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Abstract. The class of completely regular semigroups CR endowed with the unary op-
eration of inversion within maximal subgroups forms a variety CR under inclusion.
The lattice of its subvarieties is denoted by L(CR). In previous publications, we con-
structed a ∩-subsemilattice Γ of L(CR) and provided each of its members with a basis
of identities.

For each of these varieties, we construct the classes of the following relations: trace,

kernel, B∧, B∨ as well as restrictions of these relations to Γ. A few cases of the kernel

relation escape our scrutiny.
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Core.

1. Preliminaries

Completely regular semigroups are provided here with the unary operation of
inversion within the maximal subgroups. As such they form a variety CR. We
denote the lattice of its subvarieties by L(CR) ordered by inclusion. In the effort
of studying the structure of L(CR), a number of relations have proved quite
useful. Moreover, they induce operators on L(CR) and some of its interesting
sublattices.

For each of the following relations on L(CR): trace, kernel, B∧, B∨ for a
∩-subsemilattice Γ of L(CR) constructed in [10], we determine
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(a) the classes of each variety in Γ,

(b) the restrictions of these relations to Γ,

with very few exceptions (concerning the kernel relation).

For each of these relations, we illustrate the situation on Γ by a figure. The
set Γ has 60 elements, so there is abundance of “variety” to contend with. This
type of analysis was executed in [11] for the local relation where it depends on
a basis of identities of a variety. This is no longer the case for the kernel and
trace relations, since lower and upper ends are expressed by formulae.
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Figure 1: ∩-subsemilattice Γ with enclosed sublattice ∆ of L(CR)
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In the main body of the paper, for several important relations on L(CR),
which are all equivalence relations all of whose classes are intervals, we charac-
terize all classes containing varieties in Γ, with few exceptions.

We follow symbolism and concepts of the book [15]; moreover most of our
references stem from this text. We now state a minimum of definitions used
throughout.

The set of all idempotents in S ∈ CR is denoted by E(S).

All the relations R we study in this work are equivalences all of whose classes
are intervals. Hence for all V ∈ L(CR), we write its R-class as VR = [VR,V

R].
For example LO or CHA, where L stands for local, O for orthodox, C for core,
and HA for the class of all S ∈ CR all of whose subgroups are abelian, called
overabelian.

We often write the meet of a finite number of varieties by juxtaposition
of their acronyms with a minimum of parentheses for easy and unambiguous
identification of the variety. For any V ∈ L(CR), we write

[V) = {U ∈ L(CR) | V ⊆ U}, (V] = {U ∈ L(CR) | U ⊆ V}.

In [10], we introduced the ∩-subsemilattice Γ of L(CR), see Figure 1. For each
variety in Γ, in [11] we gave at least one basis of identities, and characterized its
(local) L-classes. For example, when we consider an interval [U,V] with U,V ∈ Γ,
it may mean within L(CR) or within Γ.

By the varietal version of a statement concerning certain fully invariant con-
gruences on a free completely regular semigroup of countably infinite rank, we
mean its translation in terms of varieties via the standard antiisomorphism.

Our results are mostly complete with some lacunae in the context of the kernel
relation. The set Γ can be naturally partitioned as [T, LO] and [RBA,CR]. The
former interval is situated low in L(CR) while the latter takes up the highest
part of L(CR). As a consequence, the former presents no difficulty, while the
latter contains lacunae in our description.

For the T- and K-relations, we follow [14], and for B∧- and B∨-relations [7].
In addition, our references include a copious collection of papers and results,
generally adapted for the needs of the specific reference.

We first fix some notation that will be used several times.

2. Canonical Varieties

Let X = {x1, x2, . . . } be a countably infinite alphabet. In the free completely
regular semigroup on X , we single out the following words

G2 = x2x1, H2 = x2, I2 = x2x1x
0
2

where x0 = xx−1 (= x−1x). Overline on a word denotes the reverse (mirror
image). For n > 2, define inductively, for P ∈ {H, I},

Gn = xnḠn−1, Pn = Gn(xnP̄n−1)
0.
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We call the varieties H2 = LNO, H̄2 = RNO, and

Hn = [Gn = Hn], H̄n = [Ḡn = H̄n],

In = [Gn = In], Īn = [Ḡn = Īn],

canonical. See [4].

Notation 2.1. R = I3 ∩ Ī3, ReB = R ∩B.

It will be convenient to list its properties as follows.

Fact 2.2. We have

(i) R = [(axya)0 = (axa0ya)0].

(ii) R ∩ O = RO = [axya = axa0ya].

(iii) R ∩BG = RBG = [(axya)0 = (axaya)0].

(iv) RBG ∩HA = RBA = R ∩BG ∩HA.

Proof. (i) See [5, Theorem 5.1(iv)].

(ii) For the equality of the first and third varieties, see [5, Theorem 5.4(iii)].
For the second equality, consult [15, Theorem V.3.3].

(iii) This can be derived from part (i) and [15, Proposition V.4.4].

(iv) This requires a straightforward argument.

3. T-relation

The relation T on L(CR) can be thought of as the varietal version of the T-
relation on completely regular semigroups. Indeed, on the lattice of fully in-
variant congruences on a free completely regular semigroup of countably infinite
rank, the trace relation induces a relation which we also denote by T. Its classes
are intervals, and we may use the notation: for any V ∈ L(CR), its T-class is
denoted VT = [VT ,V

T ].

Our purpose in this section is the determination of all T-classes of varieties
in Γ. The prime reference here is [14].

We start with citation of the relevant literature needed in our discussion.

Fact 3.1. Let V = [uα = vα]α∈A ∈ L(CR).

(i) VT equals the Malcev product G ◦ V.

(ii) If V ∈ BG, then VT = V ∩B.

(iii) The mapping V 7→ VT is an ∩-endomorphism,
VT = [u0α = v0α, (xuαy)

0 = (xvαy)
0] where x, y /∈

⋃
α∈A

c(uα, vα).

Proof. (i) See [14, Theorem 6.2].
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(ii) By [14, Theorem 6.2], we have VT = 〈V ∩ F〉 where F = {S ∈ CR | µS =
ε}. If S ∈ BG, we have µ = H and thus BG ∩ F = B. Hence for V ∈ L(BG), we
get

VT = 〈V ∩ F〉 = 〈(V ∩BG) ∩ F〉 = 〈V ∩ (BG ∩ F)〉 = 〈V ∩B〉 = V ∩B.

(iii) See [14, Proposition 7.10] and [17, Theorem 3.9].

The completeness assertion can be easily checked by inspection.

The subsets (TO] and [(LO)HA] of Γ form a partition of Γ. It is clear that
no variety in the former is T-related to a variety in the latter.

Theorem 3.2. We classify T-classes of varieties in {(TO], [(LO)HA)} ∩ Γ as

follows.

(i) The following intervals form the complete set of T-classes of the varieties

in (TO] ∩ Γ.

[T,G], [RB,CS], [S, SG], [NB,NBG], [ReB,RBG],

[B,BG], [O, TO], [O(HA), (TO)THA].

(ii) For every V ∈ [(LO)HA), we have VT ∩ Γ = {VT } and thus [V,VT ] is a

T-class and [V,VT ] ∩ Γ = {V}.

Proof. (i) We verify first that these intervals are T-classes. We will freely use
Facts 3.1 and 4.1 without specific reference and will refer to each interval by its
row and the order in its row.

(1,1): TT = G ◦ T = CS, GT = G ∩B = T.

(1,2): (RB)T = G ◦ RB = CS, (CS)T = CS ∩B = RB.

(1,3): ST = G ◦ S = SG, (SG)T = SG ∩B = S.

(1,4): (NB)T = G ◦NB = NBG, (NBG)T = RBG ∩B = NB.

(1,5): (ReB)T = G ◦ ReB = RBG, (RBG)T = RBG ∩B = ReB.

(2,1): BT = G ◦B = BG, (BG)T = BG ∩B = B.

(2,2): OT = TO, (TO)T = OT = (GK)T = GKO.

(2,3): (O(HA))T = OT (HA)T = (TO)THA,
(O(HA))T = (OK(HA)K)T = ((O(HA)K)T = (O(HA))K = O(HA).

(ii) From Fig. 2, we note that the varieties V in Γ not in part (i) are

CR, CHA, C, HA, LO, (LO)CHA, (LO)C, (LO)HA. (1)

We postpone the proof that they satisfy V = VT until the end of the next
section. It follows that their T-classes are [V,VT ] and satisfy [V,VT ]∩Γ = {V}.

For all the varieties in Γ, we characterize the lower ends of their T-classes,
and upper ends as well except those in the list (1). The following proposition
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Figure 2: T-relation restricted to Γ (Theorem 3.2)

provides a basis of identities for upper ends in a very general setting. Recall that
if w is either a word or an element of the free completely regular semigroup, h(w)
– the head of w and t(w) – the tail of w are the first and the last letters of w,
respectively.

Proposition 3.3. Let V = [uα, vα]α∈A ∈ L(CR) have the property that for every

α ∈ A, h(uα) = h(vα) and t(uα) = t(vα) for all α ∈ A. Then VT = [(xuαy)
0 =



Some Varieties of Completely Regular Semigroups 577

(xvαy)
0].

Proof. This follows easily from Fact 3.1(iii).

In view of this proposition, we can say that we have characterized the T-
classes of all varieties in Γ.

4. K-Relation

The preamble to Section 3 remains literally valid also in this case. We will
witness the rich interplay of the K- and T-relations. As usual, we start with
citations from the literature.

Fact 4.1. Let V = [uα = vα]α∈A ∈ L(CR).
(i) K contain a complete congruence.

(ii) The mapping V 7→ VK is a complete ∨-endomorphism.

(iii) The mapping V 7→ VK is a complete endomorphism.

(iv) If V ⊆ LO, then VK = V ∩ G, if V ⊆ O, and VK = V ∩ CS otherwise.

(v) If V ∈ {HA,C, CHA,CR}, then VK = V.

(vi) If VK = VT , then V = CR.

(vii) VK = (VK)T .

(viii) If V = VT ⊃ ReB, then V = VK .

(ix) VKC = VCK , VTC = VCT .

(x) If V ⊇ S, then VK = [xuαy(xvαy)
−1 ∈ E]α∈A where w ∈ E means w2 = w.

Proof. (i) See [3, Theorem 11].

(ii) This follows from [15, Lemma I.2.2].

(iii) This follows from [16, Theorem 1(3)] via [3, Theorem 14].

(iv) See [16, Theorem 2] and [14, Theorem 5.8].

(v) See [10, Lemma 3.5].

(vi) This follows directly from [12, Theorem 4.6(i)].

(vii) This is the varietal version of [2, Proposition 8.1].

(viii) This is the varietal version of [2, Proposition 8.2].

(ix) See [12, Lemmas 5.5 and 5.3, respectively].

(x) See [1, Proposition 7.2(ii) and Corollary 6.5].

It follows from Fact 4.1(iv) that for any U,V ∈ L(CR), if U ⊆ LO, then also
V ⊆ LO. Hence no variety U ∈ (LO)∩ Γ is K-related to a variety in [RBA)∩ Γ.
Clearly the sets (LO] ∩ Γ and [RBA) ∩ Γ form a partition of Γ.

Theorem 4.2. The following intervals form the complete set of K-classes of

varieties in (LO) ∩ Γ.

[T,B], [A,O(HA)], [G,O], [(CS)HA, (LO)HA],
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Figure 3: K-relation restricted to ((LO] ∪ [HA) ∪ [RBG)) ∩ Γ (Thms. 4.2, 4.3)

[(CS)C, (LO)C], [(CS)CHA, (LO)CHA], [CS, LO].

Proof. That the first, the third, and the last intervals are K-classes is folklore
and can be deduced from [16, Theorem 2]. That the second and the fourth
intervals are K-classes was proved in [9, Lemma 5.3], the argument of whose
proof may be readily adapted to the proofs for the fifth and sixth intervals.

It is clear from Figure 3 that this covers all the cases.
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The next result has a different flavor.

Theorem 4.3.

(i) Each variety V ∈ [HA) ∩ Γ satisfies V = VK = VT .

(ii) Each variety V ∈ [RBG) ∩ Γ satisfies V = VK = VT .

In both cases, no two distinct varieties are either K- or T-related.

Proof. (i) First V = VK is the content of Fact 4.1(v); now apply Fact 4.1(vii).

(ii) By Theorem 4.2, we get V = VT , and hence, since clearly V ⊇ ReB,
Fact 4.1(viii), we obtain V = VK .

The final statement of the theorem obviously holds in both cases.

Next we complete the proof of Theorem 3.2(ii). We are interested here in
VT . For the varieties V ∈ [HA) ∩ Γ, we have V = VT by Theorem 4.3(i). For
the varieties V ∈ [(LO)HA, LO] ∩ Γ, in view of Fact 4.1(vii), it suffices to prove
that V = VK . But this follows directly from Theorem 4.2.

This takes care of Theorem 3.2.

For the subject of K-classes, we are still missing

(a) lower ends of K-classes of the varieties HA, C, CHA since it is well known
that CRK = CR,

(b) upper ends of K-classes of the varieties RBG, BG, TO; they can be com-
puted using Fact 4.1(x),

(c) K-classes of varieties in [RBA, (TO)CHA] ∩ Γ.

The main difficulty here is that we have no basis of identities of the lower ends
of K-classes in general. For basis of identities of the upper ends of K-classes,
see Fact 4.1(x). In [11], we constructed bases for all varieties in Γ. We now
dedicate the remainder of this section to studying the K-relation in the interval
[RBA, CHA] ∩ Γ.

Theorem 4.4. In each of the following sets, no two varieties are K-related.

{(TO)HA, (TO)C, (TO)CHA, TO},

{BA, (BG)C, (BG)CHA,BG},

{RBA, (RBG)C, (RBG)CHA,RBG}.

Proof. By Fact 4.1(vi), if VK = VT , then V = CR. In Theorem 3.2, we have
seen that each set in the statement of the theorem is contained in some T-class.
The assertion follows.

We have seen in Theorem 4.3 that no two varieties in the set {HA,C, CHA,
CR} are K-related. This takes care of the K-relation on “almost vertical lines”
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in the interval [RBA,CR] ∩ Γ. For the “almost horizontal” lines in Figure 2 of
this interval, we now propose

Conjecture 4.5. In each of the following sets

(4.1) {(RBG)CHA, (BG)CHA, (TO)CHA, CHA},

(4.2) {(RBG)C, (BG)C, (TO)C,C},

(4.3) {RBA,BA, (TO)HA, HA}

no two distinct varieties are K-related.

No two varieties in the set {RBG,BG, TO,CR} are K-related, as we have seen
in Theorem 4.3. But now, unfortunately, the varieties within (4.1), (4.2), (4.3)
are not T-related. In the next two propositions, we characterize the possible
K-relationship between some of these varieties.

Of the three sets (4.1)–(4.3), as samples, we have chosen below two pairs of
varieties in (4.3) giving some alternatives. For the first pair, we prove a lemma.

Lemma 4.6. We have RK = R.

Proof. From Notation 2.1, we have by definition that R= Ī3 ∩ Ī3. Now
Fact 3.1(iii) and [6, Theorem 10.2(ii)] yield

R
T = (Ī3 ∩ Ī3)

T = Ī
T

3 ∩ Ī
T

3 = I3 ∩ Ī3 = R.

Trivially, ReB ⊆ R which by Fact 4.1(viii) gives R = RK .

Proposition 4.7. The following statements are equivalent:

(i) BAKRBA.

(ii) (BA)K ⊆ R.

(iii) BA ⊆ RK .

Proof. (i)⇒ (ii). By Fact 4.1(iii), we obtain

(BA)K = (RBA)K = (R ∩BA)K = RK ∩ (BA)K

whence (BA)K⊆ RK which implies (BA)K ⊆ RK and Lemma 4.6 yields (BA)K ⊆
R.

(ii)⇒ (iii). It suffices to apply the operator V 7→ VK .

(iii)⇒ (ii). It suffices to apply the operator V 7→ VK .

(ii)⇒ (i). Using the same references, we get (BA)K ⊆ RK whence (BA)K =
RK(BA)K = (R(BA))K and thus BAKR(BA).

In part (ii) above, we have no idea how to compute (BA)K . In part (iii), the
variety RK causes a difficulty. It is even more obscure if we write this in terms
of implications of identities using BA = [aba0 = a0ba].
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For the remainder of the paper, we will write the operators T,K,L before
their argument. (We have done this from the beginning for HA.)

For the second pair, we also need the following proposition.

Proposition 4.8. We have

HAK (TO)HA ⇔ HA ⊆ {S ∈ CR | C(S) ∈ KBG}.

Proof. By (v) and (ii) of Fact 4.1, we get

HAK (TO)HA ⇔ HAK (CBG)HA ⇔ (HA)K = (CBG)K(HA)K

⇔ HA = (CBG)KHA ⇔ HA ⊆ (CBG)K = BG
KC

⇔ HA ⊆ {S ∈ CR | C(S) ∈ KBG}.

It is not clear how to violate this condition since KBG is still an enigma.

5. Extension of Figures 2 and 3

By treating the partition {(TO], [(LO)HA)} in Theorem 3.2, we have seen
T-classes in Γ. In Theorem 4.2, we classified the K-classes in (LO] ∩ Γ. Theo-
rem 4.4 handles K-relation along three more intervals. The material concerning
the K-relation ended with a conjecture. Hence K-relation on Γ was not com-
pletely determined.

We treat here a different kind of subject concerning both K- and T-relations.

In addition to Fact 3.1(v), we will need the following information.

Lemma 5.1. If V ∈ {TO,BG,RBG}, then V = VT .

Proof. Since TO = OT and BG = BT , we have the contention for the first two
varieties. Next using [13, Proposition 7.10], we obtain

TRBG = RBGT = (R ∩BG)T = RT ∩BGT = RBG

the assertion follows.

Corollary 5.2. If V ∈ {TO,BG,RBG}, then V = VK .

We need a final preliminary result as follows.

Fact 5.3. Let V ∈ [T,CR). Then

V ⊂ VKT ⊂ V(KT )2 ⊂ · · · ⊂ CR
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and
∨∞

n=1 V
(KT )n = CR

Proof. This is [12, Theorem 4.6(i)]

We are now ready for a heuristic argument. Indeed, we can extend Figs. 2
and 3 by using the idea of Fact 5.3 as follows. First the varieties

TO, BG, RBG (2)

are upper ends of their T-classes, and are trivially above ReB. Hence we can
apply the varietal version of [2, Proposition 2] to conclude that all the varieties
in (2) are least elements of their K-classes thereby

[TO,KTO], [BG,KBG], [RBG,KRBG]

are K-classes. But now, the varietal version of [2, Proposition 1] yields that
KTO, KBG, KRBG are the least elements in their T-classes. Thus TKTO,
TKBG, TKRBG are the greatest elements in their T-classes.

Evidently, this procedure can be repeated indefinitely with the join of these
varieties equaling CR by [12, Theorem 4.4].

We can perform similar analysis with the varieties HA, C, CHA as well since
they are upper ends of their T-classes. In particular THA, TC, TCHA are the
greatest elements in their T-classes. Hence they are the least elements of their
K-classes. Therefore KTHA, KTC, KTCHA are the greatest elements in their
K-classes.

Since TO, BG, RBG are the upper ends of their T-classes, by Fact 4.1(vii),
we conclude that

[TO,KTO], [BG,KBG], [RBG,KRBG]

are K-classes. This does not necessarily carry over to

(TO)CHA, (BG)CHA, (RBG)CHA

(TO)C, (BG)C, (RBG)C (3)

(Y O)HA, BA, RBA

in the intervals [(TO)CHA,K(TO)CHA],. . . ,[RBA,KRBA], for (3) are possibly
not the greatest varieties in their T-classes. But still some of them may be the
least varieties in their K-classes. This remains as an open problem.

All the other intervals in Figure 3 marked with thicker lines in this part are
K-classes. The same carries over to all similar intervals in Figure 2 relative to
T-classes. They are all marked with thicker lines.

The picture is repeated indefinitely, except possibly for the intervals indicated
above; the K- and T-classes alternate going upwards, actually indefinitely, with
their join equaling CR. The only problem is which varieties in (3) are minimal
in their K-classes, if any? We know that they are not the greatest varieties in
their T-classes, and we may not apply the formula (VT )K = VT .
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Figure 4. Extension of Figures 2 and 3

To each of the varieties

HA, C, CHA

we apply the upper T. To the resulting three varieties

THA, TC, TCHA,
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we then apply upper K obtaining new varieties

KTHA, KTC, KTCHA

and continue this procedure indefinitely.

Note that the resulting sequence is contained in the sequence in Fact 2.2, so
that we may conclude, also using properties discussed above, that

[HA, THA], [C, TC], [CHA, TCHA]

are T-classes, and the next level, that is

[THA,KTHA], [TC,KTC], [TCHA,KTCHA]

are K-classes, and so on.

That the join of the classes constructed equals CR is guarantied by Fact 5.3
since the ascending chain constructed above is a subchain of the one in this
reference.

We can perform the same kind of analysis starting with the set {TO,BG,
RBG}, and successively apply the operator V 7→ VK , and continue similarly as
above.

Any of the procedures can be applied to any of the varieties [RBA, (TO)CHA]
∩ Γ, but we will obtain full K- or T-classes at most in the second etc. step as
above.

The remaining classes would be full. See Figure 3.

6. B∧-Relation

This relation has a very natural definition as follows.

Definition 6.1. Define the B∧-relation on L(CR) by

UB∧ V ⇔ U ∩B = V ∩B.

Now B∧ is a complete congruence whose classes can be described in terms of
canonical varieties, see Section 2.

It is a simple matter to characterize all B∧-classes of varieties in Γ as follows.

Theorem 6.2. The following intervals form the complete set of B∧-classes of

varieties in Γ.

[T,G], [RB,CS], [S, SG], [NB,NBG], [ReB,RBG], [B,CR].

Proof. By a quick glance at Figure 1 of Γ, we see that Γ contains only the
following band varieties

T, RB, S, NB, ReB, B. (4)
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Figure 5: B∧-relation restricted to Γ (Theorem 6.2)

ClearlyB∧-classes are parametrized by band varieties, so that the list (4) consists
of the lower ends of the B∧-classes of Γ. From [4, Theorem 5.3], we may now
read off what the upper ends of these B∧-classes look like.

It is now very easy to delineate in Figure 1 what the B∧-classes of the band
varieties are. See Figure 5.
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7. B∨-relation

We studied the B∧-relation in Section 6. The B∨-relation is only a pale dual to
it.

Definition 7.1. Define the B∨-relation on L(CR) by

UB∨V ⇔ U ∨B = V ∨B.

Then B∨ is a complete congruence. We do not have a simple parametrization
for its classes. However, all its classes are intervals, and we may use the usual
notation for them. Indeed, for any V ∈ L(CR), we write VB∨ = [VB∨ ,VB

∨

].
Clearly VB

∨

= V∨B, but about VB∨ we know very little. For general reference,
consult [7]. The first important information is the following.

Fact 7.2. We have B∨|L(BG) = K|L(BG).

Proof. This was proved in [7, Theorem 6.3(iii)].

Our main result here follows.

Theorem 7.3.

(i) The following intervals are B∨-classes of varieties contained in Γ:

[T,B], [A,O(BA)], [G,O(BG)], [(CS)HA, (LO)BA],

[(CS)C, LO(BG)C], [(CS)CHA, LO(BG)CHA], [CS, (LO)BG].

(ii) The following intervals are B∨-classes which intersect Γ but are not con-

tained in Γ:

[RBA,RK(BA)], [(RBG)C,RK(BG)C],

[(RBG)CHA,RK(BG)CHA], [RBG,RK(BG)].

(iii) The B∨-classes of the varieties containing B are singletons.

Proof. By simple inspection, we may see that the sets [T, (LO)BG], [RBA,RBG],
[B) form a partition of Γ. We will make good use of Fact 7.2 by profiting from
results on the K-relation in Section 4, especially Fact 4.1, with sometimes citing
the relevant results explicitly.

(i) The lower ends V of the classes of the listed intervals satisfy V = VK by
Fact 4.1(iii) and we may apply Fact 7.2 to conclude that VB∨ = V. For the upper
ends of these classes, we must calculate V ∨B.

T ∨B = B, trivially,
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Figure 6: B∨-relation restricted to Γ (Theorem 7.3)

G ∨B = O(BG) by [7, Lemma 3.4(i)],

A ∨B = (G ∩HA) ∨B = (G ∨B) ∩ (HA ∨B) = O(BA),

CS ∨B = (LO)BG by [7, Lemma 3.4(ii)],

(CS)HA ∨B = (CS ∩HA) ∨B = (CS ∨B) ∩ (HA ∨B)

= (LO)BG ∩HA = (LO)BA.

(CS)C ∨B and (CS)CHA ∨B follow the same pattern.
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(ii) For the join RBG ∨ B we must use Polák’s theorem. For it we need the
ladders of RBG and B, that is

RBGK

� �
(RBG)TrK

∗ (RBG)TlK
∗

� �
· · ·

BK

� �
BTrK

∗ BTlK
∗

� �
· · ·

Using [14, Theorem 8.2 and Proposition 8.4] and [4, Proposition 4.1], we obtain

RBGTr
= (I3 ∩ Ī3 ∩BG)Tr

= (I3)Tr
∩ (Ī3)Tr

∩ (BG)Tr
= I3 ∩ I2 ∩B

so that RBTrK
∗ = T, which together with its dual yields

RBGK

� �
T T

��
��

T ∗ T ∗

� �
· · ·

∨ T

� �
T T

� �
· · ·

= RBGK

� �
T T

� �
· · ·

Now taking into account that VT = VTl ∩ VTr , and Fact 4.1(ii), the evaluation
becomes

RBG ∨B = (RBGK)K ∩ TKTr ∩ TKTl

= (RBG)K ∩ TKT = RK ∩BG
K ∩BG = RK(BG).

This takes care of the last interval in part (ii). For the first interval, we obtain

RBG ∩HA = RBA, RK(BG) ∩HA = RK(BA)

and thus the interval [RBA,RK(BA)]. The argument for the remaining two
intervals is essentially the same.

(iii) If V ⊇ B, then VB
∨

= V ∩B = V. Hence all of V ⊇ B have the property
V = VB

∨

, and thus no two of them are B∨-related, and the assertion follows.
Simple inspection will show that all B∨-classes in part (i) are contained in Γ.

8. Subdirect Decompositions of L(CR)

From the varietal version of [15, Proposition VII.2.10(i)], we know that K ∩
T = ε. This induces a subdirect decomposition of L(CR) along L(CR)/K and
L(CR)/T. What does this decomposition look like? The second part of this
reference, in the varietal garb, has the form

V = VK ∨ VT = VK ∩ VT (V ∈ L(CR)). (5)
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Theorem 8.1. Set

Φ = {(UK,WT) ∈ L(CR)/K× L(CR)/T | UK ∨WT = UK ∩WT }.

Then the mappings

ϕ : V 7→ (VK,VT ) (V ∈ L(CR)),

ψ : (UK,WT) 7→ UK ∨WT = UK ∩WT ((UK,WT) ∈ Φ)

are mutually inverse isomorphisms between L(CR) and Φ.

Proof. By (5), ϕ maps L(CR) into Φ. Trivially ψ maps Φ into L(CR). For
V ∈ L(CR), we have

Vϕψ = (VK,VT)ψ = V by (5).

For (UK,WT) ∈ Φ, let V = UK ∨WT = UK ∩WT . Then

VK = (UK ∨WT )K = UK ∨WTK ⊇ UK ,

VK = (UK ∩WT )K ⊆ (UK)K = UK

and thus VK = UK . Similarly, we get VT = WT . Therefore UKV and WTV,
that is (UK,WT) = (VK,VT). Thus

(UK,WT)ψϕ = Vϕ = (VK,VT) = (UK,WT).

It follows that ϕ and ψ are mutually inverse bijections between L(CR) and Φ.

Trivially ϕ is inclusion preserving. In order to show that ψ is inclusion
preserving, it suffices to assume that (VK,VT) ⊆ (V′K,V′T) for V,V′ ∈ L(CR).
Then VK ⊆ V′K and VT ⊆ V′T. But then V ⊆ V′ and therefore ψ is order
preserving as well. The assertion of the theorem follows.

From [7, Lemma 4.2], we have

V = VB∧ ∨ VB∨ = VB
∧

∩ VB
∨

(V ∈ L(CR)),

and in [8] we saw that B∧ ∩B∨ = ε. This induces another subdirect decompo-
sition of L(CR).

Theorem 8.2. If in Theorem 8.1, we replace (K,T) by (B∧,B∨), or alternatively
by (B∨,B∧), the statement and the proof of Theorem 8.1 remain valid giving the

decomposition of L(CR) into a subdirect product of (B] and [B).

Proof. Straightforward translation.

The third subdirect decomposition also concerns (B] and [B), but with dif-
ferent functions. It is a specialization of [8, Theorem 3.1] which concerns an
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arbitrary lattice L and its neutral element a. Letting L = L(CR) and a = B, we
arrive at

Theorem 8.3. The mappings

ϕ : V 7→ (VB∧ ,VB∨), ψ : (U,W) 7→ U ∨WB∨ = U
B

∧

∩W

are mutually inverse isomorphisms between L(CR) and the lattice

{(U,W) ∈ (B]× [B) | U ∨WB∨ = U
B

∧

∩W}

which is a subdirect product of (B] and [B).
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