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Abstract. We consider positivity of sum
∑

n

i=1
pif(xi) involving convex functions of

higher order. Analogous for integral
∫

b

a
p(x)f(g(x))dx is also given. Representation of

a function f via the Abel-Gontscharoff’s Interpolating Polynomial and Green functions

leads us to identities for which we obtain conditions for positivity of the mentioned sum

∗This work was supported by the Ministry of Education and Science of the Russian Feder-
ation (the Agreement number No. 02.a03.21.0008.)
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and integral. We obtain bound for integral remainders which occur in those identities

as well as corresponding mean value theorem.

Keywords: n-convex functions; Abel-Gontscharoff’s interpolating polynomial; Green

function; Čebyšev functional.

1. Introduction

The Abel-Gontscharoff interpolation problem in the real case was introduced
in 1935 by Whittaker [18] and subsequently by Gontscharoff [5] and Davis [4].
The Abel-Gontscharoff interpolating polynomial for two points with integral
remainder is given in [1]:

Proposition 1.1. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1 and f ∈ Cn[a, b]. Then we

have

f(t) = Qn−1 (a, b, f, t) +R (f, t) , (1)

where Qn−1 is the Abel-Gontscharoff interpolating polynomial for two-points of

degree n− 1, i.e.,

Qn−1 (a, b, f, t)

=

k
∑

i=0

(t− a)
i

i!
f (i)(a) +

n−k−2
∑

j=0

j
∑

i=0

(t− a)
k+1+i

(a− b)
j−i

(k + 1 + i)! (j − i)!
f (k+1+j)(b)

and the remainder is given by

R (f, t) =

∫ b

a

Gn(t, s)f
(n)(s)ds,

where Gn(t, s) is the Green function in [3, p. 177] given as

Gn(t, s) =
1

(n− 1)!































k
∑

i=0

(

n− 1

i

)

(t− a)
i
(a− s)

n−i−1
a ≤ s ≤ t,

−
n−1
∑

i=k+1

(

n− 1

i

)

(t− a)i (a− s)n−i−1
t ≤ s ≤ b.

(2)

Further, for a ≤ s, t ≤ b the following inequality hold:

(−1)n−k−1 ∂
iGn(t, s)

∂ti
≥ 0, 0 ≤ i ≤ k, (3)

(−1)n−i ∂
iGn(t, s)

∂ti
≥ 0, k + 1 ≤ i ≤ n− 1. (4)
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For further results related to higher order convex functions one can see [11].

The following result is due to Popoviciu [16, 17] (see also [14, 15]).

Proposition 1.2. Let n ≥ 2. Inequality

m
∑

r=1

prf(xr) ≥ 0 (5)

holds for all n-convex functions f : [a, b] → R if and only if the m−tuples

x ∈ [a, b]m, p ∈ Rm satisfy

m
∑

r=1

prx
k
r = 0, for all k ∈ {0, 1, . . . , n− 1}, (6)

m
∑

i=1

pr(xr − t)n−1
+ ≥ 0, for every t ∈ [a, b]. (7)

Remark 1.3. If n = 2, then conditions (6) and (7), i.e.,

m
∑

r=1

pr = 0,

m
∑

r=1

prxr = 0

and
m
∑

r=1

pr(xr − xi)+ ≥ 0, i ∈ {1, . . . ,m− 1}

can be replaced by

m
∑

r=1

pr = 0 and

m
∑

r=1

pr|xr − xi| ≥ 0 for i ∈ {1, . . . ,m},

and vice versa.

The integral analogue is given in the next proposition.

Proposition 1.4. Let n ≥ 2, p : [α, β] → R and g : [α, β] → [a, b]. Then, the

inequality
∫ β

α

p(x)f(g(x)) dx ≥ 0 (8)

holds for all n-convex functions f : [a, b] → R if and only if

∫ β

α

p(x)g(x)k dx = 0, for all k ∈ {0, 1, . . . , n− 1}

∫ β

α

p(x) (g(x)− t)
n−1
+ dx ≥ 0, for every t ∈ [a, b].

(9)
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After this introductory section, we follow with Sections 2 and 3 where identi-

ties for
∑n

i=1 pif(xi) and
∫ b

a
p(x)f(g(x))dx are given using Abel-Gontscharoff’s

Interpolating Polynomial and the Green functions respectively. Also we consider
inequalities for n-convex functions which based on these identities. Section 4 is
devoted to estimations of functions Ak by using Čebyšev and Ostrowski type in-
equalities. In last we give idea to prove related mean value theorems and study
of n-exponential convexity related to functions defined in up coming sections. It
is worth mentioning that some of its results can also be found in [8].

2. Popoviciu Type Identities and Inequalities and Abel-Gontscharoff’s
Interpolating Polynomial

We start this section with the identities of generalizations of Popoviciu type
inequality using Abel-Gontscharoff interpolating polynomial for two points.

Theorem 2.1. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1, x ∈ [a, b]m and p ∈ Rm. Let

f ∈ Cn[a, b] and Gn be the Green function defined as in (2). Then

m
∑

r=1

pr f (xr) = θ1(f) +

∫ b

a

(

m
∑

r=1

prGn (xr, s)

)

f (n)(s)ds, (10)

where

θ1(f) =

k
∑

i=0

f (i)(a)

i!

m
∑

r=1

pr (xr − a)
i

(11)

+

n−k−2
∑

j=0

j
∑

i=0

(

m
∑

r=1

pr(xr − a)k+1+i

)

(−1)
j−i

(b− a)
j−i

(k + 1 + i)!(j − i)!
f (k+1+j)(b).

Proof. Consider the expression

m
∑

r=1

prf(xr). (12)

By using Proposition 1.1, we have

f(t) =

k
∑

i=0

(t− a)
i

i!
f (i)(a)

+

n−k−2
∑

j=0

j
∑

i=0

(t− a)
k+1+i

(−1)
j−i

(b− a)
j−i

(k + 1 + i)! (j − i)!
f (k+1+j)(b)

+

∫ b

a

Gn (t, s) f
(n)(s)ds.

(13)
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Substituting this value of f in (12) and some arrangements, we get (10).

Integral version of the above theorem can be stated as:

Theorem 2.2. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, and x : [α, β] → [a, b],
p : [α, β] → R be continuous functions. Let f ∈ Cn[a, b] and Gn be the Green

function defined as in (2). Then

∫ β

α

p(τ) f (x(τ)) dτ = θ2(f) +

∫ b

a

(

∫ β

α

p(τ)Gn (x(τ), s) dτ

)

f (n)(s)ds, (14)

where

θ2(f) =

k
∑

i=0

f (i)(a)

i!

∫ β

α

p(τ) (x(τ) − a)
i
dt (15)

+

n−k−2
∑

j=0

j
∑

i=0

(

∫ β

α

p(τ) (x(τ) − a)
k+1+i

dτ

)

×
(−1)

j−i
(b− a)

j−i

(k + 1 + i)!(j − i)!
f (k+1+j)(b).

If x and p satisfy additional conditions, then we get generalization of Popovi-
ciu type inequality for n−convex functions, i.e., we give a lower bound for the
sum

∑

prf(xr) which depends only on nodes x1, . . . , xm, weights p1, . . . , pm and
values of higher derivatives of a function f at points a and b.

Theorem 2.3. Let all the assumptions of Theorem 2.1 be valid. In addition, if

for all s ∈ [a, b]

0 ≤

m
∑

r=1

prGn (xr, s) , (16)

then for every n-convex function f : [a, b] → R, the following inequality holds

m
∑

r=1

pr f (xr) ≥ θ1(f), (17)

where θ1(f) is given in (11).

If the reverse inequality in (16) holds, then also the reverse inequality in (17)
holds.

Proof. Since the function f is n-convex, therefore without loss of generality we
can assume that f is n-times differentiable and f (n)(x) ≥ 0, for all x ∈ [a, b].
Hence we can apply Theorem 2.1 to get (17).
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Integral version of the above theorem can be stated as:

Theorem 2.4. Let all the assumptions of Theorem 2.2 be valid. In addition, if

for all s ∈ [a, b]

0 ≤

∫ β

α

p(τ)Gn (x(τ), s) dτ, (18)

then for every n-convex function f : [a, b] → R, it holds

∫ β

α

p(τ) f (x(τ)) dτ ≥ θ2(f), (19)

where θ2(f) is defined in (15).

If the reverse inequality in (18) holds, then also the reverse inequality in (19)
holds.

In some cases the assumption
∑m

r=1 prGn (xr, s) ≥ 0, s ∈ [a, b] can be
replaced with more simpler conditions in which we recognize assumptions from
Popoviciu’s theorem about positivity of sum

∑

prf(xr) for a convex function f .
Namely we have the following statement.

Theorem 2.5. Let n, k ∈ N, n ≥ 2, 1 ≤ k ≤ n − 1, x ∈ [a, b]m p ∈ Rm be

m-tuples such that
∑m

r=1 pr = 0,
∑m

r=1 pr|xr − xs| ≥ 0, for s = 1, 2, . . . ,m and

let Gn be the Green function defined as in (2).

(i) If k is odd and n is even or k is even and n is odd, then for every n-convex

function f : [a, b] → R, it holds

m
∑

r=1

pr f (xr) ≥ θ1(f), (20)

where θ1(f) is given in (11).

Moreover, if f (i)(a) ≥ 0 for i ∈ {2, . . . , k} and f (k+1+j)(b) ≥ 0 if j − i

is even and f (k+1+j)(b) ≤ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n− k − 2}, then

∑m
r=1 pr f (xr) ≥ 0.

(ii) If k and n both are even or odd, then for every n-convex function f :
[a, b] → R, the reverse inequality in (20) holds.

Moreover, if f (i)(a) ≤ 0 for i = 0, . . . , k and f (k+1+j)(b) ≤ 0 if j − i

is even, and f (k+1+j)(b) ≥ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n− k − 2}, then

∑m

r=1 pr f (xr) ≤ 0.

Proof. (i) Let us consider properties (3) and (4) for i = 2. If k is odd and n is

even, then for k = 1 we get (−1)n−2 ∂2Gn(t,s)
∂t2

≥ 0 from (4), i.e. ∂2Gn(t,s)
∂t2

≥ 0, i.e.
Gn is convex. For k > 1, from (3) we get the same inequality. If k is even and
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n is odd, then k ≥ 2 and from (3) we get that Gn is convex in the first variable.
By Remark 1.1, applied on the function Gn we get

m
∑

r=1

prGn (xr, s) ≥ 0,

i.e., the assumptions of Theorem 2.3 are fulfilled and inequality (20) holds. If
further assumptions on f (i)(a) and f (k+1+j)(b) are valid, then the right-hand
side of (20) is nonnegative.

The case (ii) is proved in a similar manner.

An integral analogue of the previous theorem is the following theorem.

Theorem 2.6. Let n, k ∈ N, n ≥ 2, 1 ≤ k ≤ n − 1, x : [α, β] → [a, b] and
p : [α, β] → R be continuous functions satisfying

∫ β

α

p(τ) = 0,

∫ β

α

p(τ)x(τ) = 0,

and
∫ β

α

p(τ)(x(τ) − s)+ ≥ 0 for s ∈ [a, b],

and let Gn be the Green function defined as in (2).

(i) If k is odd and n is even or k is even and n is odd, then for every n-convex

function f : [a, b] → R, then

∫ β

α

p(τ) f (x(τ)) dτ ≥ θ2(f). (21)

Moreover, if f (i)(a) ≥ 0 for i ∈ {0, . . . , k} and f (k+1+j)(b) ≥ 0 if j − i

is even and f (k+1+j)(b) ≤ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈

{0, . . . , n− k − 2}, then
∫ β

α
p(t)f (x(t)) dt ≥ 0.

(ii) If k and n both are even or odd, then for every n-convex function f :
[a, b] → R, then the reverse inequality holds in (21).

Moreover, if f (i)(a) ≤ 0 for i ∈ {0, . . . , k} and f (k+1+j)(b) ≤ 0 if j − i

is even, and f (k+1+j)(b) ≥ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈

{0, . . . , n− k − 2}, then
∫ β

α
p(t)f (x(t)) dt ≤ 0.

3. Results Obtained by Green Functions and Abel-Gontscharoff’s Inter-
polating Polynomial

Now we recall the definition of Green function G which would be used in some
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of our results. The function G : [a, b]× [a, b] is defined by

G(s, t) =











(s− b)(t− a)

b− a
for a ≤ t ≤ s,

(t− b)(s− a)

b− a
for s ≤ t ≤ b.

(22)

The function G is convex and continuous with respect to both s and t.

For any function f : [a, b] → R, f ∈ C2[a, b], we can obtain the following
integral identity by simply using integration by parts

f(x) =
b− x

b− a
f(a) +

x− a

b− a
f(b) +

∫ b

a

G(x, s)f ′′(s)ds, (23)

where the function G is defined as above in (22) (see also [19]).

Also, integration by parts easily yields that for any function f ∈ C2[a, b] the
following identity holds

f(x) = f(a)− af ′(b) + f ′(b)x+

b
∫

a

G1(x, s)f
′′(s)ds, (24)

where the function G1 : [a, b]× [a, b] → R is the Green’s function for ‘two-point
right focal problem’ of the boundary value problem

z′′(ξ) = 0, z(a) = z(b) = 0

and is given by

G1(s, t) =

{

a− t if a ≤ t ≤ s,

a− s if s ≤ t ≤ b.
(25)

Motivated by Abel-Gontscharoff identity (24) and the related Green’s function
(25), we would like to recall some new types of Green functionsGl : [a, b]×[a, b] →
R, (l = 2, 3, 4, ) defined as in [6] (see also [7]):

G2(s, t) =

{

s− b if a ≤ t ≤ s,

t− b if s ≤ t ≤ b,
(26)

G3(s, t) =

{

s− a if a ≤ t ≤ s,

t− a if s ≤ t ≤ b,
(27)

G4(s, t) =

{

b− t if a ≤ t ≤ s,

b− s if s ≤ t ≤ b.
(28)

The functions Gl for l ∈ {1, 2, 3, 4} are continuous, symmetric and convex with
respect to both variables s and t.
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In similar manner as in equation (24) we can define other equations for G2,
G3 and G4 as follows

f(x) = f(b)− bf ′(a)− f ′(a)x+

∫ b

a

G2(x, s)f
′′(s)ds, (29)

f(x) = f(b)− bf ′(b) + (f ′(b)− f ′(a))a+ f ′(a)x +

∫ b

a

G3(x, s)f
′′(s)ds, (30)

f(x) = f(a)− af ′(a)− (f ′(b)− f ′(a))b + f ′(b)x+

∫ b

a

G4(x, s)f
′′(s)ds.(31)

Now we obtain results using the Green function G, (22), together with the
Abel-Gontscharoff polynomials. Here it is worth mentioning that we would use
G0 for Green function G defined in (22).

We begin with some identities related to generalizations of Popoviciu type
inequality.

Theorem 3.1. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, f ∈ Cn[α, β] and x ∈ [a, b]m,

p ∈ Rm. Also let G and Gn be defined by (22) and (2) respectively. Then

m
∑

r=1

pr f (xr) = θ3(f,G0) +

∫ b

a

∫ b

a

(

m
∑

r=1

prG(xr , s)

)

Gn−2(s, t)f
(n)(t)dtds,

where θ3(f,G0) is defined as

θ3(f,G0) =
f(b)− f(a)

b− a

m
∑

r=1

prxr +
bf(a)− af(b)

b− a

m
∑

r=1

pr

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prG(xr , s) (s− a)
i
ds (32)

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)j−i
f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prG(xr , s) (s− a)
k+1+i

ds.

Proof. Putting x = xr in (23), multiplying it with pr where r ∈ {1, 2, . . .m},
adding all the identities we get

m
∑

r=1

prf (xr) =
f(b)− f(a)

b− a

m
∑

r=1

prxr +
bf(a)− af(b)

b− a

m
∑

r=1

pr

+

∫ b

a

(

m
∑

r=1

prG (xr , s)

)

f ′′ (s) ds.

(33)
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Applying the Able-Gontscharoff (10) identity with f → f ′′ and n → n− 2, it is
easy to see that

f ′′(s) =
k
∑

i=0

(s− a)
i

i!
f (i+2)(a) +

n−k−4
∑

j=0

j
∑

i=0

(s− a)
k+1+i

(a− b)
j−i

(k + 1 + i)! (j − i)!
f (k+3+j)(b)

+

∫ b

a

Gn−2(s, t)f
(n)(t)dt.

In similar manner we can state further results related to other Green functions
G1 −G4 as follows:

Theorem 3.2. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, f ∈ Cn[α, β] and x ∈ [a, b]m,

p ∈ Rm. Also let G1 −G4 and Gn be defined by (25)− (28) and (2) respectively.
Then for l ∈ {4, 5, 6, 7}

m
∑

r=1

prf(xr) = θl(f,Gl−3) +

∫ b

a

∫ b

a

(

m
∑

r=1

prGl−3(xr, s)

)

Gn−2(s, t)f
(n)(t)dtds,

where

θ4(f,G1) = (f(a)− af ′(b))

m
∑

r=1

pr + f ′(b)

m
∑

r=1

prxr (34)

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prG1(xr, s) (s− a)
i
ds

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prG1(xr, s) (s− a)
k+1+i

ds,

θ5(f,G2) = (f(b)− bf ′(a))

m
∑

r=1

pr − f ′(a)

m
∑

r=1

prxr (35)

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prG2(xr, s) (s− a)
i
ds

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prG2(xr, s) (s− a)
k+1+i

ds,

θ6(f,G3) = (f(b)− bf ′(b) + (f ′(b)− f ′(a))a)

m
∑

r=1

pr + f ′(a)

m
∑

r=1

prxr (36)
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+
k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prG3(xr, s) (s− a)i ds

+
n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prG3(xr, s) (s− a)k+1+i
ds,

θ7(f,G4) = (f(a)− af ′(a)− (f ′(b)− f ′(a))b)
m
∑

r=1

pr + f ′(b)
m
∑

r=1

prxr (37)

+
k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prG4(xr, s) (s− a)i ds

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prG4(xr, s) (s− a)
k+1+i

ds.

Proof. The proof is followed by using technique of proof of Theorem 3.1 by using
respective identities (24), (29)− (31) for Green functions G1 −G4.

Theorem 3.3. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n − 1, f ∈ Cn[a, b], and let

x : [α, β] → [a, b], p : [α, β] → R be continuous functions. Also let G1 −G4 and

Gn be defined by (25)− (28) and (2) respectively. Then

∫ β

α

p(τ)f(x(τ))dτ

= θ8(f,G0) +

∫ b

a

∫ b

a

∫ β

α

p(τ)G(x(τ), s)Gn−2(s, t)f
(n)(t)dτdsdt,

where

θ8(f,G0) =
f(b)− f(a)

b− a

∫ β

α

p(τ)x(τ)dτ +
bf(a)− af(b)

b− a

∫ β

α

p(τ)dτ

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)G(x(τ), s)dτ(s − a)ids (38)

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)G(x(τ), s) (s− a)k+1+i
dτ ds.
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Theorem 3.4. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n − 1, f ∈ Cn[a, b], and let

x : [α, β] → [a, b], p : [α, β] → R be continuous functions and G0 − G4, Gn be

defined by (22), (25)− (28) and (2) respectively. Then for l ∈ {9, 10, 11, 12}
∫ β

α

p(τ)f(x(τ)) dτ

= θl(f,Gl−8) +

∫ b

a

∫ b

a

∫ β

α

p(τ)Gl−8(x(τ), s)Gn−2(s, t)f
(n)(t)dτ ds dt,

θ9(f,G1) = (f(a)− af ′(b))

∫ β

α

p(x) dx+ f ′(b)

∫ β

α

p(x)g(x) dx

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)G1(x(τ), s)dτ(s − a)ids

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)G1(x(τ), s) (s− a)k+1+i
dτ ds,

θ10(f,G2) = (f(b)− bf ′(a))

∫ β

α

p(x) dx − f ′(a)

∫ β

α

p(x)g(x) dx

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)G2(x(τ), s)dτ(s − a)ids

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)G2(x(τ), s) (s− a)
k+1+i

dτ ds,

θ11(f,G3) = (f(b)− bf ′(b) + (f ′(b)− f ′(a))a)

∫ β

α

p(x)dx

+f ′(a)

∫ β

α

p(x)g(x)dx

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)G3(x(τ), s)dτ(s − a)ids

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)G3(x(τ), s) (s− a)k+1+i
dτ ds,

θ12(f,G4) = (f(a)− af ′(a)− (f ′(b)− f ′(a))b)
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+

∫ β

α

p(x)dx + f ′(b)

∫ β

α

p(x)g(x) dx

+

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)G(x4(τ), s)dτ(s − a)ids

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)G4(x(τ), s) (s− a)
k+1+i

dτ ds.

Theorem 3.5. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, x ∈ [a, b]m and p ∈ Rm. Also

let G0,G1 −G4, Gn be defined by (22), (25)− (28) and (2) respectively.

If f : [a, b] → R is n−convex, and

∫ b

a

(

m
∑

r=1

prGl−3(xr , s)

)

Gn−2(s, t)ds ≥ 0, t ∈ [a, b], (39)

then for l ∈ {3, 4, 5, 6, 7}

m
∑

r=1

pr f (xr) ≥ θl(f,Gl−3). (40)

If the reverse inequality in (39) holds, then also the reverse inequality in (40)
holds.

Proof. It follows from n-convexity of a function f and from Theorem 3.1.

As from (3) we have (−1)n−k−3Gn−2(s, t) ≥ 0, therefore for the case when
n is even and k is odd or n is odd and k is even, it is enough to assume that
∑m

r=1 prG(xr , s) ≥ 0, s ∈ [α, β], instead of the assumption (39) in Theorem 3.5.
Similarly we can discuss for the reverse inequality in (40).

Integral version of the above theorem can be stated as:

Theorem 3.6. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, x : [α, β] → [a, b], p : [α, β] →
R be continuous functions and G0,G1 − G4, Gn be defined by (22), (25) − (28)
and (2) respectively. If f : [a, b] → R is n−convex, and

∫ b

a

∫ β

α

p(τ)Gl−8(x(τ), s)Gn−2(s, t)dτ ds ≥ 0, (41)

then l ∈ {8, 9, 10, 11, 12}

∫ β

α

p(τ)f(x(τ))dτ ≥ θl(f,Gl−8). (42)
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If the reverse inequality in (41) holds, then also the reverse inequality in (42)
holds.

As from (3) we have (−1)n−k−3Gn−2(s, t) ≥ 0, therefore for the case when
n is even and k is odd or n is odd and k is even, it is enough to assume that
∫ b

a
p(τ)Gl−8(x(τ), s)dτ ≥ 0, s ∈ [α, β], l ∈ {8, 9, 10, 11, 12}, instead of the as-

sumption (41) in Theorem 3.6. Similarly we can discuss for the reverse inequality
in (42).

If we deal with assumptions from Remark 1.1, which are equivalent to Popovi-
ciu’s conditions for positivity of sum involving convex function f , then for some
combinations of n and k we get result for n-convex function f . Precisely, we get
the following theorem.

Theorem 3.7. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n − 1. Let G0 and G1 − G4 be

defined by (22), (25)− (28) and let f : [a, b] → R be n−convex. Let x ∈ [a, b]m

and p ∈ R satisfy

m
∑

r=1

pr = 0,

m
∑

r=1

pr|xr − xs| ≥ 0, for s ∈ {1, 2, . . . ,m}.

(i) If n is even and k is odd or n is odd and k is even, then for l ∈ {0, 1, 2, 3, 4}

m
∑

r=1

plf (xr) ≥

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

m
∑

r=1

prGl(xr, s) (s− a)
i
ds

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)
j−i

f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

m
∑

r=1

prGl(xr, s) (s− a)
k+1+i

ds. (43)

Moreover if f (i+2)(a) ≥ 0 for i ∈ {0, . . . , k} and f (k+3+j)(b) ≥ 0 if j − i

is even and f (k+3+j)(b) ≤ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n− k − 4}, then

∑m

r=1 prf (xr) ≥ 0.

(ii) If n and k both are even or both are odd, then reverse inequality holds in

(43).

Moreover if f (i+2)(a) ≤ 0 for i ∈ {0, . . . , k} and f (k+3+j)(b) ≤ 0 if j − i

is even and f (k+3+j)(b) ≥ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n− k − 4}, then

∑m

r=1 prf (xr) ≤ 0.

Proof. (i) By using (3) we have (−1)n−k−3Gn−2(s, t) ≥ 0, a ≤ s, t ≤ b, therefore
if n is even and k is odd or n is odd and k is even then Gn−2(s, t) ≥ 0. Since G is
convex and Gn−2 is nonnegative, the inequality (39) holds. Hence by Theorem
3.5 the inequality (43) holds. By using the other conditions the nonnegativity
of the right-hand side of (43) is obvious.
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Similarly we prove (ii).

The integral version of Theorem 3.7 can be stated as:

Theorem 3.8. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n − 1, x : [α, β] → [a, b] and
p : [α, β] → R be any continuous functions. Also let G, G1 − G4 be defined by

(22) and (25)− (28). Consider f : [a, b] → R is n−convex and

∫ β

α

p(τ) dτ ≥ 0,

∫ β

α

p(τ)(x(τ) − t)+ dτ ≥ 0 for t ∈ [a, b], (44)

(i) If n is even and k is odd or n is odd and k is even, then for l ∈ {0, 1, 2, 3, 4}

∫ β

α

p(τ)f(x(τ))dτ ≥

k
∑

i=0

f (i+2)(a)

i!

∫ b

a

∫ β

α

p(τ)Gl(x(τ), s)(s − a)idτ ds

+

n−k−4
∑

j=0

j
∑

i=0

(−1)j−i (b− a)j−i
f (k+3+j)(b)

(k + 1 + i)! (j − i)!

×

∫ b

a

∫ β

α

p(τ)Gl(x(τ), s) (s− a)k+1+i
dτ ds. (45)

Moreover if f (i+2)(a) ≥ 0 for i ∈ {0, . . . , k} and f (k+3+j)(b) ≥ 0 if j − i

is even and f (k+3+j)(b) ≤ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n− k − 4}, then the right-hand side of (45) is nonnegative, that is

integral version of (5) holds.

(ii) If n and k both are even or both are odd, then reverse inequality holds in

(45).

Moreover if f (i+2)(a) ≤ 0 for i ∈ {0, . . . , k} and f (k+3+j)(b) ≤ 0 if j − i

is even and f (k+3+j)(b) ≥ 0 if j − i is odd for i ∈ {0, . . . , j} and j ∈
{0, . . . , n−k−4}, then the right hand side of the reverse inequality in (45)
is nonpositive, that is the reverse inequality in the integral version of (5)
holds.

4. Related Inequalities for n-Convex Functions at a Point

Under the assumptions of Theorems 2.1, 3.1 and 3.2 here we define some linear
functional as follows:

A1(m, f,x,p, [a, b]) =

m
∑

r=1

prf(xr)− θ1(f) (46)

For l ∈ {3, 4, 5, 6, 7}

Al(m, f,x,p, [a, b]) =

m
∑

r=1

prf(xr)− θl(f,Gl−3) (47)
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Similarly, under the assumptions of Theorem 2.2, 3.3 and 3.4 here we introduce
some further linear functional as follows:

A2([α, β], f, x, p, [a, b]) =

∫ β

α

p(τ)f(x(τ)) dτ − θ2(f) (48)

For l ∈ {8, 9, 10, 11, 12} we have

Al([α, β], f, x, p, [a, b]) =

∫ β

α

p(τ)f(x(τ)) dτ − θl(f,Gl−8) (49)

Here we also define some new functionals B1 and Bl for l ∈ {3, 4, 5, 6, 7} as
follows:

B1(m, t,x,p, [a, b]) =

m
∑

r=1

prGn (xr, t) , (50)

Bl(m, t,x,p, [a, b]) =

∫ b

a

m
∑

r=1

prG(xr, s)Gn−2(s, t)ds ≥ 0 (51)

for all t ∈ [a, b]. And B2 and Bl for l ∈ {8, 9, 10, 11, 12} are defined as

B2([α, β], t, x, p, [a, b]) =

∫ β

α

p(τ)Gn (x(τ), t) dτ dx ≥ 0, (52)

Bl([α, β], t, x, p, [a, b]) =

∫ b

a

∫ β

α

p(τ)Gl−8(x(τ), s)Gn−2(s, t)dτ ds ≥ 0 (53)

for all t ∈ [a, b]. For the sake of brevity we consider Al(·, f, ·, ·, ·) = Al(f) and
Bl(·, t, ·, ·, ·) = Bl(t). We state our next result.

In this section we will give related results for the class of n-convex functions
at a point introduced in [12].

Definition 4.1. Let I be an interval in R, c a point in the interior of I and n ∈ N.

A function f : I → R is said to be n-convex at point c if there exists a constant

K such that the function

F (x) = f(x) −
K

(n− 1)!
xn−1 (54)

is (n− 1)-concave on I ∩ (−∞, c] and (n− 1)-convex on I ∩ [c,∞). A function

f is said to be n-concave at point c if the function −f is n-convex at point c.

A property that explains the name of the class is the fact that a function is
n-convex on an interval if and only if it is n-convex at every point of the interval
(see [12]). For further details on the topic kindly see [12].

Let ei denote the monomials ei(x) = xi, i ∈ N0 = N ∪ {0}. Throughout this
section we let c ∈ 〈a, b〉.
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Theorem 4.2. Let x ∈ [a, c]m1 , p ∈ Rm1 , y ∈ [c, b]m2 and q ∈ Rm2 be such that

for each l ∈ {1, 3, 4, 5, 6, 7}

Bl(m1, t,x,p, [a, c]) ≥ 0 for all t ∈ [a, c], (55)

Bl(m2, t,y,q, [c, b]) ≥ 0 for all t ∈ [c, b], (56)

and

Al(m1, en,x,p, [a, c]) = Al(m2, en,y,q, [c, b]) (57)

where Gl are Green functions given by (22), (24), (29), (30) and (31) respectively
for l ∈ {0, 1, 2, 3, 4}, and Al and Bl be the linear functionals given by (46)− (49)
and (50)–(54). If f : [a, b] → R is (n+ 1)-convex at point c, then

Al(m1, f,x,p, [a, c]) ≤ Al(m2, f,y,q, [c, b]). (58)

If the inequalities in (55) and (56) are reversed, then (58) holds with the reversed

sign of inequality.

Proof. Fix l ∈ {1, 3, 4, 5, 6, 7}. Let z = f − K
n!en be as in Definition 4.1, i.e., the

function z is n-concave on [a, c] and n-convex on [c, b]. Applying Theorems 2.3
and 3.5 to z on the interval [a, c] we have

0 ≥ Al(m1,z,x,p, [a, c]) = Al(m1, f,x,p, [a, c])−
K

n!
Al(m1, en,x,p, [a, c]) (59)

and again applying Theorems 2.3 and 3.5 to F on the interval [c, b] we have

0 ≤ Al(m2,z,y,q, [c, b]) = Al(m2, f,y,q, [c, b])−
K

n!
Al(m2, en,y,q, [c, b]). (60)

So we do have

Al(m1, f,x,p, [a, c])−
K

n!
Al(m1, en,x,p, [a, c])

≤Al(m2, f,y,q, [c, b])−
K

n!
Al(m2, en,y,q, [c, b]).

(61)

Hence, we finally get our required result by using assumption (57).

Theorem 4.3. Let x : [α, β] → [a, c], p : [α, β] → R, y : [γ, δ] → [c, b], q : [γ, δ] →
R be such that for each l ∈ {5, 6, 7, 8}

Bl([α, β], t, x, p, [a, c]) ≥ 0 for all t ∈ [a, c], (62)

Bl([γ, δ], t, y, q, [c, b]) ≥ 0 for all t ∈ [c, b] (63)

and

Al([α, β], en, x, p, [a, c]) = Al([γ, δ], en, y, p, [c, b]) (64)
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where Gl are Green functions given by (22), (24), (29), (30) and (31) respectively
for l ∈ {0, 1, 2, 3, 4}, and Al and Bl be the linear functionals given by (46)− (49)
and (50)–(54).

Al([α, β], f, x, p, [a, c]) ≤ Al([γ, δ], f, y, p, [c, b]). (65)

If the inequalities in (62) and (63) are reversed, then (65) holds with the reversed

sign of inequality.

5. Bounds for Remainders and Functionals

Let z, h : [a, b] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T (z, h) =
1

b− a

∫ b

a

z(ξ)h(ξ)dξ−

(

1

b− a

∫ b

a

z(ξ)dξ

)(

1

b− a

∫ b

a

h(ξ)dξ

)

. (66)

A bound for Čebyšev functional is given in following proposition in which pre-
Grüss inequality is given (see [10]).

Proposition 5.1. Let z, h : [a, b] → R be integrable s. t. zh ∈ L(a, b). If

γ1 ≤ h(η) ≤ γ2 for η ∈ [a, b],

then

|T (z, h)| ≤
1

2
(γ2 − γ1)

√

T (z,z).

For the sake of brevity we consider Al(·, f, ·, ·, ·) = Al(f) and Bl(·, t, ·, ·, ·) =
Bl(t) which was defined in previous section. Now we state our next result.

Theorem 5.2. Let l ∈ {1, . . . , 12}. Let f ∈ Cn[a, b] such that for real numbers γ1
and γ2 we have

γ1 ≤ f (n)(η) ≤ γ2 for η ∈ [a, b].

Then in representation

Al(f) =

[

fn−1(b)− fn−1(a)
]

b− a

∫ b

a

Bl(ξ)dξ + (b − a)Rl
n, (67)

remainder Rl
n satisfies estimation

|Rl
n| ≤

1

2
(γ2 − γ1)

√

T (Bl, Bl). (68)

Proof. Fix l ∈ {1, . . . , 12}.
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Starting with Čebyšev functional

T (z, h) =
1

b− a

∫ b

a

z(ξ)h(ξ)dξ −

(

1

b− a

∫ b

a

z(ξ)dξ

)(

1

b− a

∫ b

a

h(ξ)dξ

)

.

Now replacing z by Bl and h by f (n), we obtain

T (Bl, f
(n)) =

1

b− a

∫ b

a

Bl(ξ)f
(n)(ξ)dξ

−

(

1

b− a

∫ b

a

Bl(ξ)dξ

)

×

(

1

b− a

∫ b

a

f (n)(ξ)dξ

)

.

which in turn gives us

(b−a)T (Bl, f
(n)) =

∫ b

a

Bl(ξ)f
(n)(ξ)dξ−

(

∫ b

a

Bl(ξ)dξ

)(

1

b− a

∫ b

a

f (n)(ξ)dξ

)

.

which can be written as

∫ b

a

Bl(ξ)f
(n)(ξ)dξ =

(

1

b− a

∫ b

a

f (n)(ξ)dξ

)(

∫ b

a

Bl(ξ)dξ

)

+(b− a)T (Bl, f
(n)).

and finally we get

Al(f) =

∫ b

a

Bl(ξ)f
(n)(ξ)dξ =

fn−1(b)− fn−1(a)

(b − a)

∫ b

a

Bl(ξ)dξ + (b− a)Rl
n,

where we used definition of Al from previous sections and

Rl
n =

1

(b− a)

(

∫ b

a

Bl(ξ)f
(n)(ξ)dξ −

1

b − a

∫ b

a

f (n)(ξ)dξ

∫ b

a

Bl(ξ)dξ

)

.

satisfying the inequality using Proposition 5.11

|Rl
n| = |T (Bl, f

(n)| ≤
1

2
(γ2 − γ1)

√

T (Bl, Bl).

Now we give some Ostrowski-type inequalities related to the generalized linear
inequalities.

Theorem 5.3. Let for l ∈ {1, . . . , 12} Al and Bl be linear functionals as defined

in previous section. Furthermore, let (q, r) be a pair of conjugate exponents,

i.e., 1 ≤ q, r ≤ ∞, 1
q
+ 1

r
= 1. Let f (n) ∈ Lq[a, b] for n ≥ 1. Then we have for

l ∈ {1, 2, 3, 4, 5, 6, 7, 8}
|Al(f)| ≤ ‖f (n)‖q ‖Bl‖r . (69)
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The constant on right hand side of (69) is sharp for 1 < q ≤ ∞ and the best

possible for q = 1.

Remark 5.4. For idea of the proof kindly see [9].

Using the same method as given in [2] we can state mean value theorems and
results connected with exponentially convexity.
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generalization of Taylors formula, J. Inequal. Appl. (2015), Art. No. 196, 22 pages.

[3] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, 3rd
Ed., 2003.

[4] P.J. Davis, Interpolation and Approximation, Blaisdell, Boston, 1961.

[5] V.L. Gontscharoff, Theory of Interpolation and Approximation of Functions,
Gostekhizdat, Moscow, 1954.
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[12] J. Pečarić, M. Praljak, A. Witkowski, Linear operator inequality for n-convex
functions at a point, Math. Ineq. Appl. 18 (4) (2015) 1201–1217.

[13] J. Pečarić and J. Perić, Improvement of the Giaccardi and the Petrović inequality
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