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1. Introduction and Preliminaries

We recall that every non-trivial semigroup is a subdirect product of some sub-
directly irreducible semigroups [3]. A nontrivial semigroup S is subdirectly ir-
reducible if and only if there exists the least nontrivial congruence on S. In
1973, Gerhard gave a representation of subdirectly irreducible bands in terms
of transformations [2]. In 2017, Wang, Leng and Yu characterized subdirectly
irreducible regular bands whose structural semilattices are finite chains by using
refined semilattices of semigroups [7]. The purpose of this paper is to give a
characterization of subdirectly irreducible bands (not necessarily regular) whose
structural semilattices have heights 2 in terms of fundamental semilattices of
semigroups.

First we introduce some notation and terminology. Let X be a nonempty
set, and T (X) denote the semigroup formed by all transformations on X . The
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symbol 〈φ〉 means that φ is a constant which maps X onto the element 〈φ〉 ∈ X .
We write the identity relation on X as εX and the universal relation on X as
ωX .

Let ρ be a binary relation on X , and we have εB ⊆ ρ. Then we have

ρ ⊆ ρ2 ⊆ ρ3 ⊆ · · · .

The relation ρ∞ =
⋃
{ρn : n ≥ 1} is said to be the transitive closure of ρ. We

denote ρ−1 = {(x, y) ∈ X ×X : (y, x) ∈ ρ}. Let ρ be a relation on a semigroup
S. We call ρ is left compatible if for any a, b, c ∈ S, (a, b) ∈ ρ implies (ca, cb) ∈ ρ.
Right compatibility of a relation is dually defined. An equivalence which is both
left and right compatible on a semigroup S is called a congruence on S. The set
of all congruences on S is denoted by C(S). By the related discussion in Sections
1.4 and 1.5 of [1], we have

Lemma 1.1. For every left and right compatible relation ρ on a semigroup S,
(ρ ∪ ρ−1 ∪ εS)

∞ is the smallest congruence on S containing ρ.

Let Y be a semilattice and {Sα : α ∈ Y } be a family of pairwise disjoint
semigroups. For any α, β ∈ Y with α ≥ β, let Φα, β : Sα −→ T (Sβ), a 7→ φa

β be
a mapping. Assume that the following conditions are satisfied:

(1) for any α ∈ Y, a ∈ Sα, 〈φ
a
α〉 = a;

(2) for any α, β ∈ Y, a ∈ Sα, and b ∈ Sβ , φ
a
αβφ

b
αβ is a constant. Then

a ∗ b = 〈φb
αβφ

a
αβ〉〈φ

a
αβφ

b
αβ〉 (a ∈ Sα, b ∈ Sβ);

gives a multiplication on S =
⋃

α∈Y Sα. Suppose also that

(3) for any α, β, γ ∈ Y, a ∈ Sα, b ∈ Sβ and c ∈ Sγ ,

〈φa
αβγφ

b∗c
αβγ〉 = 〈φc∗a

αβγφ
b
αβγ〉〈φ

a∗b
αβγφ

c
αβγ〉.

Then (S, ∗) is a semigroup, called a fundamental semilattice Y of semigroups

Sα (α ∈ Y ), denoted by S = F (Y ;Sα,Φα,β).

Lemma 1.2. [6, Corollary 5.7] A semigroup S is a band if and only if S is a

fundamental semilattice of rectangular bands.

According to Theorem 4.4, Proposition 4.5 and their proofs in [6], we have

Lemma 1.3. Let B = F (Y ;Bα,Φα,β) be a band. Suppose that α, β ∈ Y with

α ≥ β, a ∈ Bα and b ∈ Bβ. Then

(1) bφa
β = aba;

(2) ab = (bφa
β)b and ba = b(bφa

β);

(3) kerφa
β = {(x, y) ∈ Bβ ×Bβ : axa = aya};
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(4) imφa
β = {axa : x ∈ Bβ}.

Lemma 1.4. [8, Proposition 2.6] If B = F (Y ;Bα,Φα,β) is a band, then for any

α, β ∈ Y with α ≥ β, a, b ∈ Bα, kerφ
a
β is a rectangular band congruence, and

Bβ/ kerφ
a
β is isomorphic to Bβ/ kerφ

b
β.

Now we prepare to discuss subdirectly irreducible bands. Noticing [7, Re-
mark 1.2 and Lemma 1.3], in order to describe subdirectly irreducible bands, it
suffices to consider those having neither identity nor zero.

Lemma 1.5. [5, Theorem 4.7] If B is a subdirectly irreducible band without zero,

then B satisfies one of the following conditions.

(1) Let K = {k ∈ B : kb = k for all b ∈ B}. Then K is a two-sided ideal of

B, and for any x, y ∈ B, xk = yk for all k ∈ K implies x = y.

(2) Let K = {k ∈ B : bk = k for all b ∈ B}. Then K is a two-sided ideal of

B, and for any x, y ∈ B, kx = ky for all k ∈ K implies x = y.

We conclude from Lemma 1.5 that for a subdirectly irreducible band B =
F (Y ;Bα,Φα,β), the above K is either a nontrivial left zero semigroup or a
nontrivial right zero semigroup. Moreover, K is a subset of Bθ, where θ is the
zero of the structural semilattice Y . If K is a left zero semigroup, then for any
x, y ∈ Bθ with xR y and k ∈ K, we have xk = yxk = yk which leads to x = y.
Therefore, K = Bθ. Similarly, we have K = Bθ if K is a right zero semigroup.

For notation and terminology not explained in this paper, the reader is re-
ferred to [1].

2. Main Results and Proofs

A semilattice Y is said to have height 2 if any subchain of Y is isomorphic to
Y2, the 2-element semilattice. In this section, we always suppose that Y is a
semilattice of height 2, θ is the zero of Y , B = F (Y ;Bα,Φα,β) is a band (whose
structural semilattice has height 2) with neither identity nor zero, Bθ is a right
zero semigroup and for any α ∈ Y − {θ} and a ∈ Bα, aΦα,θ is denote by ϕa

θ .

In the following lemmas and corollaries the band B is subdirectly irreducible.
Note that Bθ is a right zero semigroup.

Lemma 2.1. For any α ∈ Y − {θ}, Φα,θ is injective.

Proof. For any a, b ∈ Bα, suppose that ϕa
θ = ϕb

θ. Then for any x ∈ Bθ, we see
from Lemma 1.3(1) that xa = xb. It follows from Lemma 1.5(2) that a = b.
That means Φα,θ is injective.



754 J. Wang et al.

Lemma 2.2. For any α ∈ Y − {θ} and a ∈ Bα, kerϕ
a
θ 6= ωBθ

.

Proof. Suppose that there exist β ∈ Y −{θ} and b ∈ Bβ such that kerϕa
θ = ωBθ

.
We see from Lemma 1.3(3) that xa = axa = aya = ya = x(ya). It follows from
Lemma 1.5(2) that a = ya, a contradiction.

Lemma 2.3. For any α ∈ Y − {θ} and a, b ∈ Bα, aR b implies kerϕa
θ = kerϕb

θ.

Proof. Arbitrarily take x, y ∈ Bθ. We observe from Lemma 1.5(3) that (x, y) ∈
kerϕa

θ if and only if xa = ya if and only if xb = yb since ab = b and ba = a. It
follows that kerϕa

θ = kerϕb
θ.

Lemma 2.4. For any α ∈ Y − {θ} and a, b ∈ Bα, a L b implies that imϕa
θ =

imϕb
θ.

Proof. We obtain from Lemma 1.5(4) that imϕa
θ = {xa : x ∈ Bθ} = {yb : y ∈

Bθ} since xa = xab = (xa)b and xb = xba = (xb)a for any x ∈ Bθ.

For any α ∈ Y , define two relations on B as follows

ρα =
⋂

a∈Bα

kerϕa
θ ∪ εB,

σα = (
⋃

a∈Bα

(imϕa
θ × imϕa

θ) ∪ εB)
∞.

Lemma 2.5. For any α ∈ Y , ρα ∈ C(B).

Proof. Obviously, ρα is an equivalence on B. To show that ρ ∈ C(B), it suffice
to verify that ρ is right compatible. Arbitrarily take (u, v) ∈ ρα and b ∈ B.
If c ∈ Bα, we see from the definition of ρα and Lemma 1.3(3) that uc = vc.
Otherwise, noticing that Y has height 2, we have uca = ca = vca for any
a ∈ Bα. It follows from Lemma 1.3(3) that (uc, vc) ∈

⋂
a∈Bα

kerϕa
θ . Hence,

ρα ∈ C(B).

Lemma 2.6. For any α ∈ Y , σα ∈ C(B).

Proof. By Lemma 1.1, it suffice to verify that
⋃

a∈Bα
(imϕa

θ × imϕa
θ) is right

compatible. For any a ∈ Bα and b ∈ B, suppose that (u, v) ∈ imϕa
θ × imϕa

θ . We
see from Lemma 1.3(4) that u = sa, v = ta for some s, t ∈ Bθ and a ∈ Bα. If
b ∈ Bα, then we obtain again from Lemma 1.3(4) that (ub, vb) ∈

⋃
a∈Bα

(imϕa
θ ×

imϕa
θ). Otherwise, if b 6∈ Bα, then we have ub = xab = ab and vb = yab = ab

and hence (ub, vb) ∈
⋃

a∈Bα
(imϕa

θ × imϕa
θ).

Lemma 2.7. For any α, β ∈ Y − {θ} with α 6= β, σα ⊆ ρβ.
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Proof. It suffices to prove that
⋃

a∈Bα
(imϕa

θ × imϕa
θ) ⊆ ρα since σα is the

least congruence containing
⋃

a∈Bα
(imϕa

θ × imϕa
θ). Arbitrarily taking (u, v) ∈

imϕa
θ × imϕa

θ for some a ∈ Bα, it follows from condition (2) of the definition of
a fundamental semilattice of semigroups, imϕa

θ ⊆ kerϕb
θ for any b ∈ Bβ which

leads to (u, v) ∈ ρβ .

Lemma 2.8. There exist distinct x, y ∈ Bθ such that
⋂

α∈Y ρα ⊆ ω{x,y} ∪ εB.

Proof. First we see from Lemma 1.3(3) that for any u, v ∈ Bθ, if (u, v) ∈⋂
α∈Y ρα, then ω{u,v} ∪ εB ∈ C(B). Therefore if there exist x1, y1, x2, y2 ∈ Bθ

such that {x1, y1} 6= {x2, y2} and (x1, y1), (x2, y2) ∈
⋂

α∈Y ρα, then both
ρ1 = ω{x1,y1} ∪ εB and ρ2 = ω{x2,y2} ∪ εB are nontrivial congruences on B.
However, ρ1 ∩ ρ2 = εB, contradicting the fact that B is subdirectly irreducible.
Thus, there must exist distinct x, y ∈ Bθ such that

⋂
α∈Y ρα ⊆ ω{x,y} ∪ εB.

Lemma 2.9. If there exists α ∈ Y − {θ} such that Bα is a left zero semigroup,

then Y = Y2, ρα = εB and there exist distinct x, y ∈ Bθ such that imϕa
θ = {x, y}

for any a ∈ Bα.

Proof. It follows from Lemma 2.4 and the definition of σα that σα = ω{imϕa

θ
}∪εB

for some a ∈ Bα. If there exists β ∈ Y − {θ} such that β 6= α, then we obtain
from condition (2) of the definition of a fundamental semilattice of semigroups
that imϕb

θ ⊆ u kerϕa
θ for any u ∈ Bβ . This implies that σα∩σβ = εB. However,

we know from Lemma 2.2 that σα and σβ are nontrivial, a contradiction. So we
get Y = Y2.

Noticing that σα = ω{imϕa

θ
} ∪ εB, we observe that σα ∩ ρα = εB. Then we

must have ρα = εB since B is subdirectly irreducible and σα is nontrivial.

According to Lemma 1.3(4), we can take ua, va from imϕa
θ . For any b ∈ B,

if b ∈ Bα, then we have uab = ua and vab = vb; if b ∈ Bθ, then we have
uab = vab = b. That is, ω{ua,va} ∪ εB ∈ C(B). Noticing that B is subdirectly
irreducible, there must exist distinct x, y ∈ Bθ such that imϕa

θ = {x, y}.

Lemma 2.10. If for any α ∈ Y −{θ}, Bα is not a left zero semigroup, then there

exist distinct x, y ∈ Bθ such that
⋂

α∈Y ρα = ω{x,y} ∪ εB.

Proof. If Y 6= Y2, then we see from Lemma 2.7 that for any α ∈ Y − {θ}, there
exists β ∈ Y − {θ} such that σβ ⊆ ρα. Note from Lemma 2.2 and the definition
of σβ that σβ is nontrivial. We obtain from condition (1) of the definition of a
fundamental semilattice of semigroups and Lemma 2.8 that there exist distinct
x, y ∈ Bθ such that

⋂
α∈Y ρα = ω{x,y} ∪ εB.

Now suppose that Y = Y2. Note that for any α ∈ Y −{θ}, there exist distinct
a, b ∈ Bα such that aR b. It follows from Lemma 2.3 that kerϕa

θ = kerϕb
θ. We

easily see from Lemma 1.3(4) that for every u ∈ Bθ, (u, uϕ
a
θ) ∈ kerϕa

θ . So we
obtain from Lemma 2.1 that imϕa

θ 6= imϕb
θ and hence there exists z ∈ Bθ such

that za = zϕa
θ 6= zϕb

θ = zb. Let ρ1 = ω{za,zb}∪εB. For any c ∈ B, if c ∈ Bα, then
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we have zac = zbac = zbc since Bα is a rectangular band; if c ∈ Bθ, then we have
zac = c = zbc since Bθ is a right zero semigroup. Therefore, ρ1 ∈ C(B). Note
thatB is a subdirectly irreducible band. For any v ∈ Bθ such that (v, z) 6∈ kerϕa

θ ,
we must have va = vb. Now for any a′, b′ ∈ Bα with aL a′, bL b′ and a′ R b′,
we have imϕa

θ = imϕa′

θ , imϕb
θ = imϕb′

θ and kerϕa′

θ = kerϕb′

θ . Hence we obtain

that (za, zb) ∈ kerϕa′

θ which means that ρα is nontrivial. Again it follows from
condition (1) of the definition of a fundamental semilattice of semigroups and
Lemma 2.8 that there exist distinct x, y ∈ Bθ such that

⋂
α∈Y ρα = ω{x,y} ∪ εB.

Corollary 2.11. There exist distinct x, y ∈ Bθ such that ω{x,y} ∪ εB is the least

nontrivial congruence on B.

Proof. This directly follows Lemmas 2.6, 2.8, 2.9 and 2.10.

In the following lemmas, x and y will be used to represent the least nontrivial
congruence on B. Noticing Lemma 2.2 and the definition of σα for α ∈ Y , we
have

Corollary 2.12. For any α ∈ Y − {θ}, (x, y) ∈
⋂

α∈Y−{θ} σα.

Lemma 2.13. For any α ∈ Y − {θ} and a ∈ Bα,

ξ = (
⋃

c∈Ra

((imϕc
θ \ x kerϕ

c
θ)× (imϕc

θ \ x kerϕ
c
θ)) ∪ εB)

∞ ∈ C(B).

Proof. It follows from Lemma 1.1 that we only need to show that the symmetric
relation

⋃
c∈Ra

((imϕc
θ \ x kerϕ

c
θ)× (imϕc

θ \ x kerϕ
c
θ)) is right compatible. Arbi-

trarily take c ∈ Ra and u, v ∈ imϕc
θ \ x kerϕ

c
θ. Then we see from Lemma 1.3(4)

that uc = u and vc = v. For any b ∈ B, if b ∈ Bα, then we have ub = ucb and
vb = vcb. Note that cbR c. Then we obtain that ub, vb ∈ imϕcb

θ \ x kerϕcb
θ with

cbR a. If b 6∈ Bα, then we have ub = ucb = cb = vcb = vb. Hence we obtain that⋃
c∈Ra

((imϕc
θ \ x kerϕ

c
θ)× (imϕc

θ \ x kerϕ
c
θ)) is right compatible.

Lemma 2.14. For any α ∈ Y − {θ} and a ∈ Bα, |imϕa
θ | = 2.

Proof. If there exists α ∈ Y − {θ} such that Bα is a left zero semigroup, then
we see from Lemma 2.9 that Y = {α, θ} and for any a ∈ Bα, |imϕa

θ | = 2. If for
any α ∈ Y − {θ} such that Bα is not a left zero semigroup, then we see from
Lemma 2.10 that

⋂
b∈B kerϕa

θ ∪εB = ω{x,y}∪εB, the least nontrivial congruence
on B. Note from Lemma 1.4 that for any s, t ∈ B with sD t, we always have
|imϕs

θ| = |imϕt
θ|. Suppose that there exists some β ∈ Y − {θ} and d ∈ Bβ such
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that |imϕd
θ | ≥ 3. Then the following congruence

ξ = (
⋃

e∈Rd

((imϕd
θ \ x kerϕ

d
θ)× (imϕd

θ \ x kerϕ
d
θ)) ∪ εB)

∞

as constructed in Lemma 2.13 is nontrivial. However, (ω{x,y} ∪ εB) ∩ ξ = εB,
contradicting the fact that B is subdirectly irreducible.

Lemma 2.15. For α ∈ Y − {θ}, if Bα is not a left zero semigroup, then there

exist a, b ∈ Bα and z ∈ Bθ such that imϕa
θ = {x, z} and imϕb

θ = {y, z}.

Proof. It follows from Lemmas 2.9, 2.10 and Corollary 2.12 that (x, y) ∈ kerϕc
θ

for any c ∈ Bα and (x, y) ∈ σα. Noticing Lemmas 2.3 and 2.4, we see that there
exist a, b ∈ Bα with aR b such that x = xϕa

θ and y = yϕb
θ. Suppose u 6∈ x kerϕa

θ .
We claim that ua = uϕa

θ = uϕb
θ = ub. Otherwise, ω{ua,ub} ∪ εB ∈ C(B).

In fact, for any e ∈ B, if c ∈ Bα, then we have uac = ubac = ubc since
Bα is a rectangular band. If c 6∈ Bα, then we see from the multiplication
in a fundamental semilattice of semigroups that uac = ac = 〈ϕa

θϕ
c
θ〉 = xϕc

θ

since imϕa
θ ⊆ x kerϕc

θ; similarly, ubc = bc = 〈ϕb
θϕ

c
θ〉 = yϕc

θ = xϕc
θ . However,

(ω{ua,ub} ∪ εB)∩ (ω{x,y} ∪ εB) = εB, contradicting the fact that B is subdirectly
irreducible band. Hence, we obtain from Lemma 2.14 that there exists z ∈ Bθ

such that imϕa
θ = {x, z} and imϕb

θ = {y, z}.

To end the paper, we give our main results. In the next two proofs, for any
s, t ∈ B, Θ(s, t) represents the congruence generated by {(s, t)}.

Theorem 2.16. If there exists α ∈ Y − {θ} such that Bα is a left zero semi-

group, then B is subdirectly irreducible if and only if the following conditions are

satisfied:

(1) Y = Y2 and Φα,θ is injective;

(2)
⋂

a∈Bα
kerϕa

θ = εBθ
;

(3) there exist distinct x, y ∈ Bθ such that imϕa
θ = {x, y} for all a ∈ Bα.

Proof. The necessity part follows from Lemmas 2.1, 2.9 and the definition of ρα.

To prove sufficiency part, arbitrarily take distinct u, v ∈ B with {u, v} 6=
{x, y}. It suffices to prove (x, y) ∈ Θ(u, v). We complete the proof via discussing
the following cases:

Case 1. u, v ∈ Bθ. According to condition (2), there exists a ∈ Bα such
that (u, v) /∈ kerϕa

θ . Note condition (3) and suppose u ∈ x kerϕa
θ , v ∈ y kerϕa

θ .
We obtain from Lemma 1.3(4) that ua = x and va = y which means that
(x, y) ∈ Θ(u, v).

Case 2. u ∈ Bθ, v ∈ Bα. Note from condition (3) that kerϕv
θ 6= ωBθ

and
take z /∈ u kerϕv

θ , we have zu = u and zv /∈ u kerϕv
θ so that zv 6= u. This case

is reduced to Case 1.
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Case 3. u, v ∈ Bα. We see from condition (1) and Lemma 1.3(1) that there
exists z ∈ Bθ such that zu 6= zv. This case is also reduced to Case 1.

Theorem 2.17. If for any α ∈ Y − {θ}, Bα is not a left zero semigroup, then B
is subdirectly irreducible if and only if the following conditions are satisfied:

(1) for all α ∈ Y − {θ}, Φα,θ is injective;

(2) there exist distinct x, y ∈ Bθ such that
⋂

a∈B kerϕa
θ = ω{x,y} ∪ εBθ

;

(3) for all α ∈ Y − {θ}, there exist a, b ∈ Bα and z ∈ Bθ such that imϕa
θ =

{x, z} and imϕb
θ = {y, z}.

Proof. The necessity part follows from Lemmas 2.1, 2.10, 2.15 and the definition
of ρα for α ∈ Y .

We now prove the sufficiency part. Arbitrarily take distinct u, v ∈ Bθ with
{u, v} 6= {x, y}. We see from condition (2) that it suffices to prove (x, y) ∈
Θ(u, v). We complete the proof via discussing the following cases:

Case 1. u, v ∈ Bθ. We see from condition (2) that there exist β ∈ Y − {θ}
and c ∈ Bβ such that u ∈ x kerϕc

θ and v /∈ x kerϕc
θ. According to condition (3),

Lemmas 2.3 and 2.4, we see that there exist d, e ∈ Bβ with cR dR e such that
ud = x, ue = y, vd = ve = z. It follows that (x, y) ∈ Θ(u, v).

Case 2. u ∈ Bθ, v ∈ Bβ for some β ∈ Y − {θ}. Note from condition (3) that
kerϕv

θ 6= ωBθ
and take z /∈ u kerϕv

θ , we have zu = u and zv /∈ u kerϕv
θ so that

zv 6= u. This case is reduced to Case 1.

Case 3. u, v /∈ Bθ. If (u, v) /∈ D, then we see from condition (2) of the
definition of a fundamental semilattice of semigroups, imϕu

θ ⊆ kerϕv
θ which

means that ϕu
θ 6= ϕv

θ ; if (u, v) ∈ D, then we see from condition (1) that ϕu
θ 6= ϕv

θ

either. So there exists w ∈ Bθ such that wϕu
θ 6= wϕv

θ and hence wu 6= wv. This
case is also reduced to Case 1.
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