
Southeast Asian

Bulletin of

Mathematics
c©SEAMS. 2021

Southeast Asian Bulletin of Mathematics (2021) 45: 379–408

On Transcendental Entire Functions with Infinitely

Many Derivatives Taking Integer Values

at Two Points

M. Waldschmidt
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Abstract. Given a subset S = {s0, s1} of the complex plane with two points and an
infinite subset S of S × N, where N = {0, 1, 2, . . . } is the set of nonnegative integers,
we ask for a lower bound for the order of growth of a transcendental entire function f

such that f (n)(s) ∈ Z for all (s, n) ∈ S .
We first take S = {s0, s1}× 2N, where 2N = {0, 2, 4, . . . } is the set of nonnegative

even integers. We prove that an entire function f of sufficiently small exponential type
such that f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n must be a polyno-
mial. The estimate we reach is optimal, as we show by constructing a uncountable set
of examples. The main tool, both for the proof of the estimate and for the construction
of examples, is Lidstone polynomials.

The same proof works for S = {s0, s1}× (2N+1) and yields a lower bound for the

order of a transcendental entire function satisfying f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z
for all sufficiently large n.

Our next example is ({s0}× (2N+1))∪ ({s1}×2N) (odd derivatives at s0 and even
derivatives at s1). We use analogs of Lidstone polynomials which have been introduced
by J.M. Whittaker and studied by I.J. Schoenberg.

Finally, using results of W. Gontcharoff, A.J. Macintyre and J.M. Whittaker, we

prove lower bounds for the exponential type of a transcendental entire function f such

that, for each sufficiently large n, one at least of the two numbers f (n)(s0), f
(n)(s1) is

in Z.

Keywords: Integer valued entire functions; Hurwitz functions; Lidstone polynomials;

exponential type; Pólya’s theorem.
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1. Introduction

The order of an entire function f is

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r

|f(z)|.

The exponential type of an entire function is

τ(f) = lim sup
r→∞

log |f |r
r

·

If the exponential type is finite, then f has order ≤ 1. If f has order < 1, then
the exponential type is 0.

An alternative definition is the following: f is of exponential type τ(f) if and
only if, for all z0 ∈ C,

lim sup
n→∞

|f (n)(z0)|1/n = τ(f), (1)

where f (n) denotes the n–th derivative (dn/dzn)f of f . The equivalence between
the two definitions follows from Cauchy’s inequalities (10) and Stirling’s Formula
(11). If (1) is true for one z0 ∈ C, then it is true for all z0 ∈ C.

Given a finite set of points S in the complex plane and an infinite subset S

of S ×N, where N = {0, 1, 2, . . .} is the set of nonnegative integers, we ask for a
lower bound for the order of growth of a transcendental entire function f such
that f (n)(s) ∈ Z for all (s, n) ∈ S . This question has been studied by a number
of authors in the special case where S = S × N. When S = {0}, a function
satisfying these conditions, namely f (n)(0) ∈ Z for all n ≥ 0, is called a Hurwitz

function. The order of a transcendental Hurwitz function is ≥ 1 (see [10], and
Proposition 2.1 below). Assume now S = {0, 1, . . . , k−1} with k ≥ 2. According
to [17, Th. 1], the order of a transcendental function satisfying f (n)(`) ∈ Z for
all ` = 0, 1, . . . , k − 1 and n ≥ 0 is at least k. The example of the function
exp
(
z(z − 1) · · · (z − k + 1)

)
shows that the bound for the order is sharp. For

k = 2, refined estimates are obtained in [14, §3] and [15, §4]. See also [12, §7
and §8] and the survey [13] with 59 references.

If we replace the assumption f (n)(s) ∈ Z with f (n)(s) = 0 for all (s, n) ∈ S ,
we come across a question which has been the object of extensive works. It is the
main topic of [20, Chap. III] and [6, Chap. 3]. It is related with the interpolation
problem of the existence and unicity of an entire function f for which the values
f (n)(s) for (s, n) ∈ S are given. For S = {0}, the Taylor expansion solves
the interpolation problem. The next most often studied case is S = {0, 1} and
S = S × 2N, where 2N = {0, 2, 4, . . .} is the set of nonnegative even integers;
the basic tool is given by Lidstone polynomials.

In the present paper, we consider a set S = {s0, s1} of only two complex
numbers (with only a short excursion to the case where S may have more than
two points in Theorem 1.9. We investigate more general sets in [18]). Using
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an argument going back to Pólya, we reduce the study of entire functions, the
derivatives of even order of which take integer values at two points, to the study
of those functions where the same derivatives vanish at these two points. Our
main assumption on the growth of our functions f is

lim sup
r→∞

e−r√r|f |r <
1√
2π

e−max{|s0|,|s1|}. (2)

If a function f satisfies

lim sup
r→∞

e−r√r|f |r < γ

for some constant γ > 0, then for z0 ∈ C the function f̃(z) = f(z + z0) satisfies

lim sup
r→∞

e−r
√
r|f̃ |r < γe|z0|,

while the derivative f ′ of f satisfies

lim sup
r→∞

e−r
√
r|f ′|r < γe.

The exponential type of such a function is ≤ 1; in the other direction, a function
of exponential type < 1 satisfies

lim sup
r→∞

e−r
√
r|f |r = 0.

We will prove in Section 2, Proposition 2.2, that, for an entire function f sat-
isfying the growth condition (2) and for |z0| ≤ max{|s0|, |s1|}, the set of n ≥ 0
for which f (n)(z0) ∈ Z \ {0} is finite.

In Section 3, we introduce the so–called Lidstone polynomials and we prove
several estimates for their growth.

In Section 4, we give a lower bound for the growth of transcendental entire
functions satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large
n. On the other hand, we will also show that there are transcendental entire
functions f of order 0 for which f (2n)(s0) = 0 for all n ≥ 0 and f (2n)(s1) = 0 for
infinitely many n.

In Section 5 (resp. Section 7), we consider a variant by studying the set of
entire functions which satisfy the conditions f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z

(resp. f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z) for all sufficiently large n. The proof
in Section 5 involves Lidstone polynomials, while the proofs of the results from
Section 7 rest on analogs of Lidstone polynomials which have been introduced
by J.M. Whittaker in 1933 and studied by I.J. Schoenberg in 1936 (Section 6).

In Section 8, we give a lower bound for the growth of transcendental entire
functions satisfying the property that for each sufficiently large n, one at least
of the two numbers f (n)(s0), f

(n)(s1) is in Z. In the periodic case we use results
of W. Gontcharoff (1930) and A.J. Macintyre (1954), in the general case we use
results of W. Gontcharoff (1930) and J.M. Whittaker (1933).
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1.1. Derivatives of Even Order at Two Points

Our first result is a lower bound for the growth of a transcendental entire function
whose derivatives of even order at two points s0 and s1 belong to Z.

Theorem 1.1. Let s0, s1 be two distinct complex numbers and f an entire func-

tion of exponential type τ(f) satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all

sufficiently large n. Assume f satisfies the growth condition (2). Then there

exist a polynomial P ∈ C[z] and complex numbers c1, c2, . . . , cL with

Lπ ≤ |s1 − s0|τ(f)

such that

f(z) = P (z) +
L∑

`=1

c` sin

(
`π

z − s0
s1 − s0

)
.

Recall that assumption (2) implies τ(f) ≤ 1. It follows from Theorem 1.1
that, if |s1 − s0| ≤ π, then any transcendental entire function f satisfying
f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n has exponential
type ≥ 1. Here are examples of such functions of exponential type 1. Let a0 ∈ Z

and a1 ∈ Z with (a0, a1) 6= (0, 0). Define

fa0,a1
(z) = a0

sinh(z − s1)

sinh(s0 − s1)
+ a1

sinh(z − s0)

sinh(s1 − s0)
·

Then fa0,a1
(s0) = a0, fa0,a1

(s1) = a1 and f ′′
a0,a1

= fa0,a1
, hence f

(2n)
a0,a1

(s0) = a0

and f
(2n)
a0,a1(s1) = a1 for all n ≥ 0. This function does not satisfy (2).

In the case |s1−s0| ≥ π, we deduce from Theorem 1.1 that any transcendental
entire function f satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently
large n has exponential type ≥ π/|s1 − s0|. For ` ≥ 1, the function

f`(z) = sin

(
`π

z − s0
s1 − s0

)

has exponential type `π/|s1 − s0| and satisfies f
(2n)
` (s0) = f (2n)(s1) = 0 for all

n ≥ 0.

Corollary 1.2. Let f be an entire function satisfying (2) for which f (2n)(s0) ∈ Z

and f (2n)(s1) ∈ Z for all sufficiently large n. Then the set of n ≥ 0 such that

f (2n)(s0) 6= 0 is finite, and also the set of n ≥ 0 such that f (2n)(s1) 6= 0 is finite.

If the exponential type of f satisfies τ(f) < π
|s1−s0| , then f is a polynomial.

We now show that the assumption (2) on the growth of f in Corollary 1.2 is
essentially best possible.
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Notation 1.3. We denote by ν the unique positive real number satisfying

eν − e−ν = 4ν.

The numerical value is ν = 2.177 3 . . . Both ν and eν are transcendental.

Theorem 1.4. Let s0, s1 be two distinct complex numbers such that

|s1 − s0| < ν. (3)

Then there exist a constant γ and an uncountable set of transcendental entire

functions f satisfying f (2n)(s0) = 0 and f (2n)(s1) ∈ {−1, 0, 1} for all n ≥ 0, for
which the set {n ≥ 0 | f (2n)(s1) 6= 0} is infinite, and such that

lim sup
r→∞

e−r
√
r|f |r ≤ γ. (4)

1.2. Derivatives of Odd Order at Two Points

The following variant of Theorem 1.1 deals with the set S× (2N+1) (odd order
of the derivatives). We cannot simply use Theorem 1.1 for the first derivative f ′

of the given function f , since (2) may not be satisfied for f ′.

Theorem 1.5. Let s0, s1 be two distinct complex numbers and f an entire function

of exponential type τ(f) satisfying f (2n+1)(s0) ∈ Z and f (2n+1)(s1) ∈ Z for all

sufficiently large n. Assume f satisfies the growth condition (2). Then there

exist a polynomial P ∈ C[z] and complex numbers c1, c2, . . . , cL with

Lπ ≤ |s1 − s0|τ(f)

such that

f(z) = P (z) +

L∑

`=1

c` cos

(
`π

z − s0
s1 − s0

)
.

Under the assumptions of Theorem 1.5, the set of integers n ≥ 0 such that
f (2n+1)(s0) 6= 0 is finite, and also the set of n ≥ 0 such that f (2n+1)(s1) 6= 0 is
finite. Further, if the exponential type of f satisfies τ(f) < π

|s1−s0| , then f is a

polynomial.

A polynomial is determined only up to an additive constant by its derivatives
of odd order at two points. An expansion of a polynomial in terms of these
derivatives, analogous to (12) below, is obtained by taking primitives of the
Lidstone polynomials (defined up to an additive constant – notice that Λ′

n+1 is
a primitive of Λn). Such expansions have been studied in [4, §3] under the name
Even Lidstone–type sequences.
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1.3. Derivatives of Odd Order at One Point and Even Order at the Other

The next result deals with S = ({s0} × (2N+ 1)) ∪ ({s1} × 2N).

Theorem 1.6. Let s0, s1 be two distinct complex numbers. Let f be an entire

function of exponential type τ(f) satisfying f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n. Assume f satisfies (2). Then there exist a polynomial

P ∈ C[z] and complex numbers c0, c1, . . . , cL with

(2L+ 1)
π

2
≤ |s1 − s0|τ(f)

such that

f(z) = P (z) +

L∑

`=0

c` cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)
.

In the case |s1 − s0| ≤ π/2, any transcendental entire function f satisfying
f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n has exponential
type ≥ 1. Here are examples of such functions of exponential type 1. Let a0 ∈ Z

and a1 ∈ Z with (a0, a1) 6= (0, 0). Define

fa0,a1
(z) = a0

sinh(z − s1)

cosh(s0 − s1)
+ a1

cosh(z − s0)

cosh(s1 − s0)
·

Then f ′
a0,a1

(s0) = a0, fa0,a1
(s1) = a1 and f ′′

a0,a1
= fa0,a1

, hence f
(2n+1)
a0,a1

(s0) = a0

and f
(2n)
a0,a1(s1) = a1 for all n ≥ 0.

In the case |s1 − s0| ≥ π/2, any transcendental entire function f satisfying
f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z for all sufficiently large n has exponential
type ≥ π/(2|s1 − s0|). For ` ≥ 0, the function

f`(z) = cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)

has exponential type (2`+1)π
2|s1−s0| and satisfies f

(2n+1)
` (s0) = f

(2n)
` (s1) = 0 for all

n ≥ 0.

Corollary 1.7. Let f be an entire function satisfying (2) for which f (2n+1)(s0) ∈
Z and f (2n)(s1) ∈ Z for all sufficiently large n. Then the two sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. If the exponential type of f satisfies τ(f) < π
2|s1−s0| , then f is a

polynomial.

The assumption (2) in Corollary 1.7 is essentially optimal:
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Theorem 1.8. Let s0, s1 be two distinct complex numbers satisfying

|s1 − s0| < log(2 +
√
3) = 1.316 957 8 · · · . (5)

There exist a constant γ′ and an uncountable set of transcendental entire func-

tions f satisfying f (2n+1)(s0) = 0 and f (2n)(s1) ∈ {−1, 0, 1} for all n ≥ 0, such
that the set of n ≥ 0 with f (2n)(s1) 6= 0 is infinite and such that

lim sup
r→∞

e−r√r|f |r ≤ γ′. (6)

1.4. Sequence of Derivatives

We propose some generalizations of Corollary 1.7, where we assume that for each
sufficiently large integer n, one at least of the two numbers f (n)(s0), f

(n)(s1) is
in Z.

We start with the case of a periodic sequence. Let m ≥ 2 be a positive
integer. Let σ0, σ1, . . . , σm−1 be complex numbers, not necessarily distinct: we
will be interested in the case where they all belong to a set with two elements,
but the next result is not restricted to two points. Set ζ = e2iπ/m and denote
by τ the smallest modulus of a zero of the function ∆(t), where ∆(t) is the
determinant of the m×m matrix

(
ζk`eζ

ktσ`

)
0≤k,`≤m−1

=




etσ0 etσ1 etσ2 · · · etσm−1

eζtσ0 ζeζtσ1 ζ2eζtσ2 · · · ζm−1eζtσm−1

eζ
2tσ0 ζ2eζ

2tσ1 ζ4eζ
2tσ2 · · · ζ2(m−1)eζ

2tσm−1

...
...

...
. . .

...

eζ
m−1tσ0 ζm−1eζ

m−1tσ1 ζ2(m−1)eζ
m−1tσ2 · · · ζ(m−1)2eζ

m−1tσm−1




.

Theorem 1.9. Let m and τ as before. Let f be a transcendental entire function

of exponential type < τ satisfying

lim sup
r→∞

e−r
√
r|f |r <

1√
2π

e−max{|σ0|,|σ1|,...,|σm−1|}. (7)

Assume that for each sufficiently large n, we have

f (mn+j)(σj) ∈ Z for j = 0, 1, . . . ,m− 1.

Then f is a polynomial.

This result is optimal:
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Proposition 1.10. (a) Let α be a zero of ∆(t). There exist c0, c1, . . . , cm−1 in C,

not all zero, such that the function

f(z) = c0e
αz + c1e

ζαz + · · ·+ cm−1e
ζm−1αz

satisfies

f (mn+j)(σj) = 0 for j = 0, 1, . . . ,m− 1 and n ≥ 0.

(b) Assume τ > 1. Given a0, a1, . . . , am−1 in C, there exists a unique entire

function of exponential type ≤ 1 satisfying

f (mn+j)(σj) = aj for j = 0, 1, . . . ,m− 1 and n ≥ 0.

The function given by (a) is a transcendental entire function of exponential
type |α|. If (a0, a1, . . . , am−1) 6= (0, 0, . . . , 0), we will prove that the function f
given by (b) is a transcendental entire function of exponential type 1. Notice
that f does not satisfy the assumption (7) of Theorem 1.9.

Here is a corollary of Theorem 1.9. We fix again an integer m ≥ 2 and we
denote by τm the smallest modulus of a zero of the function

1 +
tm

m!
+

t2m

(2m)!
+ · · ·+ tnm

(nm)!
+ · · ·

When σ0 = s1 and σi = s0 for i = 1, ...,m− 1, the smallest modulus of a zero of
the determinant ∆(t) is τm/|s1 − s0.

Since τ2 = π/2, Corollary 1.7 is the case m = 2 of the next result.

Corollary 1.11. Let s0 and s1 be two distinct complex numbers. Let f be a

transcendental entire functions satisfying (2). Assume that the exponential type

τ(f) of f satisfies

τ(f) <
τm

|s1 − s0|
·

Assume further that for each sufficiently large n, we have

f (n)(s0) ∈ Z for n 6≡ 0 mod m and f (n)(s1) ∈ Z for n ≡ 0 mod m.

Then f is a polynomial.

We can extend this result to the case s0 = s1 = 0 in view of Proposition 2.1
below due to [10].

Corollary 1.1 is sharp: from part (a) of Proposition 1.10 it follows that there
exists a transcendental entire function f of type τm/|s1 − s0| satisfying

f (n)(s0) = 0 for n ≡ 0 mod m and f (n)(s1) = 0 for n 6≡ 0 mod m.
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Also, from part (b) of Proposition 1.10 it follows that if τm > |s1 − s0|, given
a0, a1, . . . , am−1 in C, not all of which are zero, there exists a unique entire
function f of exponential type ≤ 1 satisfying, for all n ≥ 0,

f (n)(s0) = aj for n ≡ j mod m and 1 ≤ j ≤ m− 1

f (n)(s1) = a0 for n ≡ 0 mod m.

This function is transcendental of exponential type 1. In the special case where
a0 = a1 = · · · = am−1 = 0, it is 0.

The next and last result deals with a situation more general than the case of
two points in Theorem 1.9, since no periodicity is assumed, and we assume only
that one at least of the three numbers f (n)(s0), f

(n)(s1), f
(n)(s0)f

(n)(s1) is in
Z. The assumption on the type in Theorem 1.12 may not be optimal.

Theorem 1.12. Let s0, s1 be two distinct complex numbers. Let f be an entire

function of exponential type τ(f) satisfying (2). Assume

τ(f) <
1

|s1 − s0|
·

Assume that, for all sufficiently large n, one at least of the three numbers

f (n)(s0), f
(n)(s1), f

(n)(s0)f
(n)(s1)

is in Z. Then f is a polynomial.

2. On a Result of Pólya

Recall that a Hurwitz function is an entire function satisfying f (n)(0) ∈ Z for
all n ≥ 0. Here is one of the earliest results on Hurwitz functions [10].

Proposition 2.1. A transcendental Hurwitz function f satisfies

lim sup
r→∞

e−r
√
r|f |r ≥

1√
2π

·

The uncountable set of entire functions

f(z) =
∞∑

n=0

en
z2

n

2n!
for which lim sup

r→∞
e−r

√
r|f |r =

1√
2π

, (8)

where en ∈ {−1, 1}, shows that Proposition 2.1 is optimal. This does not mean
that it is the final word. On the one hand, [14, Corollary 1, § 2] and [15, §3]
have proved more precise results, including the following :
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For every ε > 0, there exists a transcendental Hurwitz function with

lim sup
r→∞

√
2πr e−r

(
1 +

1 + ε

24r

)−1

|f |r < 1,

while every Hurwitz function for which

lim sup
r→∞

√
2πr e−r

(
1 +

1− ε

24r

)−1

|f |r ≤ 1

is a polynomial.

On the other hand, our Corollary 2.4 below extends the range of validity of
Proposition 2.1.

Proposition 2.2. Let f be an entire function and let A ≥ 0. Assume

lim sup
r→∞

e−r√r|f |r <
e−A

√
2π

· (9)

Then there exists n0 > 0 such that, for n ≥ n0 and for all z ∈ C in the disc

|z| ≤ A, we have

|f (n)(z)| < 1.

Remark 2.3. When A = 0, Pólya’s example (8) shows that the upper bound in
the assumption (9) of Proposition 2.2 is optimal.

For the proof of Proposition 2.2, we will use Cauchy’s inequalities for an
entire function f :

|f (n)(z0)|
n!

rn ≤ |f |r+|z0|, (10)

which are valid for all z0 ∈ C, n ≥ 0 and r > 0. We will also use Stirling’s
Formula:

NNe−N
√
2πN < N ! < NNe−N

√
2πNe1/(12N), (11)

which is valid for all N ≥ 1.

Proof of Proposition 2.2. By assumption, there exists η > 0 such that, for n
sufficiently large, we have

|f |n < (1− η)
en−A

√
2πn

·

We use Cauchy’s inequalities (10) with r = n−A: for |z| ≤ A, we have

|f (n)(z)| ≤ n!

(n−A)n
|f |n.
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Hence (11) yields

|f (n)(z)| ≤ (1− η)e−A+1/(12n)

(
1− A

n

)−n

.

For n sufficiently large the right hand side is < 1.

We deduce the following refinement of Proposition 2.1:

Corollary 2.4. Let f be a transcendental function. Let A ≥ 0. Assume (9).
Then the set

{
(n, z0) ∈ N× C | |z0| ≤ A, f (n)(z0) ∈ Z \ {0}

}

is finite.

3. Lidstone Polynomials

The theory of Lidstone polynomials and series has a long and rich history. We
recall the definition and the basic results which we will need.

3.1. Definition and Properties

We denote by δij the Kronecker symbol:

δij =

{
1 if i = j,

0 if i 6= j.

By induction on n, one defines a sequence of polynomials (Λn)n≥0 in Q[z] by
the conditions Λ0(z) = z and

Λ′′
n = Λn−1, Λn(0) = Λn(1) = 0 for all n ≥ 1.

For n ≥ 0, the polynomial Λn, has degree 2n+1 and leading term 1
(2n+1)!z

2n+1.

From the definition one deduces

Λ(2k)
n (0) = 0 and Λ(2k)

n (1) = δk,n for all n ≥ 0 and k ≥ 0.

This definition goes back to [8]. See also [11], [19], [20, §9], [16], [2, §9], [3],
[1, Chap. I §4], [5], [4, §1].

A consequence of the definition is that any polynomial f ∈ C[z] has a finite
expansion

f(z) =

∞∑

n=0

(
f (2n)(0)Λn(1− z) + f (2n)(1)Λn(z)

)
(12)
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with only finitely many nonzero terms in the series.

Applying (12) to the polynomial z2n+1 yields the following recurrence formula
[5, Th. 2]: for n ≥ 0,

Λn(z) =
1

(2n+ 1)!
z2n+1 −

n−1∑

h=0

1

(2n− 2h+ 1)!
Λh(z). (13)

For instance,

Λ0(z) = z, Λ1(z) =
1

6
(z3 − z)

and [8, §6 p. 18]

Λ2(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7).

It follows from (12) that for n ≥ 0, a basis of the Q–space of polynomials in Q[z]
of degree ≤ 2n+ 1 is given by the 2n+ 2 polynomials

Λ0(z),Λ1(z), . . . ,Λn(z), Λ0(1− z),Λ1(1− z), . . . ,Λn(1− z).

Another consequence of (12) is

z2n

(2n)!
= Λn(1− z) +

n∑

h=0

1

(2n− 2h)!
Λh(z)

for n ≥ 0.

Lidstone expansion formula (12) for polynomials extends to entire functions
of finite exponential type — see [11, Th. 1], [19, Th. 2], [16, Th. 1], [3, p. 795],
[1, §4]. If f has exponential type < π, then (12) holds for f , the series being
uniformly convergent on any compact of C. Therefore, if an entire function f
has exponential type < π and satisfies f (2n)(0) = f (2n)(1) = 0 for all sufficiently
large n, then f is a polynomial. The following result ([3, Theorem p. 795], [1,
Th. 4.6]) deals with entire functions f of any finite exponential type.

Proposition 3.1. Let f be an entire function of finite exponential type τ(f)
satisfying f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there exist complex

numbers c1, . . . , cL with L ≤ τ(f)/π such that

f(z) =

L∑

`=1

c` sin(`πz).

Let t ∈ C, t 6∈ iπZ. The entire function

f(z) =
sinh(zt)

sinh(t)
=

ezt − e−zt

et − e−t
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satisfies
f ′′ = t2f, f(0) = 0, f(1) = 1,

hence f (2n)(0) = 0 and f (2n)(1) = t2n for all n ≥ 0. Applying the remark before
Proposition 3.1 yields the following expansion, valid for 0 < |t| < π and z ∈ C:

sinh(zt)

sinh(t)
=

∞∑

n=0

t2nΛn(z). (14)

Using Cauchy’s residue Theorem with (14), we deduce the integral formula
[19, p. 454–455]:

Λn(z) =(−1)n
2

π2n+1

S∑

s=1

(−1)s+1

s2n+1
sin
(
sπz

)

+
1

2πi

∫

|t|=(2S+1)π/2

t−2n−1 sinh(zt)

sinh(t)
dt

for S = 1, 2, . . . and z ∈ C. In particular, with S = 1 we have

Λn(z) = (−1)n
2

π2n+1
sin(πz) +

1

2πi

∫

|t|=3π/2

t−2n−1 sinh(zt)

sinh(t)
dt. (15)

3.2. Replacing 0 and 1 with s0 and s1

Let s0 and s1 be two distinct complex numbers. Define, for n ≥ 0,

Λ̃n(z) = (s1 − s0)
2nΛn

(
z

s1 − s0

)
.

This sequence of polynomials is also defined by induction by

Λ̃0(z) =
z

s1 − s0

and, for n ≥ 1,
Λ̃′′
n = Λ̃n−1, Λ̃n(0) = Λ̃n(s1 − s0) = 0.

Hence

Λ̃(2k)
n (0) = 0 and Λ̃(2k)

n (s1 − s0) = δk,n for all n ≥ 0 and k ≥ 0.

It follows that any polynomial f ∈ C[z] has an expansion

f(z) =

∞∑

n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)
,

with only finitely many nonzero terms in the series.
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From (13) we deduce

Λ̃n(z) =
z2n+1

(s1 − s0)(2n+ 1)!
−

n−1∑

h=0

(s1 − s0)
2n−2h

(2n− 2h+ 1)!
Λ̃h(z). (16)

We will use the following elementary auxiliary lemma.

Lemma 3.2. There exists an absolute constant r0 > 0 such that, for any r ≥ r0
and any t in the interval 0 < t ≤ r, we have

r

t
(1 + log t) +

1

2
log t < r +

1

4r
·

Proof. Notice first that the result is true for 0 < t ≤ 1 and
√
r ≤ t ≤ r.

Let r be an arbitrarily large positive real number. Define, for t > 0

f(t) =
r

t
(1 + log t) +

1

2
log t.

The derivative f ′ of f is

f ′(t) =
1

2t2
(t− 2r log t)

and f ′(t) has two positive zeroes 1 < t1 < t2, where t1 is close to 1 while t2 is
close to 2r log r when r is large. Since f(er) < r = f(1) < f(t1), in the interval
0 < t ≤ er, the function f has its maximum at t1 with t1 = 2r log t1,

t1 = 1 +
1

2r
+

3

8r2
+

1

3r3
+O(1/r4)

and

log t1 =
1

2r
+

1

4r2
+

3

16r3
+O(1/r4)

for r → ∞. The maximum is

f(t1) =
r

t1
+

1

2
+

t1
4r

and we have
r

t1
=

1

2 log t1
= r − 1

2
− 1

8r
+O(1/r2),

so that

f(t1) = r +
1

8r
+O(1/r2) < r +

1

4r

for sufficiently large r.

Setting t = r/N and using the left hand side of Stirling’s Formula (11), we
deduce from Lemma 3.2:
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Corollary 3.3. For sufficiently large r and for all N ≥ 1, we have

rN

N !
≤ er+(1/4r)

√
2πr

·

Corollary 3.3 will be used in the proof of part (ii) of the following result.

Lemma 3.4. Let s0 and s1 be two distinct complex numbers. There exist positive

numbers γ1, γ2 and γ3, depending only on s0 and s1, such that the following

holds:

(i) For r ≥ 0 and n ≥ 0, we have

|Λ̃n|r ≤ γ1
|s1 − s0|2n
(2n+ 1)!

max

{
r

|s1 − s0|
, 2n+ 1

}2n+1

.

(ii) Assume (3). Then, for sufficiently large r, we have, for all n ≥ 0,

|Λ̃n|r ≤ γ2
er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|Λ̃n|r ≤ γ3

( |s1 − s0|
π

)2n

e
3πr

2|s1−s0| .

Proof. (i) Let (κ0, κ1, κ2, . . . ) be a sequence of positive numbers satisfying κ0 ≥ 1
and, for n ≥ 1,

κn ≥ 1 +

n−1∑

h=0

κh

(2n− 2h+ 1)!
·

By induction we prove the estimate, for z ∈ C,

|Λ̃n(z)| ≤ κn
|s1 − s0|2n
(2n+ 1)!

max

{ |z|
|s1 − s0|

, 2n+ 1

}2n+1

. (17)

Formula (17) is true for n = 0. Assume that, for some n ≥ 1, (17) is true for n
replaced with h = 0, 1, . . . , n− 1. Then for 0 ≤ h ≤ n− 1 we have

|Λ̃h(z)| ≤ κh
|s1 − s0|2h
(2h+ 1)!

max

{ |z|
|s1 − s0|

, 2n+ 1

}2h+1

.

We use the upper bound

(2n+ 1)!

(2h+ 1)!
≤ (2n+ 1)2n−2h.
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We deduce, for 0 ≤ h ≤ n− 1,

|s1 − s0|2n−2h|Λ̃h(z)| ≤ κh
|s1 − s0|2n
(2n+ 1)!

max

{ |z|
|s1 − s0|

, 2n+ 1

}2n+1

.

Now (16) implies

|Λ̃n(z)| ≤
(
1 +

n−1∑

h=0

κh

(2n− 2h+ 1)!

)
|s1 − s0|2n
(2n+ 1)!

max

{ |z|
|s1 − s0|

, 2n+ 1

}2n+1

,

which proves (17).

We deduce part (i) of Lemma 3.4 by taking for the sequence (κh)h≥0 a con-
stant sequence κh = γ1 with

γ1 = 1 + γ1
∑

`≥1

1

(2`+ 1)!
·

This proves (i) with the explicit value

γ1 =
2

4− e + e−1
= 1.212 416 8 . . .

(ii) Let r be an arbitrarily large positive real number. Let (κ̃n)n≥0 be another
sequence of positive real numbers satisfying κ̃0 ≥ 1/|s1 − s0| and, for n ≥ 1,

κ̃n ≥ 1

|s1 − s0|
+

n−1∑

h=0

κ̃h
|s1 − s0|2n−2h

(2n− 2h+ 1)!
· (18)

We prove the estimate

|Λ̃n|r ≤ κ̃n
er+(1/4r)

√
2πr

· (19)

This is true for n = 0, since r is sufficiently large. Assume that it is true for all
h with 0 ≤ h < n for some n ≥ 1. Using the induction hypothesis with (16), we
obtain

|Λ̃n|r ≤ r2n+1

|s1 − s0|(2n+ 1)!
+

er+(1/4r)

√
2πr

n−1∑

h=0

κ̃h
|s1 − s0|2n−2h

(2n− 2h+ 1)!
·

Now (19) follows from (18) and Corollary 3.3. We take for the sequence (κ̃h)h≥0

a constant sequence κ̃h = γ2 with

γ2 =
1

|s1 − s0|
+ γ2

∑

`≥1

|s1 − s0|2`
(2`+ 1)!

·

Since (3) can be written

4|s1 − s0| − e|s1−s0| + e−|s1−s0| > 0,
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we deduce part (ii) of Lemma 3.4 with

γ2 =
2

4|s1 − s0| − e|s1−s0| + e−|s1−s0| ·

(iii) From (15) we deduce

|Λn|r ≤ e(3π/2)rπ−2n

(
2

π
e−πr/2 +

22n+1

32n
sup

|t|=3π/2

1

|et − e−t|

)
.

The proof of Lemma 3.4 is complete.

From part (iii) of Lemma 3.4 we deduce the following.

Corollary 3.5. Assume |s1 − s0| < π. There exists a constant γ4 > 0 such that,

for r sufficiently large, ∑

n≥γ4r

|Λ̃n|r < 1.

The assumption |s1 − s0| < π cannot be relaxed: indeed, for z 6∈ Z, the

function t 7→ sinh(zt)
sinh(t) has a pole at t = iπ, hence its Taylor series at the origin

(14) has radius of convergence π and is not bounded on the closed disc |t| ≤ π.

Proof of Corollary 3.5. Let N be a positive integer. From part (iii) of Lemma 3.4
we deduce

∑

n≥N

|Λ̃n|r ≤ γ3e
3πr

2|s1−s0|

∑

n≥N

( |s1 − s0|
π

)2n

=
γ3π

2

π2 − |s1 − s0|2
e

3πr

2|s1−s0|

( |s1 − s0|
π

)2N

·

The right hand side is < 1 as soon as

3πr

2|s1 − s0|
+ log

γ3π
2

π2 − |s1 − s0|2
< 2N log

π

|s1 − s0|
,

and this is true for r sufficiently large and N ≥ γ4r, provided that

γ4 >
3π

4|s1 − s0|(log π − log |s1 − s0|)
·

4. Derivatives of Even Order at Two Points
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Proof of Theorem 1.1. Let f satisfy the assumptions of Theorem 1.1. Using
Corollary 2.4, we deduce from the assumption (2) that the sets

{n ≥ 0 | f (2n)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Hence

P (z) =

∞∑

n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)

is a polynomial satisfying

P (2n)(s0) = f (2n)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)−P (z) has the same exponential type as f and satisfies

f̃ (2n)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.

The exponential types of f and f̂ are related by

τ(f̂ ) = |s1 − s0|τ(f).

From Proposition 3.1 we deduce that there exists complex numbers c1, c2, . . . , cL
such that

f̂(z) =

L∑

`=1

c` sin(`πz),

and therefore

f̃(z) =

L∑

`=1

c` sin

(
`π

z − s0
s1 − s0

)
.

Theorem 1.1 follows.

Proof of Theorem 1.4. Assume |s1 − s0| < π. From Proposition 3.1, it follows
that an entire function f of exponential type ≤ 1 for which f (2n)(s0) ∈ Z and
f (2n)(s1) ∈ Z for all sufficiently large n is of the form

f(z) =
∞∑

n=0

(
f (2n)(s1)Λ̃n(z − s0)− f (2n)(s0)Λ̃n(z − s1)

)
,

and also that f is not a polynomial if and only if one at least of the two sets
{n ≥ 0 | f (2n)(s0) 6= 0}, {n ≥ 0 | f (2n)(s1) 6= 0} is infinite. We construct such
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functions by requiring f (2n)(s0) = 0 for all n ≥ 0 and f (2n)(s1) = 0 for all n ≥ 0
outside a lacunary sequence.

Define, for k ≥ 0, Nk = γ2k−1
4 , where γ4 is the constant in Corollary 3.5, so

that N0 = 1 and Nk+1 = γ4N
2
k . For n ≥ 1, let en = 0 if Nk < n < Nk+1, and

eNk
∈ {+1,−1} for k ≥ 0, so that there is an uncountable set of such lacunary

sequences (en)n≥0. Using Lemma 3.4 we will prove that

f(z) :=
∑

n≥1

enΛ̃n(z − s0)

defines an entire function which satisfies (4), hence has order ≤ 1. It will follow
that we have f (2n)(s0) = 0, f (2n)(s1) = en for all n ≥ 0. Since infinitely many
en are not 0, this function f is transcendental.

It remains to check the upper bound for |f |r. Let r ≥ |s0| be an ar-
bitrary large positive number. Let k be the least positive integer such that
Nk >

√
r + |s0|. From part (i) of Lemma 3.4, using the bounds

Nk−1 ≤
√
r + |s0| ≤

√
2r,

we deduce, for sufficiently large r,
∑

n<Nk

|en| |Λ̃n|r+|s0| ≤
∑

1≤n≤Nk−1

|Λ̃n|r+|s0|

< γ1
Nk−1

|s1 − s0|
(2r)2Nk−1+1

≤ γ1r
3
√
r

<
er

r
·

Assuming (3), we can use part (ii) of Lemma 3.4 and get

|Λ̃Nk
|r+|s0| ≤ γ2

er+|s0|+1/(4r)

√
2πr

·

Since γ4(r + |s0|) ≤ γ4N
2
k = Nk+1, Corollary 3.5 yields

∑

n>Nk

|en| |Λ̃n|r+|s0| ≤
∑

n≥Nk+1

|Λ̃n|r+|s0| < 1.

Combining these three estimates, we conclude

lim sup
r→∞

e−r
√
r|f |r ≤ γ with γ = γ2

e|s0|√
2π

,

which is an explicit version of (4):

γ =
e|s0|√
2π

· 2

4|s1 − s0| − e|s1−s0| + e−|s1−s0| ·
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5. Derivatives of Odd Order at Two Points

Proof of Theorem 1.5. Let f satisfy the assumptions of Theorem 1.5. Using
Corollary 2.4, we deduce from the assumption (2) that the sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n+1)(s1) 6= 0}

are finite.

Let Q be a primitive of the polynomial

∞∑

n=0

(
f (2n+1)(s1)Λ̃n(z − s0)− f (2n+1)(s0)Λ̃n(z − s1)

)
.

We have

Q(2n+1)(s0) = f (2n+1)(s0) and Q(2n+1)(s1) = f (2n+1)(s1) for all n ≥ 0,

hence the function f̃(z) = f(z)−Q(z) satisfies

f̃ (2n+1)(s0) = f̃ (2n+1)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n+1)(0) = f̂ (2n+1)(1) = 0 for all n ≥ 0.

From Proposition 3.1 we deduce that there exist complex numbers c′1, c
′
2, . . . , c

′
L

with Lπ ≤ τ(f̂ ′) such that

f̂ ′(z) =
L∑

`=1

c′` sin(`πz).

The exponential types of f , f̃ , f̂ and f̂ ′ are related by

τ(f) = τ(f̃ ) and τ(f̂ ′) = τ(f̂ ) = |s1 − s0|τ(f̃ ).

Theorem 1.5 follows.

6. Whittaker Polynomials

6.1. Definition and Properties

We now consider the set S = ({0} × (2N + 1)) ∪ ({1} × 2N) ⊂ {0, 1} × N: we
take odd derivatives at 0 and even derivatives at 1. The analogs of Lidstone
polynomials have been introduced by [19, §6 p. 457–458], and studied by [16].
See also [6, Chap. III §4].
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Following [19], one defines a sequence (Mn)n≥0 of even polynomials by in-
duction on n with M0 = 1,

M ′′
n = Mn−1, Mn(1) = M ′

n(0) = 0 for all n ≥ 1.

For all n ≥ 0, the polynomial Mn is even of degree 2n and leading term 1
(2n)!z

2n.

From the definition one deduces

M (2k+1)
n (0) = 0 and M (2k)

n (1) = δk,n for all n ≥ 0 and k ≥ 0.

As a consequence, any polynomial f ∈ C[z] has an expansion

f(z) =

∞∑

n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′

n+1(1− z)
)
, (20)

with only finitely many nonzero terms in the series.

Applying (20) to the polynomial z2n yields the following recurrence formula:

Mn(z) =
1

(2n)!
z2n −

n−1∑

h=0

1

(2n− 2h)!
Mh(z). (21)

For instance

M1(z) =
1

2
(z2 − 1), M2(z) =

1

24
(z4 − 6z2 + 5) =

1

24
(z2 − 1)(z2 − 5),

M3(z) =
1

720
(z6 − 15z4 + 75z2 − 61) =

1

720
(z2 − 1)(z4 − 14z2 + 61).

Whittaker [19, §6], proved that the expansion (20) holds for entire functions
of exponential type < π/2. Here is the analog of Proposition 3.1 for Whittaker
polynomials [16, Th. 2]:

Proposition 6.1. Let f be an entire function of finite exponential type τ(f)
satisfying f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there exist complex

numbers c0, . . . , cL with (2L+ 1)π/2 ≤ τ(f) such that

f(z) =

L∑

`=0

c` cos

(
(2`+ 1)π

2
z

)
.

Therefore, if an entire function f has exponential type < π/2 and satisfies

f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0, then f = 0.

In (14), we considered, for t ∈ C, t 6∈ iπZ, the entire function z 7→ sinh(zt)
sinh(t) ;

now we consider, for t ∈ C, t 6∈ iπ2 + iπZ, the entire function

f(z) =
cosh(zt)

cosh(t)
=

ezt + e−zt

et + e−t
,
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which satisfies

f ′′ = t2f, f(1) = 1, f ′(0) = 0,

hence f (2n)(1) = t2n and f (2n+1)(0) = 0 for all n ≥ 0. From Proposition 6.1 and
the result of Whittaker quoted just before that proposition, it follows that the
sequence (Mn)n≥0 is also defined by the expansion

cosh(zt)

cosh(t)
=

∞∑

n=0

t2nMn(z) (22)

for |t| < π/2 and z ∈ C.

Using Cauchy’s residue Theorem, we deduce from (22) the integral formula

Mn(z) =(−1)n
22n+2

π2n+1

S−1∑

s=0

(−1)s

(2s+ 1)2n+1
cos

(
(2s+ 1)π

2
z

)

+
1

2πi

∫

|t|=Sπ

t−2n−1 cosh(zt)

cosh(t)
dt

for S = 1, 2, . . . and z ∈ C. In particular, with S = 1 we obtain

Mn(z) = (−1)n
22n+2

π2n+1
cos(πz/2) +

1

2πi

∫

|t|=π

t−2n−1 cosh(zt)

cosh(t)
dt. (23)

6.2. Replacing 0 and 1 with s0 and s1

Let s0 and s1 be two distinct complex numbers. Define, for n ≥ 0,

M̃n(z) = (s1 − s0)
2nMn

(
z

s1 − s0

)
.

This sequence of polynomials is also defined by induction by M̃0(z) = 1 and, for
n ≥ 1,

M̃ ′′
n = M̃n−1, M̃ ′

n(0) = M̃n(s1 − s0) = 0.

Hence

M̃ (2k+1)
n (0) = 0 and M̃ (2k)

n (s1 − s0) = δk,n for all n ≥ 0 and k ≥ 0.

It follows that any polynomial f ∈ C[z] has an expansion

f(z) =

∞∑

n=0

(
f (2n)(s1)M̃n(z − s0) + f (2n+1)(s0)M̃

′
n+1(z − s1)

)
,

with only finitely many nonzero terms in the series.
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From (20) we deduce

M̃n(z) =
z2n

(2n)!
−

n−1∑

h=0

(s1 − s0)
2n−2h

(2n− 2h)!
M̃h(z). (24)

Here is the analog of Lemma 3.4 for the sequence of polynomials M̃n:

Lemma 6.2. Let s0, s1 be two distinct complex numbers. There exist positive

contants γ′
1, γ

′
2 and γ′

3 such that the following holds:

(i) For r ≥ 0 and n ≥ 0, we have

|M̃n|r ≤ γ′
1

|s1 − s0|2n
(2n)!

max

{
r

|s1 − s0|
, 2n

}2n

.

(ii) Assume (5). Then, for sufficiently large r and for all n ≥ 0,

|M̃n|r ≤ γ′
2

er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|M̃n|r ≤ γ′
3

(
2|s1 − s0|

π

)2n

e
πr

|s1−s0| .

Proof. (i) Let (κ′
0, κ

′
1, κ

′
2, . . . ) be a sequence of positive numbers satisfying κ′

0 ≥ 1
and, for n ≥ 1,

κ′
n ≥ 1 +

n−1∑

h=0

κ′
h

(2n− 2h)!
·

By induction we prove the estimate, for z ∈ C,

|M̃n(z)| ≤ κ′
n

|s1 − s0|2n
(2n)!

max

{ |z|
|s1 − s0|

, 2n

}2n

. (25)

This is true for n = 0 (and z 6= 0). Assume that, for some n ≥ 1, (25) is true
for n replaced with h = 0, 1, . . . , n− 1. Then for 0 ≤ h ≤ n− 1 we have

|M̃h(z)| ≤ κ′
h

|s1 − s0|2h
(2h)!

max

{ |z|
|s1 − s0|

, 2n

}2h

.

We use the upper bound
(2n)!

(2h)!
≤ (2n)2n−2h.

We deduce, for 0 ≤ h ≤ n− 1,

|s1 − s0|2n−2h|M̃h(z)| ≤ κ′
h

|s1 − s0|2n
(2n)!

max

{ |z|
|s1 − s0|

, 2n

}2n

.
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Now (24) implies

|M̃n(z)| ≤
(
1 +

n−1∑

h=0

κ′
h

(2n− 2h)!

)
|s1 − s0|2n

(2n)!
max

{ |z|
|s1 − s0|

, 2n

}2n

,

which proves (25).

We deduce part (i) of Lemma 6.2 by taking for the sequence (κ′
h)h≥0 a con-

stant sequence κ′
h = γ′

1 with

γ′
1 = 1 + γ′

1

∑

`≥1

1

(2`)!
·

This proves (i) with the explicit value

γ′
1 =

2

4− e− e−1
= 2.188 569 9 . . .

(ii) Fix r sufficiently large. Let (κ̃′
n)n≥0 be another sequence satisfying κ̃

′
0 > 0

and, for n ≥ 1,

κ̃′
n ≥ 1 +

n−1∑

h=0

κ̃′
h

|s1 − s0|2n−2h

(2n− 2h)!
· (26)

We prove the estimate

|M̃n|r ≤ κ̃′
n

er+(1/4r)

√
2πr

· (27)

This is true for n = 0, since r is sufficiently large and κ̃′
0 > 0. Assume that, for

some n ≥ 1, (27) is true for all h with 0 ≤ h < n. Using the induction hypothesis
with (24), we obtain

|M̃n|r ≤ r2n

(2n)!
+

er+(1/4r)

√
2πr

n−1∑

h=0

κ̃′
h

|s1 − s0|2n−2h

(2n− 2h)!
·

Now (27) follows from (26) and Corollary 3.3. We take for the sequence (κ̃′
h)h≥0

a constant sequence κ̃′
h = γ′

2 with

γ′
2 = 1 + γ′

2

∑

`≥1

|s1 − s0|2`
(2`)!

·

Since (5) can be written

e|s1−s0| + e−|s1−s0| < 4,

this implies part (ii) of Lemma 6.2 with

γ′
2 =

2

4− e|s1−s0| − e−|s1−s0| ,
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provided that r is sufficiently large.

(iii) From the integral formula (23) one deduces the upper bound:

|Mn|r ≤
(
2

π

)2n

eπr

(
4

π
e−πr/2 + 2−2n+1 sup

|t|=π

1

|et + e−t|

)
.

The proof of Lemma 6.2 is complete.

From part (iii) of Lemma 6.2 we deduce the following corollary.

Corollary 6.3. Assume |s1 − s0| < π/2. There exists a constant γ′
4 > 0 such

that, for r sufficiently large,

∑

n≥γ′
4
r

|M̃n|r < 1.

From (22) it follows that the assumption |s1 − s0| < π/2 cannot be relaxed.

Proof. Let N be a positive integer. From part (iii) of Lemma 6.2 we deduce

∑

n≥N

|M̃n|r ≤ γ′
3e

πr

|s1−s0|

∑

n≥N

(
2|s1 − s0|

π

)2n

=
γ′
3π

2

π2 − 4|s1 − s0|2
e

πr

|s1−s0|

(
2|s1 − s0|

π

)2N

·

The right hand side is < 1 as soon as

πr

|s1 − s0|
+ log

γ′
3π

2

π2 − 4|s1 − s0|2
< 2N log

π

2|s1 − s0|
,

and this is true for r sufficiently large and N ≥ γ′
4r, provided that

γ′
4 >

π

2|s1 − s0|(log π − log(2|s1 − s0|))
·

7. Derivatives of Odd Order at One Point and Even at the Other

Proof of Theorem 1.6. Let f satisfy the assumptions of Theorem 1.6. Using the
assumption (2), we deduce from Corollary 2.4 that the sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Hence

P (z) =

∞∑

n=0

(
f (2n)(s1)M̃n(z − s0) + f (2n+1)(s0)M̃

′
n+1(z − s1)

)
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is a polynomial satisfying

P (2n+1)(s0) = f (2n+1)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)−P (z) has the same exponential type as f and satisfies

f̃ (2n+1)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n+1)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.

The exponential types of f and f̂ are related by

τ(f̂ ) = |s1 − s0|τ(f).

From Proposition 6.1 we deduce that there exists complex numbers c0, c1, . . . , cL
with (2L+ 1)π/2 ≤ τ(f̂) such that

f̂(z) =
L∑

`=0

c` cos

(
(2`+ 1)π

2
z

)
,

and therefore

f̃(z) =
L∑

`=0

c` cos

(
(2`+ 1)π

2
· z − s0
s1 − s0

)
.

Theorem 1.6 follows.

Proof of Theorem 1.8. Assume (5). Define, for k ≥ 0, Nk = (γ′
4)

2k−1, where γ′
4

is the constant in Corollary 6.3, so that N0 = 1 and Nk+1 = γ′
4N

2
k . For n ≥ 1,

let en = 0 if Nk < n < Nk+1, and eNk
∈ {+1,−1} for k ≥ 0, so that there is an

uncountable set of such lacunary sequences (en)n≥0. Define

f(z) :=
∑

n≥1

enM̃n(z − s0).

Let us check the upper bound for |f |r.
Let r be a sufficiently large positive number. Let k be the least positive

integer such that Nk >
√
r + |s0|. From part (i) of Lemma 6.2, using the bound

Nk−1 ≤
√
r + |s0| ≤

√
2r, we deduce, for sufficiently large r,

∑

n<Nk

|en| |M̃n|r+|s0| ≤
∑

1≤n≤Nk−1

|M̃n|r+|s0|

< γ′
1Nk−1(2r)

2Nk−1

≤ γ′
1r

3
√
r

<
er

r
·



Transcendental Entire Functions with Infinitely Many Derivatives 405

Assuming (5), we can use part (ii) of Lemma 6.2 and get

|M̃Nk
|r+|s0| ≤ γ′

2

er+|s0|+1/(4r)

√
2πr

·

Since γ′
4(r + |s0|) < γ′

4N
2
k = Nk+1, Corollary 6.3 yields

∑

n>Nk

|en| |M̃n|r+|s0| ≤
∑

n≥Nk+1

|M̃n|r+|s0| < 1.

Combining these three estimates, we conclude

lim sup
r→∞

e−r√r|f |r ≤ γ′ with γ′ = γ′
2

e|s0|√
2π

,

which is an explicit version of (6):

γ′ =
e|s0|√
2π

· 2

4− e|s1−s0| − e−|s1−s0| ·

We deduce that f has order ≤ 1 and that f (2n+1)(s0) = 0, f (2n)(s1) = en for all
n ≥ 0.

8. Sequence of Derivatives

The proof of Theorem 1.9 relies on the following result of [7, Chapter IV, §9]
and [9, §4]. See also [20, Chap. III] and [6, Chap. 3].

Proposition 8.1. Let σ0, σ1, . . . , σm−1 be complex numbers and let τ be defined

accordingly as in Section 1.4. If f is an entire function of exponential type < τ
satisfying

f (mn+j)(σj) = 0 for j = 0, . . . ,m− 1 and all sufficiently large n,

then f is a polynomial.

Proof of Theorem 1.9. Using (7) and Corollary 2.4, we deduce from the assump-
tions of Theorem 1.9 that

f (mn+j)(σj) = 0

for all sufficiently large n. It follows from Proposition 8.1 and the assumption
τ(f) < τ that f(z) is a polynomial.

We now prove

Proof of Proposition 1.10. (a) Assume ∆(α) = 0: the m×m matrix
(
ζk`eζ

kασ`

)
0≤k,`≤m−1
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has rank < m. There exists c0, c1, . . . , cm−1 in C, not all zero, such that the
function

f(z) = c0e
αz + c1e

ζαz + · · ·+ cm−1e
ζm−1αz

satisfies

f (j)(σj) = 0 for j = 0, 1, . . . ,m− 1.

Since f (m)(z) = αmf(z), one deduces

f (mn+j)(σj) = 0 for j = 0, 1, . . . ,m− 1 and n ≥ 0.

(b) Assume ∆(1) 6= 0. For j = 0, 1, . . . ,m− 1, there exists a unique m–tuple
of complex numbers (cj0, cj1, . . . , cj,m−1) such that the function

ϕj(z) =

m−1∑

k=0

cjke
ζkz

satisfies

ϕ
(`)
j (σ`) = δj` for 0 ≤ ` ≤ m− 1.

For j = 0, 1, . . . ,m−1, the function ϕj(z) has exponential type 1 and is a solution

of the differential equation ϕ
(m)
j = ϕj . Let a0, a1, . . . , am−1 in C. Define

f(z) = a0ϕ0(z) + a1ϕ1(z) + · · ·+ am−1ϕm−1(z).

We have

f (mn+j)(σj) = aj for j = 0, 1, . . . ,m− 1 and n ≥ 0.

Assume now τ > 1: according to Proposition 2.10, for a0 = a1 = · · · = am−1 = 0,
the unique solution of exponential type < τ is f = 0. The unicity follows.

Proof of Corollary 1.11. In case σ0 = 1, σ1 = σ2 = · · · = σm−1 = 0, the
determinant ∆(t) is

det




et 1 1 · · · 1
eζt ζ ζ2 · · · ζm−1

...
...

. . .
...

...

eζ
m−1t ζm−1 ζ2(m−1) · · · ζ(m−1)2


 .

This determinant is invariant under the transformation t 7→ ζt; hence ∆(t) is a
nonzero constant times

et + eζt + · · ·+ eζ
m−1t = m

∑

n≥0

tnm

(nm)!
·
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Now Corollary 1.1 follows from Theorem 1.9 with τ = τm/|s1 − s0|.

As pointed out by [9, p. 12], a special case of the results of [7] is that an
entire function of exponential type < τm satisfying

f (n)(0) = 0 for n ≡ 0 mod m and f (n)(1) = 0 for n 6≡ 0 mod m

is a polynomial. A.J. Macintyre remarks that τm is approximately m/e when
m is large; he suggests an analogy with Taylor’s series which may be considered
as the limiting case with m = ∞. For Corollary 1.1, when m is large, the
assumption (2) implies the assumption on τ(f). Hence Proposition 2.1 can be
viewed as the limiting case of Corollary 1.1.

The proof of Theorem 1.12 relies on the following result [19, Corollary of
Theorem 7, p. 468]:

Proposition 8.2. If an entire function f of exponential type τ(f) < 1 satisfies

f (n)(0)f (n)(1) = 0

for all sufficiently large n, then f is a polynomial.

As pointed out in a note added in proof of [19, p. 469], [7] proved this result
earlier, but only under the stronger assumption τ(f) < 1/e.

Proof of Theorem 1.12. Since f satisfies (2), the assumption of Corollary 2.4
is satisfied, hence |f (n)(sj)| < 1 for n sufficiently large and j = 0, 1. Let
n be sufficiently large. One at least of the three numbers f (n)(s0), f (n)(s1),
f (n)(s0)f

(n)(s1) is an integer of absolute value less than 1, hence it vanishes and
therefore the product f (n)(s0)f

(n)(s1) vanishes. We apply Proposition 8.2 to the
function

f̂(z) = f
(
s0 + z(s1 − s0)

)
,

the exponential type of which is |s1 − s0|τ(f) < 1.

This completes the proof of Theorem 1.12.
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