ldots ; v_{1, r_{2}}\right] ; v_{2} ; \ldots ; v_{r_{1}}\right]\right\}
\end{aligned}
$$

for $X=\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right] \in Z(P), Y=\left[v_{1} ; v_{2} ; \ldots ; v_{r_{1}}\right] \in Z(P)$, where $v_{1}=\left[v_{1,1} ; v_{1,2} ; \ldots ; v_{1, r_{2}}\right] \in V_{1}$.
(iv) We prove if $v_{1,1}=u_{1,1}^{h}$ for some $h \in L\left(f_{1}\right)$, then $Z_{X}\left(u_{1,1}\right)=Z_{Y}\left(v_{1,1}\right)$. In fact, we only need to have $Z_{X}\left(u_{1,1}\right) \subseteq Z_{Y}\left(v_{1,1}\right)$. Let any sub-vector

$$
\boldsymbol{u}^{*}:=\left[\left[u_{1,2} ; \ldots ; u_{1, r_{2}}\right] ; u_{2} ; \ldots ; u_{r_{1}}\right] \in Z_{X}\left(u_{1,1}\right),
$$

and $h \in L\left(f_{1}\right)$. Then we have $X=\left[u_{1} ; u_{2} ; \ldots ; u_{r_{1}}\right] \in Z(P)$, and

$$
\begin{aligned}
K^{h} & =[F \mid X]^{h}=F^{h}\left|X^{h}=F\right| X^{h}=F \mid\left[u_{1}^{h} ; u_{2} ; \ldots ; u_{r_{1}}\right] \\
& =F \mid\left[\left[u_{1,1}^{h} ; u_{1,2} ; \ldots ; u_{1, r_{2}}\right] ; u_{2} ; \ldots ; u_{r_{1}}\right] \\
& =F \mid\left[\left[v_{1,1} ; u_{1,2} ; \ldots ; u_{1, r_{2}}\right] ; u_{2} ; \ldots ; u_{r_{1}}\right] .
\end{aligned}
$$

(v) $Y=\left[\left[v_{1,1} ; u_{1,2} ; \ldots ; u_{1, r_{2}}\right] ; u_{2} ; \ldots ; u_{r_{1}}\right]$ so is a solution and $\boldsymbol{u}^{*} \in Z_{Y}\left(v_{1,1}\right)$. In F_{1}, the choice of f_{j} does not affect to the proof, so the pruning process can be applied at the same time for all $f_{j}, j=1, \ldots, r_{2}$.

Appendix B: Group of Transformations of a Design

Given a set X, a permutation of X is a bijection from X to itself. We write $\operatorname{Sym}(X)$ for the symmetric group on X, ie, the group of all permutations of X. We denote Sym_{N} instead of $\operatorname{Sym}(\{1,2, \ldots, N\})$, for a natural number N. We write elements of Sym_{N} in cycle notation, so the permutation $p=(1,2,3)(4,5)$ is defined by $1^{p}=2,2^{p}=3,3^{p}=1,4^{p}=5,5^{p}=4$. We say a group K acts on a set X if we have a group homomorphism $\phi: K \rightarrow \operatorname{Sym}(X)$. We abbreviate $x^{\phi(g)}$ by x^{g}. Let $p \in \operatorname{Sym}_{N}$. The action of p on a subset $B \subseteq\{1,2, \ldots, N\}$ is given by $B^{p}:=\left\{x^{p}: x \in B\right\}$. The action of p on a list of length N is given by

$$
\left[y_{1}, y_{2}, \ldots, y_{N}\right]^{p}:=\left[y_{1^{p^{-1}}}, y_{2^{p^{-1}}}, \ldots, y_{N^{p^{-1}}}\right]
$$

In other words, we compute the i th position of Y^{p} by $Y^{p}[i]=y_{i^{p}-1}=Y\left[i^{p^{-1}}\right]$.
Let X be the set of all structures of a particular combinatorial type built on an underlying set T. For example, X could be all the graphs with vertex set T.

The subgroup $G:=G(T) \leq \operatorname{Sym}(T)$ which acts naturally on X is called the (full) group of transformations of X. Two elements A and B of X are isomorphic if they are in the same G-orbit, that is, there exists a permutation g in G such that $A=B^{g}$. The automorphism group of a design $S \in \mathrm{X}$ is defined as

$$
\begin{equation*}
\operatorname{Aut}(S):=\left\{g \in G: S^{g}=S\right\} \tag{19}
\end{equation*}
$$

The number of distinct objects isomorphic to a structure S is the length of the G-orbit of S. By Lagrange's theorem [12], this number is $\frac{|G|}{|\operatorname{Aut}(S)|}$.

References

[1] E. Bannai, E. Bannai, H. Tanaka, Y. Zhu, Design theory from the viewpoint of algebraic combinatorics, Graphs and Combinatorics 33 (2017) 1-41.
[2] A. Brouwer, A. Cohen, M. Nguyen, Orthogonal arrays of strength 3 and small run sizes, J. of Statistical Planning \& Inference 136 (2006) 3268-3280.
[3] D.A. Bulutoglu, F. Margot, Classification of orthogonal arrays by integer programming, Journal of Statistical Planning and Inference 138 (2008) 654-666.
[4] A. Chaudhuri, T.C. Christofides, C.R. Rao, Handbook of Statistics, Vol. 34, NorthHolland publications, Elsevier B.V., 2016.
[5] M.A. Fecko and M. Steinder, Combinatorial designs in multiple faults localization for battlefield networks, In: IEEE MILCOM: Military Communications Conference, IEEE Xplore, Vol. 2, Vienna, 2001. doi: 10.1109/mil-com.2001.985975
[6] J.A. Feo, Junran's Quality Manag. and Analysis, McGraw-Hill, 2015.
[7] G.F.V. Glonek and P.J. Solomon, Factorial and time course designs for cDNA microarray experiments, Biostatistics 5 (2004) 89-111.
[8] S. Gupta, Balanced factorial designs for cDNA microarray experiments, Communications in Statistics: Theory and Methods 35 (8) (2006) 1469-1476.
[9] A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal Arrays, Springer-Verlag, Germany, 1999.
[10] R.S. Kenett, S. Zacks, Modern Industrial Statistics with Applications in R, Minitab, 2nd Ed., Wiley, 2014.
[11] M. Laurent, Strengthened semidefinite bounds for codes, Journal Mathematical Programming 109 (2-3) (2007) 239-261.
[12] M.B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, Vol. 195, Springer-Verlag, New York, 2000.
[13] B. McKay, Nauty, cs.anu.edu.au/~bdm/nauty/, Australian Nat. Univ. (2004)
[14] M.V.M. Nguyen, Computer-Algebraic Methods for the Construction of Designs of Experiments, Ph.D. Thesis, Technische Univ. Eindhoven, Netherlands, 2005.
[15] M.V.M. Nguyen, Some new constructions of strength 3 mixed orthogonal arrays, Journal of Statistical Planning and Inference 138 (1) (2008) 220-233.
[16] S.H. Park, Six-Sigma for Quality and Productivity Promotion, Asian Productivity Organization, Tokyo, 2003.
[17] M. Phadke, Quality Engineering Using Robust Designs, Prentice Hall, USA, 1989.
[18] H. Phan, B. Soh, M.V.M. Nguyen, A step-by-step extending parallelism approach for enumeration of combinatorial objects, In: Algorithms and Architectures for Parallel Processing - 10th International Conference (ICA3PP), Springer- Verlag Berlin Heidelberg, 2010.
[19] H. Phan, B. Soh, M.V.M. Nguyen, A parallelism extended approach for the enumeration of orthogonal arrays, In: Algorithms and Architectures for Parallel Processing - 11th International Conference (ICA3PP), Springer- Verlag Berlin Heidelberg, 2011.
[20] E.D. Schoen, P.T. Eendebak, M.V.M. Nguyen, Complete enumeration of purelevel and mixed-level orthogonal array, Journal of Combinatorial Designs 18 (2) (2010) 123-140.
[21] A. Schrijver, New code upper bounds from the Terwilliger algebra, IEEE Transactions on Information Theory 51 (8) (2005) 2859-2866.
[22] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (OEIS), The OEIS Foundation Inc. http://oeis.org/
[23] J. Stufken and B. Tang, Complete enumeration of 2-level orthogonal arrays of strength D with $D+2$ constraints, The Annals of Statistics 35 (2) (2008) 793814.
[24] C.F.J. Wu, M.S. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, Wiley-Interscience, MR1780411, USA, 2000.

