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1. Introduction and Preliminaries

We recall that every non-trivial semigroup is a subdirect product of some sub-
directly irreducible semigroups [3]. A nontrivial semigroup S is subdirectly ir-
reducible if and only if there exists the least nontrivial congruence on S. In
1973, Gerhard gave a representation of subdirectly irreducible bands in terms
of transformations [2]. In 2017, Wang, Leng and Yu characterized subdirectly
irreducible regular bands whose structural semilattices are finite chains by using
refined semilattices of semigroups [7]. The purpose of this paper is to give a
characterization of subdirectly irreducible bands (not necessarily regular) whose
structural semilattices have heights 2 in terms of fundamental semilattices of
semigroups.

First we introduce some notation and terminology. Let X be a nonempty
set, and 7 (X) denote the semigroup formed by all transformations on X. The
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symbol (¢) means that ¢ is a constant which maps X onto the element (¢) € X.
We write the identity relation on X as ex and the universal relation on X as
wx.

Let p be a binary relation on X, and we have eg C p. Then we have

pCpPCpic....

The relation p>° = [J{p" : n > 1} is said to be the transitive closure of p. We
denote p~! = {(z,y) € X x X : (y,7) € p}. Let p be a relation on a semigroup
S. We call p is left compatible if for any a,b,c € S, (a,b) € p implies (ca, cb) € p.
Right compatibility of a relation is dually defined. An equivalence which is both
left and right compatible on a semigroup S is called a congruence on S. The set
of all congruences on S is denoted by C(S). By the related discussion in Sections
1.4 and 1.5 of [1], we have

Lemma 1.1. For every left and right compatible relation p on a semigroup S,
(pUp~tUeg)™ is the smallest congruence on S containing p.

Let Y be a semilattice and {S, : @ € Y} be a family of pairwise disjoint
semigroups. For any a, 8 € Y with a > 3, let @4 5: So —> T (Sp),a — ¢§ be
a mapping. Assume that the following conditions are satisfied:

(1) for any a € Y, a € S, (%) = q;

2) for any o, BE€Y, a € Sy, and b € Sg, ¢% 54 5 is a constant. Then
B aB¥aB

axb= <¢25¢Zﬂ><¢gﬂ¢gﬂ> (a € Sa, b e Sp);

gives a multiplication on S = |J,cy Sa. Suppose also that
(3) for any o, B,y € Y,a € So, b€ Sg and c € 55,

_ cka b axb ¢

b
< gt/iw a?ﬁ _< aBy aﬂ7>< aBy aﬂ7>'

Then (S, ) is a semigroup, called a fundamental semilattice Y of semigroups
S (@ €Y), denoted by S = F(Y; Sa, o).

Lemma 1.2. [6, Corollary 5.7] A semigroup S is a band if and only if S is a
fundamental semilattice of rectangular bands.

According to Theorem 4.4, Proposition 4.5 and their proofs in [6], we have

Lemma 1.3. Let B = F#(Y; B,,®q.5) be a band. Suppose that o, € Y with
a>fB,a€ B, andb e Bg. Then

(1) bgf = aba;

(2) ab = (bgs)b and ba = b(bd%);

(3) ker ¢ = {(x,y) € B x Bp : ara = aya};
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(4) im ¢ = {axa : v € Bg}.

Lemma 1.4. [8, Proposition 2.6] If B = .#(Y; By, ®a.5) is a band, then for any
a,B €Y with a > B, a,b € By, ker ¢% 1is a rectangular band congruence, and
Bg/ ker ¢ is isomorphic to Bg/ ker qﬁ%.

Now we prepare to discuss subdirectly irreducible bands. Noticing [7, Re-
mark 1.2 and Lemma 1.3], in order to describe subdirectly irreducible bands, it
suffices to consider those having neither identity nor zero.

Lemma 1.5. [5, Theorem 4.7] If B is a subdirectly irreducible band without zero,
then B satisfies one of the following conditions.

(1) Let K ={k € B:kb=k for allb € B}. Then K is a two-sided ideal of
B, and for any x,y € B, vk = yk for all k € K implies x = y.

(2) Let K ={k € B:bk =k for allb € B}. Then K is a two-sided ideal of
B, and for any x,y € B, kx = ky for all k € K implies x = y.

We conclude from Lemma 1.5 that for a subdirectly irreducible band B =
F(Y; Ba, ®a,), the above K is either a nontrivial left zero semigroup or a
nontrivial right zero semigroup. Moreover, K is a subset of By, where 6 is the
zero of the structural semilattice Y. If K is a left zero semigroup, then for any
z,y € By with xRy and k € K, we have zk = yxk = yk which leads to z = y.
Therefore, K = By. Similarly, we have K = By if K is a right zero semigroup.

For notation and terminology not explained in this paper, the reader is re-
ferred to [1].

2. Main Results and Proofs

A semilattice Y is said to have height 2 if any subchain of Y is isomorphic to
Y5, the 2-element semilattice. In this section, we always suppose that Y is a
semilattice of height 2, 0 is the zero of Y, B = % (Y'; By, o ) is a band (whose
structural semilattice has height 2) with neither identity nor zero, By is a right
zero semigroup and for any a € Y — {6} and a € By, a®, ¢ is denote by ¢f.

In the following lemmas and corollaries the band B is subdirectly irreducible.
Note that By is a right zero semigroup.

Lemma 2.1. For any o € Y — {0}, ®o 0 is injective.

Proof. For any a,b € By, suppose that ¢f = 902. Then for any x € By, we see
from Lemma 1.3(1) that za = xb. It follows from Lemma 1.5(2) that a = b.
That means ®, ¢ is injective. [
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Lemma 2.2. For any a € Y — {0} and a € By, ker 9§ # wp,.

Proof. Suppose that there exist § € Y — {0} and b € Bg such that ker p§ = wp,.
We see from Lemma 1.3(3) that za = axa = aya = ya = x(ya). It follows from
Lemma 1.5(2) that a = ya, a contradiction. ]

Lemma 2.3. For any o € Y — {0} and a,b € B, aR b implies ker ¢4 = ker 4.

Proof. Arbitrarily take z,y € By. We observe from Lemma 1.5(3) that (z,y) €
ker ¢4 if and only if xa = ya if and only if b = yb since ab = b and ba = a. It
follows that ker p§ = ker ¢}). ]

Lemma 2.4. For any o € Y — {0} and a,b € By, a £ b implies that im p§ =
b
im ¢}.

Proof. We obtain from Lemma 1.5(4) that im¢§ = {za: z € B} = {yb:y €
By} since za = zab = (xa)b and xb = xba = (xb)a for any x € By. [

For any o € Y, define two relations on B as follows

Pa = ﬂ ker oy Uep,
a€B,

0o = ( U (im g x impg) Uep)™.
a€B,

Lemma 2.5. For any o € Y, p, € C(B).

Proof. Obviously, p, is an equivalence on B. To show that p € C(B), it suffice
to verify that p is right compatible. Arbitrarily take (u,v) € p, and b € B.
If ¢ € By, we see from the definition of p, and Lemma 1.3(3) that uc = wve.
Otherwise, noticing that Y has height 2, we have uca = ca = wvca for any
a € By. It follows from Lemma 1.3(3) that (uc,vc) € (,cp, kerpg. Hence,
pa € C(B). [

Lemma 2.6. For any a €Y, 0, € C(B).

Proof. By Lemma 1.1, it suffice to verify that |J,cp (im¢f§ x img) is right
compatible. For any a € B, and b € B, suppose that (u,v) € im ¢§ x im ¢g. We
see from Lemma 1.3(4) that u = sa,v = ta for some s,t € By and a € B,. If
b € B,, then we obtain again from Lemma 1.3(4) that (ub, vb) € |, p_ (im ¢§ x
im ¢§). Otherwise, if b € B,, then we have ub = xab = ab and vb = yab = ab
and hence (ub,vb) € (U, (im pf x im ¢f). [

Lemma 2.7. For any o, € Y — {0} with o # 3, 00 C pg.
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Proof. Tt suffices to prove that J,cp (impg x impg) C p, since o4 is the
least congruence containing (J,cp_(imp§ x im¢g). Arbitrarily taking (u,v) €
im ¢§ x im ¢§ for some a € By, it follows from condition (2) of the definition of
a fundamental semilattice of semigroups, im % C ker ¢} for any b € Bg which
leads to (u,v) € pg. |

Lemma 2.8. There exist distinct x,y € By such that ﬂaey Pa C Wiz .y Uep.

Proof. First we see from Lemma 1.3(3) that for any u,v € By, if (u,v) €
Nacy Pa> then we, 3 Uep € C(B). Therefore if there exist 1, y1,22,y2 € By
such that {z1,y1} # {72,592} and (z1,41), (¥2,%2) € [\aey Pa, then both
P1 = Wiz gy UEB and py = W{gs,y} UER are nontrivial congruences on B.
However, p1 N p2 = €p, contradicting the fact that B is subdirectly irreducible.
Thus, there must exist distinct x,y € By such that (|, cy pa € Wizyy Uep. ™

Lemma 2.9. If there exists « € Y — {0} such that By, is a left zero semigroup,
thenY =Y3, po = ep and there exist distinct x,y € By such that im ¢§ = {z,y}
for any a € B,.

Proof. Tt follows from Lemma 2.4 and the definition of o, that o, = W{im o3} UER
for some a € B,. If there exists 8 € Y — {0} such that 8 # «, then we obtain
from condition (2) of the definition of a fundamental semilattice of semigroups
that im @g C uker g for any u € Bg. This implies that o, Nog = ep. However,
we know from Lemma 2.2 that o, and og are nontrivial, a contradiction. So we
get Y =Y5.

Noticing that o, = Wiimpg} UER, We observe that o, N po, = eg. Then we
must have p, = ep since B is subdirectly irreducible and o, is nontrivial.

According to Lemma 1.3(4), we can take ua,va from im ¢§. For any b € B,
if b € B,, then we have uab = ua and vab = vb; if b € By, then we have
uab = vab = b. That is, W{ya,we} Uep € C(B). Noticing that B is subdirectly
irreducible, there must exist distinct z,y € By such that im ¢§ = {z,y}. ]

Lemma 2.10. If for any o € Y — {0}, B, is not a left zero semigroup, then there
erist distinct x,y € By such that ﬂaey Po = Wiz} UEB.

Proof. 'Y # Ys, then we see from Lemma 2.7 that for any o € Y — {0}, there
exists 8 € Y — {0} such that og C p,. Note from Lemma 2.2 and the definition
of o that os is nontrivial. We obtain from condition (1) of the definition of a
fundamental semilattice of semigroups and Lemma 2.8 that there exist distinct
x,y € By such that (), cy pa = W{ay} UEB.

Now suppose that Y = Y3. Note that for any v € Y — {0}, there exist distinct
a,b € B, such that a Rb. It follows from Lemma 2.3 that ker 9% = ker ¢}. We
easily see from Lemma 1.3(4) that for every u € By, (u,upj) € kerj. So we
obtain from Lemma 2.1 that im % # im ¢4 and hence there exists z € By such
that za = z¢§ # z<pg = zb. Let p1 = w.q,.0yUep. Forany c € B, if c € B,, then
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we have zac = zbac = zbc since B, is a rectangular band; if ¢ € By, then we have
zac = ¢ = zbe since By is a right zero semigroup. Therefore, p; € C(B). Note
that B is a subdirectly irreducible band. For any v € By such that (v, z) & ker ¢,
we must have va = vb. Now for any a’,b € B, with aLa’, bLV and o' RV,
we have im ¢ = im gpgl, im ¢} = im gag, and ker gagl = ker gpg,. Hence we obtain
that (za, zb) € ker 903, which means that p, is nontrivial. Again it follows from
condition (1) of the definition of a fundamental semilattice of semigroups and
Lemma 2.8 that there exist distinct x,y € By such that ﬂaey Pa = Wiy} UEB.

]

Corollary 2.11. There exist distinct x,y € By such that wy, ,y Uep is the least
nontrivial congruence on B.

Proof. This directly follows Lemmas 2.6, 2.8, 2.9 and 2.10. ]

In the following lemmas, x and y will be used to represent the least nontrivial
congruence on B. Noticing Lemma 2.2 and the definition of o, for a € Y, we
have

Corollary 2.12. For any a € Y — {0}, (2,9) € ey (g} Oa-

Lemma 2.13. For any « € Y — {0} and a € B,,

€= (| ((mgf \ wkergf) x (impf \ wker gf)) Uep)™ € C(B).
cER,

Proof. Tt follows from Lemma 1.1 that we only need to show that the symmetric
relation | cp ((im ¢f \ 2 ker ¢f) x (im ¢§ \ z ker ¢f)) is right compatible. Arbi-
trarily take ¢ € R, and w,v € im ¢§ \ x ker ¢§. Then we see from Lemma 1.3(4)
that uc = u and ve = v. For any b € B, if b € B,, then we have ub = ucb and
vb = vcb. Note that cbR c. Then we obtain that ub, vb € im gogb \ x ker gogb with
cbRa. If b ¢ B,, then we have ub = ucb = ¢b = veb = vb. Hence we obtain that
Ueer, ((im @ \ zker pf) x (im ¢ \ z ker f)) is right compatible. |

Lemma 2.14. For any o € Y — {0} and a € B,, |im¢§| = 2.

Proof. If there exists o € Y — {0} such that B, is a left zero semigroup, then
we see from Lemma 2.9 that Y = {«, 8} and for any a € B,, |im¢j| = 2. If for
any o € Y — {0} such that B, is not a left zero semigroup, then we see from
Lemma 2.10 that (), 5 ker p§ Uep = wy, 41 Uep, the least nontrivial congruence
on B. Note from Lemma 1.4 that for any s,t € B with sDt, we always have
lim ¢f| = [im ¢}|. Suppose that there exists some 8 € Y — {#} and d € Bg such
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that [im ¢g¢| > 3. Then the following congruence

§=(J ((mef \ wkergf) x (imp§ \ wkerpf)) Uep)™
e€Ry

as constructed in Lemma 2.13 is nontrivial. However, (wi; 1 Uep) NE = €p,
contradicting the fact that B is subdirectly irreducible. ]

Lemma 2.15. For a € Y — {0}, if B, is not a left zero semigroup, then there
exist a,b € By, and z € By such that im p% = {z, 2z} and im ¢} = {y, z}.

Proof. Tt follows from Lemmas 2.9, 2.10 and Corollary 2.12 that (z,y) € ker ¢§
for any ¢ € B, and (z,y) € 0,. Noticing Lemmas 2.3 and 2.4, we see that there
exist a,b € B, with a R b such that z = 2% and y = y¢}. Suppose u & x ker ¢2.
We claim that uwa = upj = ugog = ub. Otherwise, wiyqupy Uep € C(B).
In fact, for any e € B, if ¢ € B,, then we have uac = ubac = ubc since
B, is a rectangular band. If ¢ € B,, then we see from the multiplication
in a fundamental semilattice of semigroups that uac = ac = (p§e§) = x¥
since im ¢ C wzker p§; similarly, ubc = be = (phes) = yp§ = x¢§. However,
(Wina,uby UEB) N (Wia,y} Uer) = €p, contradicting the fact that B is subdirectly
irreducible band. Hence, we obtain from Lemma 2.14 that there exists z € By
such that im ¢¢ = {x, 2} and im ¢} = {y, z}. [

To end the paper, we give our main results. In the next two proofs, for any
s,t € B, O(s,t) represents the congruence generated by {(s,?)}.

Theorem 2.16. If there exists « € Y — {0} such that By is a left zero semi-
group, then B is subdirectly irreducible if and only if the following conditions are
satisfied:

(1) Y =Y, and ®q ¢ is injective;

(2) naeB(‘, ker 503 =€Bys

(3) there exist distinct x,y € By such that im ¢ = {x,y} for all a € B,.

Proof. The necessity part follows from Lemmas 2.1, 2.9 and the definition of p,.

To prove sufficiency part, arbitrarily take distinct w,v € B with {u,v} #
{z,y}. Tt suffices to prove (x,y) € ©(u,v). We complete the proof via discussing
the following cases:

Case 1. u,v € By. According to condition (2), there exists a € B, such
that (u,v) ¢ ker ¢§. Note condition (3) and suppose u € zker p§,v € yker pf.
We obtain from Lemma 1.3(4) that ua = = and va = y which means that
(2.) € O, ).

Cuase 2. u € By,v € B,. Note from condition (3) that ker ¢}y # wp, and
take z ¢ uker ¢}, we have zu = u and zv ¢ uker ¢y so that zv # u. This case
is reduced to Case 1.
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Case 3. u,v € B,. We see from condition (1) and Lemma 1.3(1) that there
exists z € By such that zu # zv. This case is also reduced to Case 1. ]

Theorem 2.17. If for any o € Y — {0}, By, is not a left zero semigroup, then B
is subdirectly irreducible if and only if the following conditions are satisfied:

(1) for all a € Y — {0}, By,0 is injective;

(2) there exist distinct x,y € By such that (,cgker p§ = w43 UeR,;

(3) for all « € Y — {0}, there exist a,b € B, and z € By such that im ¢§ =
{z,2} and im ¢}y = {y, z}.

Proof. The necessity part follows from Lemmas 2.1, 2.10, 2.15 and the definition
of po fora €Y.

We now prove the sufficiency part. Arbitrarily take distinct u,v € By with
{u,v} # {x,y}. We see from condition (2) that it suffices to prove (z,y) €
O(u,v). We complete the proof via discussing the following cases:

Case 1. u,v € By. We see from condition (2) that there exist 3 € Y — {6}
and ¢ € Bg such that u € xker ¢§ and v ¢ xker f. According to condition (3),
Lemmas 2.3 and 2.4, we see that there exist d,e € Bg with ¢ R dZ e such that
ud = x,ue = y,vd = ve = z. It follows that (z,y) € O(u,v).

Case 2. u € By,v € Bg for some f € Y — {0}. Note from condition (3) that
ker pf # wp, and take z ¢ uker py, we have zu = v and zv ¢ uker ¢} so that
zv # u. This case is reduced to Case 1.

Case 3. u,v ¢ By. If (u,v) ¢ D, then we see from condition (2) of the
definition of a fundamental semilattice of semigroups, imyjy C kerp which
means that ¢f # ¢h; if (u,v) € D, then we see from condition (1) that ¢ # ¢y
either. So there exists w € By such that wyy # wey and hence wu # wv. This
case is also reduced to Case 1. ]
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