Left Bi-quasi and Minimal Left Bi-quasi Ideals of Ternary Semiring

Manasi Mandal and Sampad Das
Department of Mathematics, Jadavpur University, Kolkata-700032, India
Email: manasi_ju@yahoo.in; jumathsampad@gmail.com
Nita Tamang
Department of Mathematics, North Bengal University, Siliguri-734013, India
Email: nita_anee@yahoo.in

Received 10 April 2019
Accepted 30 June 2020
Communicated by Y.Q. Chen
AMS Mathematics Subject Classification(2000): 16Y60, 16Y99

Abstract

In this paper, the notions of left bi-quasi ideals and bi-quasi ideals of a ternary semiring have been introduced, which are extensions of the concept of bi-ideals in a ternary semiring. The concept of minimal left bi-quasi ideals, left bi-quasi simple ternary semiring have also been studied. Characterization of regular ternary semiring in terms of left bi-quasi ideals has been obtained.

Keywords: Ternary semiring; Bi-quasi ideal; Minimal left bi-quasi ideal; Left bi-quasi simple ternary semiring; Regular ternary semiring.

1. Introduction

The concept of ternary algebraic system was first introduced by D.H. Lehmer [11] in 1932 which is a generalization of abelian groups. In 1971, Lister [12] introduced ternary rings. To generalize the ternary rings introduced by Lister, in 2003 T.K. Dutta and S. Kar [6] introduced the notion of ternary semirings. Series of studies on ternary semirings have been done by T.K. Dutta et al. $[3,4,5,7,8,10]$. Dixit and Dewan [1] studied about the quasi-ideals and biideals in ternary semigroups. S. Kar [9] generalized the concept of quasi-ideals and bi-ideals in ternary semirings. M.M.K. Rao [13] initiated the notion of biquasi ideals and fuzzy bi-quasi ideals of Γ-semigroup, he also introduced the
notion of bi-quasi ideals in semirings [14]. The purpose of the paper is as stated in the abstract.

The structure of the paper is organized as follows: In Section 2, we recall some preliminaries of ternary semiring for their use in the sequel. In Section 3, we introduce the notion of bi-quasi ideals and left (right, lateral) bi-quasi ideals in ternary semirings. We use these concepts to characterize regular ternary semirings. We also obtain some properties of left bi-quasi ideals in ternary semirings. In Section 4, we introduce the concept of minimal bi-quasi ideals and bi-quasi simple ternary semirings. We obtain some characterizations (Theorems 4.3 and 4.4) of left bi-quasi simple ternary semirings. Theorem 4.11, characterizes regular ternary semirings in terms of the left bi-quasi ideals.

2. Preliminaries

In this section, we review some definitions and results which will be used in later sections.

Definition 2.1. [6, Definition 2.1] A non empty set S together with a binary operation called addition and ternary multiplication, denoted by juxtaposition is said to be a ternary semiring if S is an additive commutative semigroup satisfying the following condition:
(1) $(a b c) d e=a(b c d) e=a b(c d e)$,
(2) $(a+b) c d=a c d+b c d$,
(3) $a(b+c) d=a b d+a c d$,
(4) $a b(c+d)=a b c+a b d$, for all $a, b, c, d, e \in S$.

Example 2.2. [3, Example 2.2] Let S be a set of continuous functions $f: X \rightarrow \mathcal{R}$ where X is a topological space and R is the set of all negative real numbers. Now we define a binary addition and ternary multiplication on S as follows:
(1) $(f+g)(x)=f(x)+g(x)$,
(2) $(f g h)(x)=f(x) g(x) h(x)$, for all $f, g, h \in S$ and $x \in X$.

Then with respect to the binary addition and ternary multiplication S forms a ternary semiring.

Definition 2.3. [6, Definition 2.5] Let S be a ternary semiring. If there exists an element $a \in S$ such that $0+x=x$ and $0 x y=x 0 y=x y 0=0$ for $x, y \in S$, then " 0 " is called zero element or simply the zero of the ternary semiring S. In this case we say that S is ternary semiring with zero.

Throughout this paper, S will always denote a ternary semiring with zero and unless, stated otherwise a ternary semiring means a ternary semiring with zero. Let A, B, C be three subsets of S. Then by $A B C$, we mean the set of all finite sums of the form $\sum a_{i} b_{i} c_{i}$ with $a_{i} \in A, b_{i} \in B, c_{i} \in C$.

Definition 2.4. [6, Definition 2.6] An additive subsemigroup T of S is called a ternary subsemiring if $t_{1} t_{2} t_{3} \in T$ for all $t_{1}, t_{2}, t_{3} \in T$.

Definition 2.5. [6, Definition 2.7] An additive subsemigroup I of S is called a left (resp. right, lateral) ideal of S if $s_{1} s_{2} i\left(r e s p . i s_{1} s_{2}, s_{1} i s_{2}\right) \in I$, for all $s_{1}, s_{2} \in S$ and $i \in I$. If I is both left and right ideal of S, then I is called a two-sided ideal of S. If I is a left, a right, a lateral ideal of S, then I is called an ideal of S.

Definition 2.6. [9, Definition 3.1] An additive subsemigroup Q of a ternary semiring S is called a quasi-ideal of S if $Q S S \cap(S Q S+S S Q S S) \cap S S Q \subseteq Q$.

Definition 2.7. [9, Definition 3.14] A ternary subsemiring B of a ternary semiring S is called a bi-ideal of S if $B S B S B \subseteq B$.

Definition 2.8. [6, Definition 4.1] An element a in a ternary semiring S is called regular if there exists an element $x \in S$ such that axa $=a$. A ternary semiring S is called regular if all of its elements are regular.

Definition 2.9. [2, Definition 1.7] Let P be an ideal of S. Then P is said to be strongly nilpotent if there exists a positive integer n such that $(P S)^{n-1} P=0$.

3. Left Bi-quasi Ideals

Definition 3.1. A ternary subsemiring L of a ternary semiring S is called a left bi-quasi ideal of S if $S S L \cap L S L S L \subseteq L$.

Definition 3.2. A ternary subsemiring R of a ternary semiring S is called a right bi-quasi ideal of S if $R S S \cap R S R S R \subseteq R$.

Definition 3.3. A ternary subsemiring M of a ternary semiring S is called a lateral bi-quasi ideal of S if $(S M S+S S M S S) \cap M S M S M \subseteq M$.

Definition 3.4. Let S be a ternary semiring. A ternary subsemiring B of S is said to be bi-quasi ideal of S if B satisfies all three conditions $S S B \cap B S B S B \subseteq B$, $(S B S+S S B S S) \cap B S B S B \subseteq B$ and $B S S \cap B S B S B \subseteq B$.

Example 3.5. Let $S=\left\{\left(\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right): a, b, c, d, e, f \in Q_{0}^{-}, f \neq 0\right\}$ be the ternary semiring with respect to matrix multiplication of the set of all 3×3 upper triangular matrices over Q_{0}^{-}, where Q_{0}^{-}be the set of all non positive rational numbers. Consider $L=\left\{\left(\begin{array}{ccc}0 & m & 0 \\ 0 & 0 & 0 \\ 0 & 0 & n\end{array}\right): m, n \in Q_{0}^{-}, n \neq 0\right\}$. Then L is not
a bi-ideal of the ternary semiring S but L is a left bi-quasi ideal of S. Let $x \in S S L \cap L S L S L$. Then

$$
\begin{aligned}
x & =\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & d_{1} & e_{1} \\
0 & 0 & f_{1}
\end{array}\right)\left(\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & d_{2} & e_{2} \\
0 & 0 & f_{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & m_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & n_{1}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & m_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & n_{2}
\end{array}\right)\left(\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & d_{3} & e_{3} \\
0 & 0 & f_{3}
\end{array}\right)\left(\begin{array}{ccc}
0 & m_{3} & 0 \\
0 & 0 & 0 \\
0 & 0 & n_{3}
\end{array}\right)\left(\begin{array}{ccc}
a_{4} & b_{4} & c_{4} \\
0 & d_{4} & e_{4} \\
0 & 0 & f_{4}
\end{array}\right)\left(\begin{array}{ccc}
0 & m_{4} & 0 \\
0 & 0 & 0 \\
0 & 0 & n_{4}
\end{array}\right)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & a_{1} a_{2} m_{1} & a_{1} c_{2} n_{1}+b_{1} e_{2} n_{1}+c_{1} f_{2} n_{1} \\
0 & 0 & d_{1} e_{2} n_{1}+e_{1} f_{2} n_{1} \\
0 & 0 & f_{1} f_{2} n_{1}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & e_{3} f_{4} m_{2} n_{3} n_{4} \\
0 & 0 & 0 \\
0 & 0 & f_{3} f_{4} n_{2} n_{3} n_{4}
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & u & 0 \\
0 & 0 & 0 \\
0 & 0 & v
\end{array}\right)(\text { say })
\end{aligned}
$$

Then the equations

$$
\begin{aligned}
a_{1} a_{2} m_{1} & =0=u \\
a_{1} c_{2} n_{1}+b_{1} e_{2} n_{1}+c_{1} f_{2} n_{1} & =e_{3} f_{4} m_{2} n_{3} n_{4}=0 \\
d_{1} e_{2} n_{1}+e_{1} f_{2} n_{1} & =0 \\
f_{1} f_{2} n_{1} & =f_{3} f_{4} n_{2} n_{3} n_{4}=v(\neq 0)
\end{aligned}
$$

have non-trivial solutions. Hence, $x \in L$. Therefore $S S L \cap L S L S L \subseteq L$ which implies L is left bi-quasi ideal of S but $L S L S L \nsubseteq L$ which is evident from the above computation. Hence L is not bi-ideal of S.

Theorem 3.6. Let S be a ternary semiring. Then every left (right) ideal L of S is bi-quasi ideal of S.

Proof. Let L be a left ideal of a ternary semiring S. Then $S S L \subseteq L$. Now $S S L \cap L S L S L \subseteq S S L \subseteq L$. So L is left bi-quasi ideal. Also $(S L S+S S L S S) \cap$ $L S L S L \subseteq L S L S L \subseteq S S S S L \subseteq S S L \subseteq L$. So L is lateral bi-quasi ideal of S. Similarly we can prove L is right bi-quasi ideal of S and consequently L is bi-quasi ideal of S.

Theorem 3.7. Every lateral ideal M of a ternary semiring S is bi-quasi ideal of S.

Proof. Let S be a ternary semiring and M a lateral ideal of S. Then ($S M S+$ $S S M S S) \subseteq M$. Now $S S M \cap M S M S M \subseteq M S M S M \subseteq S S M S S \subseteq(S M S+$ $S S M S S$) (Since $0 \in S M S$) $\subseteq M$. Similarly we can prove M is right bi-quasi
ideal of S. Again $(S M S+S S M S S) \cap M S M S M \subseteq S M S+S S M S S \subseteq M$. So M is lateral bi-quasi ideal of S. Consequently M is bi-quasi ideal of S.

Corollary 3.8. Every ideal of ternary semiring is a bi-quasi ideal.
Theorem 3.9. Every quasi ideal Q of a ternary semiring S is bi-quasi ideal of S.
Proof. Let Q be a quasi ideal of ternary semiring S. Then $S S Q \cap(S Q S+$ $S S Q S S) \cap Q S S \subseteq Q$. We have $Q S Q S Q \subseteq S Q S+S S Q S S$ (Since $Q S Q S Q \subseteq$ $S S Q S S$ and $0 \in S Q S)$. Also $Q S Q S Q \subseteq Q(S S S) S \subseteq Q S S$. Thus $Q S Q S Q \subseteq$ $Q S S \cap(S Q S+S S Q S S)$. So $S S Q \cap Q S Q S Q \subseteq S S Q \cap(S Q S+S S Q S S) \cap Q S S \subseteq$ Q. Hence Q is left bi-quasi ideal of S. Similarly we can prove Q is right biquasi ideal of S. Further $Q S Q S Q \subseteq S S Q$ and $Q S Q S Q \subseteq Q S S$ implies that $Q S Q S Q \subseteq S S Q \cap Q S S$. Thus $(S Q S+S S Q S S) \cap Q S Q S Q \subseteq S S Q \cap(S Q S+$ $S S Q S S) \cap Q S S \subseteq Q$ that proves Q is lateral bi-quasi ideal of S. Consequently Q is bi-quasi ideal of ternary semiring S.

Theorem 3.10. Every bi-ideal of a ternary semiring S is a bi-quasi ideal of S.
Proof. Let B be a bi-ideal of ternary semiring S. Then $B S B S B \subseteq B$. Therefore $S S B \cap B S B S B \subseteq B S B S B \subseteq B, B S S \cap B S B S B \subseteq B S B S B \subseteq B$ and $(S B S+$ $S S B S S) \cap B S B S B \subseteq B S B S B \subseteq B$. Hence B is a bi-quasi ideal of S.

Theorem 3.11. [3, Theorem 3.4] Let S be a ternary semiring. S is regular if and only if $R M L=R \cap M \cap L$, for any right ideal R, lateral ideal M and left ideal L.

Theorem 3.12. Let S be a regular ternary semiring. Then a ternary subsemiring L is a left bi-quasi ideal of S if and only if $L=L S L$.

Proof. Suppose L is a left bi-quasi ideal of a regular ternary semiring S. If $a \in L$, then there exists $s \in S$ such that $a=a s a \in L S L$ that implies $L \subseteq L S L$. Again $L S L \subseteq S S L$ and by regularity, $L S L \subseteq L S L S L$. Thus $L S L \subseteq S S L \cap L S L S L \subseteq$ L. Hence $L=L S L$.

Conversely, suppose $L=L S L$. Since S is regular, $L \subseteq L S L \subseteq S S L$. Thus $S S L \cap L S L S L=S S L \cap L \subseteq L$. Consequently L is a left bi-quasi ideal of S.

Theorem 3.13. Let S be a regular ternary semiring. Then every left bi-quasi ideal of S is an ideal of S.

Proof. Let S be a regular ternary semiring and L a left bi-quasi ideal of S. By Theorem 3.11, we have $L S S \cap(S L S+S S L S S) \cap S S L=L S S S L S S S L+$ $L S S S S L S S S S L \subseteq L S L S L+L S S L S S L \subseteq L S L S L+L S L S L$ (cf. Theorem 3.12) $\subseteq L S L S L$. Also $L S S \cap(S S L+S S L S S) \cap S S L=L S S S L S S S L+$ $L S S S S L S S S S L \subseteq L S L S L+L S S L S S L \subseteq S S S S L+S S S S S S L \subseteq S S L+$ $S S L \subseteq S S L$. Therefore $L S S \cap(S S L+S S L S S) \cap S S L \subseteq S S L \cap L S L S L \subseteq L$.

Hence L is quasi ideal of S. Since in regular ternary semiring every bi-ideal is quasi ideal and every quasi ideal is an ideal, therefore in regular ternary semiring every bi-quasi ideal is an ideal.

Theorem 3.14. Let S be a regular ternary semiring. Then every left bi-quasi ideal is a bi-ideal of S.

Proof. Suppose L is a left bi-quasi ideal of S. Clearly by Theorem 3.12, $L S L S L$ $\subseteq L$. Consequently L is a bi-ideal of S.

Theorem 3.15. Let S be a ternary semiring and $\left\{L_{i}\right\}_{i \in I}$ a family of left bi-quasi ideals of S. Then $\bigcap_{i \in I} L_{i}$ is a left bi-quasi ideal of S, provided $\bigcap_{i \in I} L_{i} \neq \phi$.

Proof. Let $L=\bigcap_{i \in I} L_{i}$. Then $S S L_{i} \cap L_{i} S L_{i} S L_{i} \subseteq L_{i}$, for all $i \in I$. We have $S S L \cap L S L S L \subseteq S S L_{i} \cap L_{i} S L_{i} S L_{i} \subseteq L_{i}$, for all $i \in I$. Hence L is left bi-quasi ideal of ternary semiring S.

We obtain the following proposition by routine verification.

Proposition 3.16. Let S be a ternary semiring, L a left ideal of S, M a lateral ideal of S and R a right ideal of S. Then $L \cap M \cap R$ is a left bi-quasi ideal of S.

Theorem 3.17. If B is a bi-quasi ideal and T is a ternary subsemiring of a ternary semiring S, then $B \cap T$ is bi-quasi ideal of T.

Proof. Clearly $B \cap T$ is a subsemiring of T. Now $T T(B \cap T) \cap((B \cap T) T(B \cap$ $T) T(B \cap T)) \subseteq T T T \cap T T T T T \subseteq T$. Also $T T(B \cap T) \cap((B \cap T) T(B \cap T) T(B \cap$ $T)) \subseteq T T B \cap B T B T B \subseteq B$. Which implies that $T T(B \cap T) \cap((B \cap T) T(B \cap$ $T) T(B \cap T)) \subseteq B \cap T$. Consequently $B \cap T$ is left bi-quasi ideal of T. Similarly we can prove that $B \cap T$ is right and lateral bi-quasi ideal of T. Hence $B \cap T$ is bi-quasi ideal of T.

Theorem 3.18. Let L be a left ideal, R a right ideal of a ternary semiring S and e a multiplicative idempotent element of S. Then $R S e, e S L$ are left bi-quasi ideals of S.

Proof. To show $R S e$ is a left bi-quasi ideal of S, it is enough if we prove $R S e=$ $R \cap(S e S+S S e S S) \cap S S e$ (cf. Proposition 3.16). Clearly $R S e \subseteq R \cap S S e$. Let $a \in$ $R \cap S S e$. Then $a \in R$ and $a \in S S e$. Now $a \in S S e$ implies that $a=\sum_{i=1}^{m} s_{i} t_{i} e$ for some $s_{i}, t_{i} \in S$. Therefore aee $=\left(\sum_{i=1}^{m} s_{i} t_{i} e\right) e e=\sum_{i=1}^{m} s_{i} t_{i}(e e e)=\sum_{i=1}^{m} s_{i} t_{i} e=$ a. implies that $a \in R e e \subseteq R S e$ and hence $R S e=R \cap S S e$.

Again $a=$ aee $\in S e S$ and $0 \in S S e S S$ implies that $a+0=a \in S e S+S S e S S$. Thus $R \cap S S e \subseteq S e S+S S e S S$. Consequently $R S e=R \cap(S e S+S S e S S) \cap S S e$.

Similarly we can show that $e S L$ is left bi-quasi ideal of S.

Theorem 3.19. Let e and f be two multiplicative idempotent elements of ternary semiring S and M a lateral ideal of S. Then eSMSf is a left bi-quasi ideal of S.

Proof. Let M be a lateral ideal of ternary semiring S. Then clearly eSMSf \subseteq $e S S \cap M \cap S S f$. Let $a \in e S S \cap M \cap S S f$. Then $a \in e S S, a \in M$ and $a \in S S f$. Now $a \in e S S$ and $a \in S S f$ imply that $a=\sum_{i=1}^{m} e s_{i} t_{i}=\sum_{j=1}^{n} u_{j} v_{j} f$ for some $s_{i}, t_{i}, u_{j}, v_{j} \in S$. Therefore eeaff $=e e\left(\sum_{i=1}^{m} e s_{i} t_{i}\right) f f=\left(\sum_{i=1}^{m} e s_{i} t_{i}\right) f f=$ $\left(\sum_{j=1}^{n} u_{j} v_{j} f\right) f f=\sum_{j=1}^{n} u_{j} v_{j} f=a$. So $a \in e e M f f \subseteq e S M S f$. Thus $e S M S f=$ $e S S \cap M \cap S S f$. Consequently, eSMSf is a left bi-quasi ideal of S.

4. Minimal Left Bi-quasi Ideals

Definition 4.1. Let S be a ternary semiring. A left bi-quasi ideal L of S is called a minimal left bi-quasi ideal of S if it does not contain any left bi-quasi ideal of S.

Definition 4.2. A ternary semiring S is called left bi-quasi simple if S is the unique left bi-quasi ideal of S.

A characterization of left bi-quasi simple ternary semiring is obtained in the following theorem:

Theorem 4.3. A ternary semiring S is left bi-quasi simple if and only if $S S a \cap$ $a S a S a=S$ for all $a \in S$.

Proof. Let S be a left bi-quasi simple and let $a \in S$. Since $S S a \cap a S a S a$ is the intersection of two left bi-quasi ideal of S. Thus $S S a \cap a S a S a$ is a left bi-quasi ideal of S. Therefore $S S a \cap a S a S a=S$ for all $a \in S$.

Conversely, suppose $S S a \cap a S a S a=S$ for all $a \in S$ and T is a left bi-quasi ideal of S. Let $b \in T$. Then $S=S S b \cap b S b S b \subseteq S S T \cap T S T S T \subseteq T \subseteq S$. So $T=S$ and hence S is left bi-quasi simple.

Theorem 4.4. Let S be a ternary semiring. Then following are equivalent:
(1) S is left bi-quasi simple,
(2) $S S a=S$ for all $a \in S$,
(3) $\langle a\rangle_{l b q}=S$ for all $a \in S$, where $\langle a\rangle_{l b q}$ be the smallest left bi-quasi ideal of S containing a.

Proof. (1) $\Rightarrow(2)$ Let S be left bi-quasi simple. For $a \in S, S S a$ is left ideal of S. So $S S a$ is left bi-quasi ideal of S. Therefore $S S a=S$ for all $a \in S$.
$(2) \Rightarrow(3)$ Let $\langle a\rangle_{l b q}$ be the smallest left bi-quasi ideal of S containing a. Then $S S a \subseteq\langle a\rangle_{l b q} \Rightarrow S \subseteq\langle a\rangle_{l b q}$. So $S=\langle a\rangle_{l b q}$.
$(3) \Rightarrow(1)$ Suppose A is a left bi-quasi ideal of S and $a \in A$. Now, $\langle a\rangle_{l b q} \subseteq A$, (by (3)) $S \subseteq A$ implies $A=S$. Consequently S is left bi-quasi simple.

Theorem 4.5. Let S be a ternary semiring and B be a left bi-quasi ideal of S. Then B is minimal if and only if B is the intersection of minimal left ideal and minimal bi-ideal of S.

Proof. Let B be a minimal left bi-quasi ideal of S. Then $S S B \cap B S B S B \subseteq B$. Let $b \in B$. Then $S S b$ is a left ideal and $b S b S b$ is a bi-ideal of S. So, their intersection $S S b \cap b S b S b$ is a left bi-quasi ideal of S. Further $S S b \cap b S b S b \subseteq$ $S S B \cap B S B S B \subseteq B$. Since B is minimal so $S S b \cap b S b S b=B$. Now it remains to show that $S S b$ and $b S b S b$ are minimal left ideal and minimal biideal of S respectively. If possible, let L be a left ideal of S such that $L \subseteq S S b$. Then $S S L \subseteq L \subseteq S S b$. Thus $S S L \cap b S b S b \subseteq S S b \cap b S b S b=B$. By minimality of $B, S S L \cap b S b S b=B$. This implies that $B \subseteq S S L$. Also $S S b \subseteq S S B \subseteq S S(S S L) \subseteq S S L \subseteq L$. Thus $L=S S b$. Hence $S S b$ is minimal left ideal of S. If possible, let K be a left bi-quasi ideal of S such that $K \subseteq b S b S b$. Then $K S K S K \subseteq K \subseteq b S b S b$. Now $S S b \cap K S K S K \subseteq$ $S S b \cap b S b S b=B$. By minimality of $B, S S L \cap K S K S K=B$. So $B \subseteq$ $K S K S K$. Again $b S b S b \subseteq B S B S B \subseteq(K S K S K) S(K S K S K) S(K S K S K) \subseteq$ KSSSKSSSKSSSKSSSK \subseteq KSKSKSKSK \subseteq KSSSKSSSK \subseteq $K S K S K \subseteq K$. Thus $K=b S b S b$. Hence $b S b S b$ is minimal bi-ideal of S.

Conversely, let L be a minimal left ideal and K a minimal bi-ideal of S. Then $B=L \cap K$ is a left bi-quasi ideal of S. Let B_{1} be a left bi-quasi ideal of S such that $B_{1} \subseteq B$. Then $S S B_{1} \subseteq S S B \subseteq S S L \subseteq L$. L is minimal left ideal of S implies $L=S S B_{1}$. Also $B_{1} S B_{1} S B_{1} \subseteq B S B S B \subseteq K S K S K \subseteq K$. By minimality of $K, K=B_{1} S B_{1} S B_{1}$. Further $B=L \cap K=S S B_{1} \cap B_{1} S B_{1} S B_{1} \subseteq B_{1}$. Thus $B=B_{1}$. Hence B is minimal left bi-quasi ideal of S.

Theorem 4.6. [2, Theorem 2.6] Let B be a minimal bi-ideal of a ternary semiring S with no nonzero strongly nilpotent ideals. Then B can be represented in the form of $R M L$ with minimal right ideal R, minimal lateral ideal M and minimal left ideal L of S.

Corollary 4.7. If B is minimal left bi-quasi ideal of ternary semiring S with no non-zero strongly nilpotent ideals then by Theorem 4.6, B can be represented in the form $L_{1} \cap R M L$ with minimal right ideal R, minimal left ideals L, L_{1} and minimal lateral ideal M.

Theorem 4.8. Let B be a left bi-quasi ideal of S. If B is minimal then any two non zero element of B generate the same ideal (left, lateral, right) of S.

Proof. Let B be a minimal left bi-quasi ideal of S and $0 \neq a \in B$. Then the left ideal $\langle a\rangle_{l}$ generated by a, is a left bi-quasi ideal of S. So $B \cap\langle a\rangle_{l}$ is a left bi-quasi ideal of S. By minimality of $B, B=B \cap<a>_{l}$. Thus $B \subseteq\langle a\rangle_{l}$. Now for any
non zero element $b \in B, b \in B \subseteq\langle a\rangle_{l} \Rightarrow\langle b\rangle_{l} \subseteq\langle a\rangle_{l}$. Similarly, $\langle a\rangle_{l} \subseteq\langle b\rangle_{l}$. Hence $\langle a\rangle_{l}=\langle b\rangle_{l}$.

Lemma 4.9. Let B be a left bi-quasi ideal of a ternary semiring S and T a ternary subsemiring of S. If T is left bi-quasi simple such that $T \cap B \neq \phi$, then $T \subseteq B$.

Proof. Let $a \in T \cap B$. Since $T T a \cap a T a T a$ is left bi-quasi ideal of T and T is left bi-quasi simple, so $T T a \cap a T a T a=T$ (cf. Theorem 4.3). Now $T=$ $T T a \cap a T a T a \subseteq T T B \cap B T B T B \subseteq S S B \cap B S B S B \subseteq B$ (as B is a left bi-quasi ideal of S). Hence $T \subseteq B$.

In view of the above lemma we have the following theorem.

Theorem 4.10. Let S be a ternary semiring and L a left bi-quasi ideal of S. Then the following statements are true:
(1) Let L be a left ideal of S and a minimal left bi-quasi ideal of S. Then L is left bi-quasi simple.
(2) Let L be left bi-quasi simple. Then L is minimal left bi-quasi ideal of S.

Proof. (1) Suppose L is left ideal of ternary semiring S and minimal left bi-quasi ideal of S. Then $S S L \cap L S L S L \subseteq L$. To show L is left bi-quasi simple, let A be a left bi-quasi ideal of L. Then $L L A \cap A L A L A \subseteq A$.

Now define $H=\{h \in A: h \in L L A \cap A L A L A\}$. Then $H \subseteq A \subseteq L$. We want to show that H is left bi-quasi ideal of S. Let $h_{1}, h_{2}, h_{3} \in H$. Then $h_{1}=$ $\sum q_{i} p_{i} a_{i}=\sum b_{i} r_{i} c_{i} s_{i} d_{i}, h_{2}=\sum q_{j} p_{j} a_{j}=\sum b_{j} r_{j} c_{j} s_{j} d_{j}$ and $h_{3}=\sum q_{k} p_{k} a_{k}=$ $\sum b_{k} r_{k} c_{k} s_{k} d_{k}$ for some $a_{i}, a_{j}, a_{k}, b_{i}, b_{j}, b_{k}, c_{i}, c_{j}, c_{k}, d_{i}, d_{j}, d_{k} \in A$ and p_{i}, p_{j}, p_{k}, $q_{i}, q_{j}, q_{k}, r_{i}, r_{j}, r_{k}, s_{i}, s_{j}, s_{k} \in L$. Obviously $h_{1}+h_{2} \in H$.

Then we have, $h_{1} h_{2} h_{3}=p_{i} q_{i} a_{i} p_{j} q_{j} a_{j} p_{k} q_{k} a_{k}=b_{i} r_{i} c_{i} s_{i} d_{i} b_{j} r_{j} c_{j} s_{j} d_{j}$ $b_{k} r_{k} c_{k} s_{k} d_{k}$. Since L is a left ideal of $S,\left(p_{i} q_{i} a_{i} p_{j} q_{j}\right)\left(a_{j} p_{k} q_{k}\right) a_{k} \in L L A$ and $b_{i}\left(r_{i} c_{i} s_{i}\right) d_{i}\left(b_{j} r_{j} c_{j} s_{j} d_{j} b_{k} r_{k} c_{k} s_{k}\right) d_{k} \in A L A L A$. Thus $h_{1} h_{2} h_{3} \in H$. Therefore H is a subsemiring of S. To show, H is a left bi-quasi ideal of S.

Let $h, \in S S H \cap H S H S H$. Then $h=\sum q_{i}^{\prime} p_{i}^{\prime} a_{i}^{\prime}=\sum b_{i}^{\prime} r_{i}^{\prime} c_{i} c_{i}^{\prime} s_{i}^{\prime} d_{i}^{\prime}$ where $q_{i}^{\prime}, p_{i}^{\prime}, r_{i}^{\prime}, s_{i}^{\prime} \in S$ and $a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}, d_{i}^{\prime} \in H$. Now $h=\sum q_{i}^{\prime} p_{i}^{\prime} a_{i}^{\prime}=\sum \sum q_{i}^{\prime} p_{i}^{\prime} q_{i j} p_{i j} a_{i j} \in$ $L L A$, (since L is a left ideal of S) where $a_{i}^{\prime}=\sum q_{i j} p_{i j} a_{i j}=\sum b_{i j} r_{i j} c_{i j} s_{i j} d_{i j}$.

Also $h=\sum b_{i}^{\prime} r_{i}^{\prime} c_{i}^{\prime} s_{i}^{\prime} d_{i}^{\prime},=\sum \sum \sum\left(b_{k i} r_{k i} c_{k i} s_{k i} d_{k i}\right) r_{i}^{\prime} c_{i}^{\prime} s_{i}^{\prime}\left(b_{l i} r_{l i} c_{l i} s_{l i} d_{l i}\right)=$ $\sum \sum \sum b_{k i}\left(r_{k i} c_{k i} s_{k i}\right) d_{k i}\left(r_{i}^{\prime} c_{i}{ }_{i} s_{i}^{\prime} b_{l i} r_{l i} c_{l i} s_{l i}\right) d_{l i} \in A L A L A$, (since L is a left ideal) where $b_{i}^{\prime}=\sum b_{k i} r_{k i} c_{k i} s_{k i} d_{k i}$ and $d_{i}^{\prime}=\sum b_{l i} r_{l i} c_{l i} s_{l i} d_{l i}$. Consequently, $h \in$ $L L A \cap A L A L A \subseteq A$ this implies that $h \in H$. So $S S H \cap H S H S H \subseteq H$. By minimality of $L, H=L$. Thus $L=H \subseteq A \subseteq L$ implies $A=L$. Hence L is simple.
(2) Let L be a left bi-quasi simple ideal of ternary semiring S. Let L_{1} be a left bi-quasi ideal of S such that $L_{1} \subseteq L$. By Lemma $4.9, L \subseteq L_{1}$ implies $L=L_{1}$. Hence L is minimal left bi-quasi ideal of S .

To conclude the paper we obtain the following characterization of a regular ternary semiring in terms of left bi-quasi ideals.

Theorem 4.11. Let S be a ternary semiring. Then S is regular ternary semiring if and only if $B=S S B \cap B S B S B$ for every left bi-quasi ideal B of S.

Proof. Let S be a regular ternary semiring and B a left bi-quasi ideal of S. Then $S S B \cap B S B S B \subseteq B$. Take $a \in B$, then there exist $x \in S$ such that $a=a x a$ (as S is regular). Now $a=a x a=$ axaxa $\in B S B S B$ also $a=a x a \in S S B$. So $a \in S S B \cap B S B S B$. Thus $B \subseteq S S B \cap B S B S B$. Hence $B=S S B \cap B S B S B$ for every left bi-quasi ideal B of S.

Conversely, suppose $B=S S B \cap B S B S B$ for every left bi-quasi ideal B of S. Let R, M, L be right, lateral and left ideals of S respectively. Then $Q=R \cap M \cap L$ is a left bi-quasi ideal of S (cf. Proposition 3.16). So by the given condition $Q=S S Q \cap Q S Q S Q$, which implies $R \cap M \cap L=S S Q \cap Q S Q S Q \subseteq Q S Q S Q \subseteq$ $R S M S L \subseteq R M L$. Also we have $R M L \subseteq R \cap M \cap L$. Hence $R M L=R \cap M \cap L$. Consequently, by Theorem 3.11, S is regular.

References

[1] V.N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J. Math. Math. Sci. 18 (3) (1995) 501-508.
[2] M.K. Dubey and Anuradha, On minimal bi-ideal in ternary semirings, International Journal of Algebra 6 (1) (2012) 15-22.
[3] T.K. Dutta and S. Kar, A note on regular ternary semirings, Kyungpook Math. J. 46 (2006) 357-365.
[4] T.K. Dutta and S. Kar, A note on the Jacobson radical of a tennary semiring, Southeast Asian Bull. Math. 29 (2) (2005) 1-13.
[5] T.K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28 (1) (2004) 1-13.
[6] T.K. Dutta and S. Kar, On regular ternary semirings, In: Advances in Algebra Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientic, New Jersey, 2003.
[7] T.K. Dutta and S. Kar, Two types of Jacobson radicals of ternary semirings, Southeast Asian Bull. Math. 29 (4) (2005) 677-687.
[8] T.K. Dutta and S. Mandal, Some characterizations of 2-primal ternary semiring, Southeast Asian Bull. Math. 39 (6) (2015) 769-783.
[9] S. Kar, On quasi-ideals and bi-ideals in ternary semirings, Int. J. Math. Math. Sci. 18 (2005) 3015-3023.
[10] S. Kar, On structure space of ternary semirings, Southeast Asian Bull. Math. 31 (3) (2007) 537-545.
[11] D.H. Lehmer, A ternary analogue of abelian group, American Journal of Mathematics 59 (1932) 329-338.
[12] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37-55.
[13] M.M.K. Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of Γ-semigroups, Bull. Int. Math. Virtual Inst. 7 (2) (2017) 231-242.
[14] M.M.K. Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45-53.

