Southeast Asian Bulletin of Mathematics © SEAMS. 2021

Subdirectly Irreducible Bands Whose Structural Semilattices Have Height 2

Jie Wang, Zhengpan Wang^{*} and Houyi Yu School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Email: zpwang@swu.edu.cn

Received 13 May 2021 Accepted 6 September 2021

Communicated by Bingjun Yu

Dedicated to the memory of Professor Yuqi Guo (1940–2019)

AMS Mathematics Subject Classification(2000): 20M10, 20M17, 20M19

Abstract. We characterize some subdirectly irreducible bands whose structural semilattices have height 2 in terms of fundamental semilattices of semigroups.

Keywords: Subdirectly irreducible bands; Fundmental semilattices of semigroups.

1. Introduction and Preliminaries

We recall that every non-trivial semigroup is a subdirect product of some subdirectly irreducible semigroups [3]. A nontrivial semigroup S is subdirectly irreducible if and only if there exists the least nontrivial congruence on S. In 1973, Gerhard gave a representation of subdirectly irreducible bands in terms of transformations [2]. In 2017, Wang, Leng and Yu characterized subdirectly irreducible regular bands whose structural semilattices are finite chains by using refined semilattices of semigroups [7]. The purpose of this paper is to give a characterization of subdirectly irreducible bands (not necessarily regular) whose structural semilattices have heights 2 in terms of fundamental semilattices of semigroups.

First we introduce some notation and terminology. Let X be a nonempty set, and $\mathscr{T}(X)$ denote the semigroup formed by all transformations on X. The

^{*}Corresponding author.

symbol $\langle \phi \rangle$ means that ϕ is a constant which maps X onto the element $\langle \phi \rangle \in X$. We write the identity relation on X as ε_X and the universal relation on X as ω_X .

Let ρ be a binary relation on X, and we have $\varepsilon_B \subseteq \rho$. Then we have

$$\rho \subseteq \rho^2 \subseteq \rho^3 \subseteq \cdots$$
.

The relation $\rho^{\infty} = \bigcup \{\rho^n : n \ge 1\}$ is said to be the *transitive closure* of ρ . We denote $\rho^{-1} = \{(x, y) \in X \times X : (y, x) \in \rho\}$. Let ρ be a relation on a semigroup S. We call ρ is *left compatible* if for any $a, b, c \in S$, $(a, b) \in \rho$ implies $(ca, cb) \in \rho$. Right compatibility of a relation is dually defined. An equivalence which is both left and right compatible on a semigroup S is called a *congruence* on S. The set of all congruences on S is denoted by $\mathcal{C}(S)$. By the related discussion in Sections 1.4 and 1.5 of [1], we have

Lemma 1.1. For every left and right compatible relation ρ on a semigroup S, $(\rho \cup \rho^{-1} \cup \varepsilon_S)^{\infty}$ is the smallest congruence on S containing ρ .

Let Y be a semilattice and $\{S_{\alpha} : \alpha \in Y\}$ be a family of pairwise disjoint semigroups. For any $\alpha, \beta \in Y$ with $\alpha \geq \beta$, let $\Phi_{\alpha,\beta} : S_{\alpha} \longrightarrow \mathscr{T}(S_{\beta}), a \mapsto \phi_{\beta}^{a}$ be a mapping. Assume that the following conditions are satisfied:

- (1) for any $\alpha \in Y$, $a \in S_{\alpha}$, $\langle \phi_{\alpha}^{a} \rangle = a$;
- (2) for any $\alpha, \beta \in Y, a \in S_{\alpha}$, and $b \in S_{\beta}, \phi^a_{\alpha\beta}\phi^b_{\alpha\beta}$ is a constant. Then

 $a * b = \langle \phi^b_{\alpha\beta} \phi^a_{\alpha\beta} \rangle \langle \phi^a_{\alpha\beta} \phi^b_{\alpha\beta} \rangle \qquad (a \in S_\alpha, b \in S_\beta);$

gives a multiplication on $S = \bigcup_{\alpha \in Y} S_{\alpha}$. Suppose also that

(3) for any α , β , $\gamma \in Y$, $a \in S_{\alpha}$, $b \in S_{\beta}$ and $c \in S_{\gamma}$,

$$\langle \phi^a_{\alpha\beta\gamma} \phi^{b*c}_{\alpha\beta\gamma} \rangle = \langle \phi^{c*a}_{\alpha\beta\gamma} \phi^b_{\alpha\beta\gamma} \rangle \langle \phi^{a*b}_{\alpha\beta\gamma} \phi^c_{\alpha\beta\gamma} \rangle.$$

Then (S, *) is a semigroup, called a fundamental semilattice Y of semigroups $S_{\alpha} (\alpha \in Y)$, denoted by $S = \mathscr{F}(Y; S_{\alpha}, \Phi_{\alpha,\beta})$.

Lemma 1.2. [6, Corollary 5.7] A semigroup S is a band if and only if S is a fundamental semilattice of rectangular bands.

According to Theorem 4.4, Proposition 4.5 and their proofs in [6], we have

Lemma 1.3. Let $B = \mathscr{F}(Y; B_{\alpha}, \Phi_{\alpha,\beta})$ be a band. Suppose that $\alpha, \beta \in Y$ with $\alpha \geq \beta$, $a \in B_{\alpha}$ and $b \in B_{\beta}$. Then

- (1) $b\phi^a_\beta = aba;$
- (2) $ab = (b\phi_{\beta}^{a})b$ and $ba = b(b\phi_{\beta}^{a});$
- (3) ker $\phi_{\beta}^{a} = \{(x, y) \in B_{\beta} \times B_{\beta} : axa = aya\};$

(4) $\operatorname{im} \phi_{\beta}^{a} = \{axa : x \in B_{\beta}\}.$

Lemma 1.4. [8, Proposition 2.6] If $B = \mathscr{F}(Y; B_{\alpha}, \Phi_{\alpha,\beta})$ is a band, then for any $\alpha, \beta \in Y$ with $\alpha \geq \beta$, $a, b \in B_{\alpha}$, ker ϕ_{β}^{a} is a rectangular band congruence, and $B_{\beta}/\ker \phi_{\beta}^{a}$ is isomorphic to $B_{\beta}/\ker \phi_{\beta}^{b}$.

Now we prepare to discuss subdirectly irreducible bands. Noticing [7, Remark 1.2 and Lemma 1.3], in order to describe subdirectly irreducible bands, it suffices to consider those having neither identity nor zero.

Lemma 1.5. [5, Theorem 4.7] If B is a subdirectly irreducible band without zero, then B satisfies one of the following conditions.

(1) Let $K = \{k \in B : kb = k \text{ for all } b \in B\}$. Then K is a two-sided ideal of B, and for any $x, y \in B$, xk = yk for all $k \in K$ implies x = y.

(2) Let $K = \{k \in B : bk = k \text{ for all } b \in B\}$. Then K is a two-sided ideal of B, and for any $x, y \in B$, kx = ky for all $k \in K$ implies x = y.

We conclude from Lemma 1.5 that for a subdirectly irreducible band $B = \mathscr{F}(Y; B_{\alpha}, \Phi_{\alpha,\beta})$, the above K is either a nontrivial left zero semigroup or a nontrivial right zero semigroup. Moreover, K is a subset of B_{θ} , where θ is the zero of the structural semilattice Y. If K is a left zero semigroup, then for any $x, y \in B_{\theta}$ with $x \mathcal{R} y$ and $k \in K$, we have xk = yxk = yk which leads to x = y. Therefore, $K = B_{\theta}$. Similarly, we have $K = B_{\theta}$ if K is a right zero semigroup.

For notation and terminology not explained in this paper, the reader is referred to [1].

2. Main Results and Proofs

A semilattice Y is said to have height 2 if any subchain of Y is isomorphic to Y_2 , the 2-element semilattice. In this section, we always suppose that Y is a semilattice of height 2, θ is the zero of Y, $B = \mathscr{F}(Y; B_\alpha, \Phi_{\alpha,\beta})$ is a band (whose structural semilattice has height 2) with neither identity nor zero, B_θ is a right zero semigroup and for any $\alpha \in Y - \{\theta\}$ and $a \in B_\alpha$, $a\Phi_{\alpha,\theta}$ is denote by φ^a_{θ} .

In the following lemmas and corollaries the band B is subdirectly irreducible. Note that B_{θ} is a right zero semigroup.

Lemma 2.1. For any $\alpha \in Y - \{\theta\}$, $\Phi_{\alpha,\theta}$ is injective.

Proof. For any $a, b \in B_{\alpha}$, suppose that $\varphi_{\theta}^{a} = \varphi_{\theta}^{b}$. Then for any $x \in B_{\theta}$, we see from Lemma 1.3(1) that xa = xb. It follows from Lemma 1.5(2) that a = b. That means $\Phi_{\alpha,\theta}$ is injective.

Lemma 2.2. For any $\alpha \in Y - \{\theta\}$ and $a \in B_{\alpha}$, ker $\varphi_{\theta}^{a} \neq \omega_{B_{\theta}}$.

Proof. Suppose that there exist $\beta \in Y - \{\theta\}$ and $b \in B_{\beta}$ such that ker $\varphi_{\theta}^{a} = \omega_{B_{\theta}}$. We see from Lemma 1.3(3) that xa = axa = aya = ya = x(ya). It follows from Lemma 1.5(2) that a = ya, a contradiction.

Lemma 2.3. For any $\alpha \in Y - \{\theta\}$ and $a, b \in B_{\alpha}$, $a \mathcal{R} b$ implies ker $\varphi_{\theta}^{a} = \ker \varphi_{\theta}^{b}$.

Proof. Arbitrarily take $x, y \in B_{\theta}$. We observe from Lemma 1.5(3) that $(x, y) \in \ker \varphi_{\theta}^{a}$ if and only if xa = ya if and only if xb = yb since ab = b and ba = a. It follows that $\ker \varphi_{\theta}^{a} = \ker \varphi_{\theta}^{b}$.

Lemma 2.4. For any $\alpha \in Y - \{\theta\}$ and $a, b \in B_{\alpha}$, $a \mathscr{L} b$ implies that $\operatorname{im} \varphi_{\theta}^{a} = \operatorname{im} \varphi_{\theta}^{b}$.

Proof. We obtain from Lemma 1.5(4) that $\operatorname{im} \varphi_{\theta}^{a} = \{xa : x \in B_{\theta}\} = \{yb : y \in B_{\theta}\}$ since xa = xab = (xa)b and xb = xba = (xb)a for any $x \in B_{\theta}$.

For any $\alpha \in Y$, define two relations on B as follows

$$\rho_{\alpha} = \bigcap_{a \in B_{\alpha}} \ker \varphi_{\theta}^{a} \cup \varepsilon_{B},$$
$$\sigma_{\alpha} = \left(\bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a}) \cup \varepsilon_{B}\right)^{\infty}$$

Lemma 2.5. For any $\alpha \in Y$, $\rho_{\alpha} \in C(B)$.

Proof. Obviously, ρ_{α} is an equivalence on B. To show that $\rho \in \mathcal{C}(B)$, it suffice to verify that ρ is right compatible. Arbitrarily take $(u, v) \in \rho_{\alpha}$ and $b \in B$. If $c \in B_{\alpha}$, we see from the definition of ρ_{α} and Lemma 1.3(3) that uc = vc. Otherwise, noticing that Y has height 2, we have uca = ca = vca for any $a \in B_{\alpha}$. It follows from Lemma 1.3(3) that $(uc, vc) \in \bigcap_{a \in B_{\alpha}} \ker \varphi_{\theta}^{a}$. Hence, $\rho_{\alpha} \in \mathcal{C}(B)$.

Lemma 2.6. For any $\alpha \in Y$, $\sigma_{\alpha} \in C(B)$.

Proof. By Lemma 1.1, it suffice to verify that $\bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a})$ is right compatible. For any $a \in B_{\alpha}$ and $b \in B$, suppose that $(u, v) \in \operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a}$. We see from Lemma 1.3(4) that u = sa, v = ta for some $s, t \in B_{\theta}$ and $a \in B_{\alpha}$. If $b \in B_{\alpha}$, then we obtain again from Lemma 1.3(4) that $(ub, vb) \in \bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a})$. Otherwise, if $b \notin B_{\alpha}$, then we have ub = xab = ab and vb = yab = ab and hence $(ub, vb) \in \bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a})$.

Lemma 2.7. For any $\alpha, \beta \in Y - \{\theta\}$ with $\alpha \neq \beta, \sigma_{\alpha} \subseteq \rho_{\beta}$.

Proof. It suffices to prove that $\bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a}) \subseteq \rho_{\alpha}$ since σ_{α} is the least congruence containing $\bigcup_{a \in B_{\alpha}} (\operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a})$. Arbitrarily taking $(u, v) \in \operatorname{im} \varphi_{\theta}^{a} \times \operatorname{im} \varphi_{\theta}^{a}$ for some $a \in B_{\alpha}$, it follows from condition (2) of the definition of a fundamental semilattice of semigroups, $\operatorname{im} \varphi_{\theta}^{a} \subseteq \ker \varphi_{\theta}^{b}$ for any $b \in B_{\beta}$ which leads to $(u, v) \in \rho_{\beta}$.

Lemma 2.8. There exist distinct $x, y \in B_{\theta}$ such that $\bigcap_{\alpha \in Y} \rho_{\alpha} \subseteq \omega_{\{x,y\}} \cup \varepsilon_B$.

Proof. First we see from Lemma 1.3(3) that for any $u, v \in B_{\theta}$, if $(u, v) \in \bigcap_{\alpha \in Y} \rho_{\alpha}$, then $\omega_{\{u,v\}} \cup \varepsilon_B \in \mathcal{C}(B)$. Therefore if there exist $x_1, y_1, x_2, y_2 \in B_{\theta}$ such that $\{x_1, y_1\} \neq \{x_2, y_2\}$ and $(x_1, y_1), (x_2, y_2) \in \bigcap_{\alpha \in Y} \rho_{\alpha}$, then both $\rho_1 = \omega_{\{x_1, y_1\}} \cup \varepsilon_B$ and $\rho_2 = \omega_{\{x_2, y_2\}} \cup \varepsilon_B$ are nontrivial congruences on B. However, $\rho_1 \cap \rho_2 = \varepsilon_B$, contradicting the fact that B is subdirectly irreducible. Thus, there must exist distinct $x, y \in B_{\theta}$ such that $\bigcap_{\alpha \in Y} \rho_{\alpha} \subseteq \omega_{\{x,y\}} \cup \varepsilon_B$.

Lemma 2.9. If there exists $\alpha \in Y - \{\theta\}$ such that B_{α} is a left zero semigroup, then $Y = Y_2$, $\rho_{\alpha} = \varepsilon_B$ and there exist distinct $x, y \in B_{\theta}$ such that im $\varphi_{\theta}^a = \{x, y\}$ for any $a \in B_{\alpha}$.

Proof. It follows from Lemma 2.4 and the definition of σ_{α} that $\sigma_{\alpha} = \omega_{\{\operatorname{im} \varphi_{\theta}^{a}\}} \cup \varepsilon_{B}$ for some $a \in B_{\alpha}$. If there exists $\beta \in Y - \{\theta\}$ such that $\beta \neq \alpha$, then we obtain from condition (2) of the definition of a fundamental semilattice of semigroups that $\operatorname{im} \varphi_{\theta}^{b} \subseteq u \ker \varphi_{\theta}^{a}$ for any $u \in B_{\beta}$. This implies that $\sigma_{\alpha} \cap \sigma_{\beta} = \varepsilon_{B}$. However, we know from Lemma 2.2 that σ_{α} and σ_{β} are nontrivial, a contradiction. So we get $Y = Y_{2}$.

Noticing that $\sigma_{\alpha} = \omega_{\{\operatorname{im} \varphi_{\theta}^{\alpha}\}} \cup \varepsilon_{B}$, we observe that $\sigma_{\alpha} \cap \rho_{\alpha} = \varepsilon_{B}$. Then we must have $\rho_{\alpha} = \varepsilon_{B}$ since B is subdirectly irreducible and σ_{α} is nontrivial.

According to Lemma 1.3(4), we can take ua, va from im φ_{θ}^{a} . For any $b \in B$, if $b \in B_{\alpha}$, then we have uab = ua and vab = vb; if $b \in B_{\theta}$, then we have uab = vab = b. That is, $\omega_{\{ua,va\}} \cup \varepsilon_{B} \in \mathcal{C}(B)$. Noticing that B is subdirectly irreducible, there must exist distinct $x, y \in B_{\theta}$ such that im $\varphi_{\theta}^{a} = \{x, y\}$.

Lemma 2.10. If for any $\alpha \in Y - \{\theta\}$, B_{α} is not a left zero semigroup, then there exist distinct $x, y \in B_{\theta}$ such that $\bigcap_{\alpha \in Y} \rho_{\alpha} = \omega_{\{x,y\}} \cup \varepsilon_B$.

Proof. If $Y \neq Y_2$, then we see from Lemma 2.7 that for any $\alpha \in Y - \{\theta\}$, there exists $\beta \in Y - \{\theta\}$ such that $\sigma_\beta \subseteq \rho_\alpha$. Note from Lemma 2.2 and the definition of σ_β that σ_β is nontrivial. We obtain from condition (1) of the definition of a fundamental semilattice of semigroups and Lemma 2.8 that there exist distinct $x, y \in B_\theta$ such that $\bigcap_{\alpha \in Y} \rho_\alpha = \omega_{\{x,y\}} \cup \varepsilon_B$.

Now suppose that $Y = Y_2$. Note that for any $\alpha \in Y - \{\theta\}$, there exist distinct $a, b \in B_{\alpha}$ such that $a \mathcal{R} b$. It follows from Lemma 2.3 that $\ker \varphi_{\theta}^{a} = \ker \varphi_{\theta}^{b}$. We easily see from Lemma 1.3(4) that for every $u \in B_{\theta}$, $(u, u\varphi_{\theta}^{a}) \in \ker \varphi_{\theta}^{a}$. So we obtain from Lemma 2.1 that $\operatorname{im} \varphi_{\theta}^{a} \neq \operatorname{im} \varphi_{\theta}^{b}$ and hence there exists $z \in B_{\theta}$ such that $za = z\varphi_{\theta}^{a} \neq z\varphi_{\theta}^{b} = zb$. Let $\rho_{1} = \omega_{\{za, zb\}} \cup \varepsilon_{B}$. For any $c \in B$, if $c \in B_{\alpha}$, then

we have zac = zbac = zbc since B_{α} is a rectangular band; if $c \in B_{\theta}$, then we have zac = c = zbc since B_{θ} is a right zero semigroup. Therefore, $\rho_1 \in \mathcal{C}(B)$. Note that B is a subdirectly irreducible band. For any $v \in B_{\theta}$ such that $(v, z) \notin \ker \varphi_{\theta}^a$, we must have va = vb. Now for any $a', b' \in B_{\alpha}$ with $a \mathcal{L} a', b \mathcal{L} b'$ and $a' \mathcal{R} b'$, we have $\operatorname{im} \varphi_{\theta}^a = \operatorname{im} \varphi_{\theta}^{a'}$, $\operatorname{im} \varphi_{\theta}^b = \operatorname{im} \varphi_{\theta}^{b'}$ and $\ker \varphi_{\theta}^{a'} = \ker \varphi_{\theta}^{b'}$. Hence we obtain that $(za, zb) \in \ker \varphi_{\theta}^{a'}$ which means that ρ_{α} is nontrivial. Again it follows from condition (1) of the definition of a fundamental semilattice of semigroups and Lemma 2.8 that there exist distinct $x, y \in B_{\theta}$ such that $\bigcap_{\alpha \in Y} \rho_{\alpha} = \omega_{\{x,y\}} \cup \varepsilon_B$.

Corollary 2.11. There exist distinct $x, y \in B_{\theta}$ such that $\omega_{\{x,y\}} \cup \varepsilon_B$ is the least nontrivial congruence on B.

Proof. This directly follows Lemmas 2.6, 2.8, 2.9 and 2.10.

In the following lemmas, x and y will be used to represent the least nontrivial congruence on B. Noticing Lemma 2.2 and the definition of σ_{α} for $\alpha \in Y$, we have

Corollary 2.12. For any $\alpha \in Y - \{\theta\}, (x, y) \in \bigcap_{\alpha \in Y - \{\theta\}} \sigma_{\alpha}$.

Lemma 2.13. For any $\alpha \in Y - \{\theta\}$ and $a \in B_{\alpha}$,

$$\xi = \left(\bigcup_{c \in R_a} \left((\operatorname{im} \varphi_{\theta}^c \setminus x \operatorname{ker} \varphi_{\theta}^c) \times (\operatorname{im} \varphi_{\theta}^c \setminus x \operatorname{ker} \varphi_{\theta}^c) \right) \cup \varepsilon_B \right)^{\infty} \in \mathcal{C}(B).$$

Proof. It follows from Lemma 1.1 that we only need to show that the symmetric relation $\bigcup_{c \in R_a} ((\operatorname{im} \varphi_{\theta}^c \setminus x \ker \varphi_{\theta}^c) \times (\operatorname{im} \varphi_{\theta}^c \setminus x \ker \varphi_{\theta}^c))$ is right compatible. Arbitrarily take $c \in R_a$ and $u, v \in \operatorname{im} \varphi_{\theta}^c \setminus x \ker \varphi_{\theta}^c$. Then we see from Lemma 1.3(4) that uc = u and vc = v. For any $b \in B$, if $b \in B_{\alpha}$, then we have ub = ucb and vb = vcb. Note that $cb \mathcal{R} c$. Then we obtain that $ub, vb \in \operatorname{im} \varphi_{\theta}^{cb} \setminus x \ker \varphi_{\theta}^{cb}$ with $cb \mathcal{R} a$. If $b \notin B_{\alpha}$, then we have ub = ucb = cb = vcb = vb. Hence we obtain that $\bigcup_{c \in R_a} ((\operatorname{im} \varphi_{\theta}^c \setminus x \ker \varphi_{\theta}^c) \times (\operatorname{im} \varphi_{\theta}^c \setminus x \ker \varphi_{\theta}^c))$ is right compatible.

Lemma 2.14. For any $\alpha \in Y - \{\theta\}$ and $a \in B_{\alpha}$, $|\operatorname{im} \varphi_{\theta}^{a}| = 2$.

Proof. If there exists $\alpha \in Y - \{\theta\}$ such that B_{α} is a left zero semigroup, then we see from Lemma 2.9 that $Y = \{\alpha, \theta\}$ and for any $a \in B_{\alpha}$, $|\operatorname{im} \varphi_{\theta}^{a}| = 2$. If for any $\alpha \in Y - \{\theta\}$ such that B_{α} is not a left zero semigroup, then we see from Lemma 2.10 that $\bigcap_{b \in B} \ker \varphi_{\theta}^{a} \cup \varepsilon_{B} = \omega_{\{x,y\}} \cup \varepsilon_{B}$, the least nontrivial congruence on *B*. Note from Lemma 1.4 that for any $s, t \in B$ with $s \mathcal{D}t$, we always have $|\operatorname{im} \varphi_{\theta}^{s}| = |\operatorname{im} \varphi_{\theta}^{t}|$. Suppose that there exists some $\beta \in Y - \{\theta\}$ and $d \in B_{\beta}$ such that $|\operatorname{im} \varphi_{\theta}^{d}| \geq 3$. Then the following congruence

$$\xi = \left(\bigcup_{e \in R_d} \left(\left(\operatorname{im} \varphi_{\theta}^d \setminus x \operatorname{ker} \varphi_{\theta}^d\right) \times \left(\operatorname{im} \varphi_{\theta}^d \setminus x \operatorname{ker} \varphi_{\theta}^d\right)\right) \cup \varepsilon_B\right)^{\infty}$$

as constructed in Lemma 2.13 is nontrivial. However, $(\omega_{\{x,y\}} \cup \varepsilon_B) \cap \xi = \varepsilon_B$, contradicting the fact that B is subdirectly irreducible.

Lemma 2.15. For $\alpha \in Y - \{\theta\}$, if B_{α} is not a left zero semigroup, then there exist $a, b \in B_{\alpha}$ and $z \in B_{\theta}$ such that im $\varphi_{\theta}^{a} = \{x, z\}$ and im $\varphi_{\theta}^{b} = \{y, z\}$.

Proof. It follows from Lemmas 2.9, 2.10 and Corollary 2.12 that $(x, y) \in \ker \varphi_{\theta}^{c}$ for any $c \in B_{\alpha}$ and $(x, y) \in \sigma_{\alpha}$. Noticing Lemmas 2.3 and 2.4, we see that there exist $a, b \in B_{\alpha}$ with $a \mathcal{R} b$ such that $x = x\varphi_{\theta}^{a}$ and $y = y\varphi_{\theta}^{b}$. Suppose $u \notin x \ker \varphi_{\theta}^{a}$. We claim that $ua = u\varphi_{\theta}^{a} = u\varphi_{\theta}^{b} = ub$. Otherwise, $\omega_{\{ua,ub\}} \cup \varepsilon_{B} \in \mathcal{C}(B)$. In fact, for any $e \in B$, if $c \in B_{\alpha}$, then we have uac = ubac = ubc since B_{α} is a rectangular band. If $c \notin B_{\alpha}$, then we see from the multiplication in a fundamental semilattice of semigroups that $uac = ac = \langle \varphi_{\theta}^{a}\varphi_{\theta}^{c} \rangle = x\varphi_{\theta}^{c}$ since $\operatorname{im} \varphi_{\theta}^{a} \subseteq x \ker \varphi_{\theta}^{c}$; similarly, $ubc = bc = \langle \varphi_{\theta}^{b}\varphi_{\theta}^{c} \rangle = y\varphi_{\theta}^{c} = x\varphi_{\theta}^{c}$. However, $(\omega_{\{ua,ub\}} \cup \varepsilon_{B}) \cap (\omega_{\{x,y\}} \cup \varepsilon_{B}) = \varepsilon_{B}$, contradicting the fact that B is subdirectly irreducible band. Hence, we obtain from Lemma 2.14 that there exists $z \in B_{\theta}$ such that $\operatorname{im} \varphi_{\theta}^{a} = \{x, z\}$ and $\operatorname{im} \varphi_{\theta}^{b} = \{y, z\}$.

To end the paper, we give our main results. In the next two proofs, for any $s, t \in B$, $\Theta(s, t)$ represents the congruence generated by $\{(s, t)\}$.

Theorem 2.16. If there exists $\alpha \in Y - \{\theta\}$ such that B_{α} is a left zero semigroup, then B is subdirectly irreducible if and only if the following conditions are satisfied:

- (1) $Y = Y_2$ and $\Phi_{\alpha,\theta}$ is injective;
- (2) $\bigcap_{a \in B_{\alpha}} \ker \varphi_{\theta}^{a} = \varepsilon_{B_{\theta}};$
- (3) there exist distinct $x, y \in B_{\theta}$ such that $\operatorname{im} \varphi_{\theta}^{a} = \{x, y\}$ for all $a \in B_{\alpha}$.

Proof. The necessity part follows from Lemmas 2.1, 2.9 and the definition of ρ_{α} .

To prove sufficiency part, arbitrarily take distinct $u, v \in B$ with $\{u, v\} \neq \{x, y\}$. It suffices to prove $(x, y) \in \Theta(u, v)$. We complete the proof via discussing the following cases:

Case 1. $u, v \in B_{\theta}$. According to condition (2), there exists $a \in B_{\alpha}$ such that $(u, v) \notin \ker \varphi_{\theta}^{a}$. Note condition (3) and suppose $u \in x \ker \varphi_{\theta}^{a}, v \in y \ker \varphi_{\theta}^{a}$. We obtain from Lemma 1.3(4) that ua = x and va = y which means that $(x, y) \in \Theta(u, v)$.

Case 2. $u \in B_{\theta}, v \in B_{\alpha}$. Note from condition (3) that $\ker \varphi_{\theta}^{v} \neq \omega_{B_{\theta}}$ and take $z \notin u \ker \varphi_{\theta}^{v}$, we have zu = u and $zv \notin u \ker \varphi_{\theta}^{v}$ so that $zv \neq u$. This case is reduced to Case 1.

Case 3. $u, v \in B_{\alpha}$. We see from condition (1) and Lemma 1.3(1) that there exists $z \in B_{\theta}$ such that $zu \neq zv$. This case is also reduced to Case 1.

Theorem 2.17. If for any $\alpha \in Y - \{\theta\}$, B_{α} is not a left zero semigroup, then B is subdirectly irreducible if and only if the following conditions are satisfied:

(1) for all $\alpha \in Y - \{\theta\}$, $\Phi_{\alpha,\theta}$ is injective;

(2) there exist distinct $x, y \in B_{\theta}$ such that $\bigcap_{a \in B} \ker \varphi_{\theta}^{a} = \omega_{\{x,y\}} \cup \varepsilon_{B_{\theta}}$;

(3) for all $\alpha \in Y - \{\theta\}$, there exist $a, b \in B_{\alpha}$ and $z \in B_{\theta}$ such that $\operatorname{im} \varphi_{\theta}^{a} = \{x, z\}$ and $\operatorname{im} \varphi_{\theta}^{b} = \{y, z\}$.

Proof. The necessity part follows from Lemmas 2.1, 2.10, 2.15 and the definition of ρ_{α} for $\alpha \in Y$.

We now prove the sufficiency part. Arbitrarily take distinct $u, v \in B_{\theta}$ with $\{u, v\} \neq \{x, y\}$. We see from condition (2) that it suffices to prove $(x, y) \in \Theta(u, v)$. We complete the proof via discussing the following cases:

Case 1. $u, v \in B_{\theta}$. We see from condition (2) that there exist $\beta \in Y - \{\theta\}$ and $c \in B_{\beta}$ such that $u \in x \ker \varphi_{\theta}^{c}$ and $v \notin x \ker \varphi_{\theta}^{c}$. According to condition (3), Lemmas 2.3 and 2.4, we see that there exist $d, e \in B_{\beta}$ with $c \mathcal{R} d \mathscr{R} e$ such that ud = x, ue = y, vd = ve = z. It follows that $(x, y) \in \Theta(u, v)$.

Case 2. $u \in B_{\theta}, v \in B_{\beta}$ for some $\beta \in Y - \{\theta\}$. Note from condition (3) that $\ker \varphi_{\theta}^{v} \neq \omega_{B_{\theta}}$ and take $z \notin u \ker \varphi_{\theta}^{v}$, we have zu = u and $zv \notin u \ker \varphi_{\theta}^{v}$ so that $zv \neq u$. This case is reduced to Case 1.

Case 3. $u, v \notin B_{\theta}$. If $(u, v) \notin \mathcal{D}$, then we see from condition (2) of the definition of a fundamental semilattice of semigroups, $\operatorname{im} \varphi_{\theta}^{u} \subseteq \operatorname{ker} \varphi_{\theta}^{v}$ which means that $\varphi_{\theta}^{u} \neq \varphi_{\theta}^{v}$; if $(u, v) \in \mathcal{D}$, then we see from condition (1) that $\varphi_{\theta}^{u} \neq \varphi_{\theta}^{v}$ either. So there exists $w \in B_{\theta}$ such that $w\varphi_{\theta}^{u} \neq w\varphi_{\theta}^{v}$ and hence $wu \neq wv$. This case is also reduced to Case 1.

References

- J.M. Howie, Fundamentals of Semigroup Theory, Oxford, Clarendon Press, UK, 1995.
- [2] J.A. Gerhard, Subdirectly irreducibe idempotent semigroups, *Pacific J. Math.* 39 (1971) 669–676.
- [3] M. Petrich, Introduction to Semigroups, Merrill, Columbus, 1973.
- [4] O. Poliakova, B.M. Schein, A new construction for inverse semigroups, J. Algebra 288 (2005) 20–58.
- [5] B.M. Schein, Homomorphisms and subdirect decomposition of semigroups, *Pacific J. Math.* 17 (1996) 529–547.
- [6] Z.P. Wang, Fundamental semilattices of semigroups, Acta Math. Hungar. 146 (2015) 22–39.
- [7] Z.P. Wang, J. Leng, H.Y. Yu, On subdirectly irreducible regular bands, Turk. J. Math. 41 (2017) 1337–1343.
- [8] Z.P. Wang, H.Y. Yu, Completely regular semigroups for which every congruence on each *D*-class extends to a congruence on the whole semigroup, *Comm. Algebra* 43 (2) (2015) 763–777.