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Abstract. We give a new presentation of free idempotent semigroup (band) in which the

set of relations is a Gröbner-Shirshov basis. By using Composition-Diamond lemma

for associative algebra, we obtain normal forms of elements of the free idempotent

semigroup.
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1. Introduction

Let A be an alphabet having at least three letters. A square is a word in A+

of the form uu, with u a nonempty word. A word contains a square if one of
its factors is a square, otherwise, the word is called square-free. Then there are
infinitely many square-free words in A∗. Consider the semigroup

D = sgp〈A | w2 = 1, w ∈ A+〉, where A+ = A∗ \ {1}.

Each square-free word constitutes an equivalence class modulo this congru-
ence, and the quotient monoid D is infinite.

There is another situation where square-free words can be used. Consider
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the quotient monoid

E = sgp〈A | wm = wn, w ∈ A+, m, n ≥ 2〉

Since each square-free word also defines an equivalence class, the monoid E is
infinite. In fact, this result also holds for a two-letter alphabet (Brzozowski,
Culik II, and Gabrielian 1971).

These considerations can be placed in the framework of the classical Burnside
problem (originally, the Burnside problem was formulated for groups only, but
it is easy to state for semigroups also):

Is every finitely generated torsion semigroup finite ? (A torsion semi-
group is a semigroup such that each element generates a finite subsemigroup.)
We have just seen that the answer is negative in general. But in one special
case, surprisingly, the answer is positive.

Let A = {ai | i ∈ I} be a set. The monoid

M = sgp〈A | w2 = w,w ∈ A∗〉

is called the free idempotent monoid on A (see [8]).

Theorem 1.1. (Green-Rees [8]) The free idempotent monoid on A is finite and

has exactly
n
∑

k=0

(

n

k

)

∏

1≤i≤k

(k − i+ 1)2
i

elements, where n = Card(A).

2. Preliminaries

We first cite some concepts and results from the literature [3, 2, 9] which are
related to Gröbner-Shirshov bases for associative algebras.

Let X be a set and F a field, F 〈X〉 the free associative algebra over F
generated by X , and X∗ the free monoid generated by X . A well ordering < on
X∗ is monomial if for any u, v ∈ X∗,

u < v ⇒ w1uw2 < w1vw2, for all w1, w2 ∈ X∗.

Let X+ be the semigroup generated by X . For any u ∈ X∗, denote by |u|
the length of u.

A standard example of monomial ordering onX∗ is the deg-lex ordering which
first compare two words by length and then by comparing them lexicographically,
where X is a well ordered set.

Then, for any nonzero polynomial f ∈ F 〈X〉, f has the leading (maximal)
word f . We call f monic if the coefficient of f is 1.

Let f, g ∈ F 〈X〉 be two monic polynomials and w ∈ X∗.
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If w = fb = ag for some a, b ∈ X∗ such that |f | + |g| > |w|, then (f, g)w =
fb− ag is called the intersection composition of f, g relative to w.

If w = f = agb for some a, b ∈ X∗, then (f, g)w = f − agb is called the
inclusion composition of f, g relative to w. The transformation f 7→ f − agb is
called the elimination of leading word (ELW) of g in f .

In (f, g)w, w is called the ambiguity of the composition.

Let S ⊂ F 〈X〉 be a monic set. A composition (f, g)w is called trivial modulo
(S,w), denoted by

(f, g)w ≡ 0 mod(S,w)

if (f, g)w =
∑

αiaisibi, where every αi ∈ F, si ∈ S, ai, bi ∈ X∗, and aisibi < w.

Generally, for f, g ∈ F 〈X〉, f ≡ g mod(S,w) we mean f − g =
∑

αiaisibi,
where every αi ∈ F, si ∈ S, ai, bi ∈ X∗, and aisibi < w.

Recall that S is a Gröbner-Shirshov basis if any composition of polynomials
from S is trivial modulo S.

Let f and r1 be two polynomials. Then f 7→ f1 by ELW of r1 in f means
f = α1a1r1b1 + f1 where a1, b1 ∈ X∗, α1 ∈ F, f̄ = a1r1b1 and f̄1 < f̄ if f1 6= 0.
Generally, f 7→ f1 7→ · · · 7→ fn 7→ r means that f =

∑

αiairibi + r where
f̄ = a1r1b1 > a2r2b2 > · · · > anrnbn > r̄. If this is the case, we say that f can
be reduced to r via {r1, . . . , rn}.

Clearly, if (f, g)w can be reduced to zero by ELW of S, then (f, g)w ≡
0 mod(S,w).

The following lemma was first proved by Shirshov [9] for free Lie algebras
(with deg-lex ordering) (see also Bokut [3]). Bokut [2] specialized the approach
of Shirshov to associative algebras (see also Bergman [1]). For commutative
polynomials, this lemma is known as Buchberger’s Theorem (see [4, 5]).

Lemma 2.1. (Composition-Diamond Lemma) Let F be a field, A = F 〈X |S〉 =
F 〈X〉/Id(S) and < a monomial ordering on X∗, where Id(S) is the ideal of

F 〈X〉 generated by S. Then the following statements are equivalent:

(1) S is a Gröbner-Shirshov basis.

(2) f ∈ Id(S) ⇒ f̄ = as̄b for some s ∈ S and a, b ∈ X∗.

(3) Irr(S) = {u ∈ X∗|u 6= as̄b, s ∈ S, a, b ∈ X∗} is an F -basis of the algebra

A = F 〈X |S〉.

If a subset S of F 〈X〉 is not a Gröbner-Shirshov basis then one can add
all nontrivial compositions of polynomials of S to S. Continuing this process
repeatedly, we finally obtain a Gröbner-Shirshov basis Scomp that contains S.
Such a process is called Shirshov algorithm.

A set S is called minimal Gröbner-Shirshov basis if it is a Gröbner-Shirshov
basis and there are no inclusion compositions in S.

Let A = sgp〈X |S〉 be a semigroup presentation. Then S is also a subset
of F 〈X〉 and we can find Gröbner-Shirshov basis Scomp. We also call Scomp a
Gröbner-Shirshov basis of A. The set Irr(Scomp) = {u ∈ S∗|u 6= afb, a, b ∈
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S∗, f ∈ Scomp} is a linear basis of F 〈X |S〉 which is also a set of all normal forms
of A.

In this chapter, we introduce Burnside problem and Green-Rees theorem.
We give a new presentation of free idempotent semigroup in which the set of
relations is a Gröbner-Shirshov basis and then a normal form of free idempotent
semigroup is obtained by using Composition-Diamond lemma (see Lemma 2.1).

3. Some Properties for Free Idempotent Monoid

Let A = {ai | i ∈ I} be a set. The monoid

M = sgp〈A | w2 = w,w ∈ A∗〉

is called the free idempotent monoid on A (see [6, 7, 8]).

For any w = a1a2 · · · an ∈ A∗, where a1, a2, . . . , an ∈ A, we denote alph(w) =
{a1, a2, . . . , an}, for example, alph(aaba) = {a, b}. Let F be a field. F 〈A〉 is the
free associative algebra over F generated by A.

Lemma 3.1. [8] For any x, y ∈ A∗. If alph(y) ⊆alph(x), then there exists u ∈ A∗,

such that in F 〈A〉, xyu− x =
∑

ai(w
2
i − wi)bi, where ai, bi ∈ A∗, wi ∈ A+.

Proof. Induction on |y|.

If |y| = 0, then y = ε and let u = x.

If |y| = 1, then y = a ∈ A. Since alph(y) ⊆ alph(x), there exist z, z′ ∈ A∗,
such that x = zaz′. Let u = z′. Then xyu − x = z[(az′)2 − (az′)].

For |y| > 1, let y = y′a, where a ∈ A. Since alph(y
′

) ⊆alph(y) ⊆alph(x),
by induction, there exists u′ ∈ A∗, such that xy′u′ − x =

∑

ai(w
2
i − wi)bi.

Furthermore, a ∈ alph(x), whence x = zaz′. Let u = z′y′u′. Now we have

xyu− x = zaz′y′az′y′u′ − zaz′

= z[(az′y′)2 − (az′y′)]u′ + zaz′y′u′ − zaz′

= z[(az′y′)2 − az′y′]u′ +
∑

ai(w
2
i − wi)bi

Remark 3.2. Symmetrically, there exists a word v such that in F 〈A〉, vyx− x =
∑

ci(t
2
i − ti)di, where ci, di ∈ A∗, ti ∈ A+.

For any x ∈ A+, denote x′ the shortest left factor of x such that alph(x′) =
alph(x). Setting x′ = pxax, where ax ∈ A, alph(px) =alph(x) \ {ax}. Denote x′′

the shortest right factor of x such that alph(x′′) =alph(x). Setting x′′ = bxqx,
where bx ∈ A, we have alph(qx) =alph(x) \ {bx}. Therefore, for any x ∈ A+,
there exist uniquely px, ax, bx, qx which are defined as above.

Lemma 3.3. [8] For any x ∈ A+, we have pxaxbxqx−x =
∑

ai(w
2
i −wi)bi, where

ai, bi ∈ A∗, wi ∈ A+.
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Proof. Let x = pxaxy = zbxqx, where y, z ∈ A∗. Since alph(y) ⊆alph(pxax),
there exists u ∈ A∗, such that pxax − pxaxyu =

∑

ai(w
2
i − wi)bi. Similarly,

since alph(pxax) ⊆alph(bxqx), there exists v ∈ A∗, such that vpxaxbxqx−bxqx =
∑

ci(t
2
i − ti)di. Since

pxaxyubxqx − zvpxaxbxqx

= [pxaxy − (pxaxy)
2]ubxqx + [(pxaxy)

2ubxqx − zv(pxaxbxqx)
2]

+zv[(pxaxbxqx)
2 − pxaxbxqx]

= [pxaxy − (pxaxy)
2]ubxqx + [(pxaxy)

2ubxqx − pxaxypxaxbxqx]

+[pxaxypxaxbxqx − zv(pxaxbxqx)
2]

+zv[(pxaxbxqx)
2 − pxaxbxqx]

= [pxaxy − (pxaxy)
2]ubxqx + pxaxy(pxaxyu− pxax)bxqx

+z(bxqx − vpxaxbxqx)pxaxbxqx + zv[(pxaxbxqx)
2 − pxaxbxqx],

we have

pxaxbxqx − x

= pxaxbxqx − zbxqx

= (pxax − pxaxyu)bxqx + (pxaxyubxqx − zvpxaxbxqx) + z(vpxaxbxqx − bxqx)

= (pxax − pxaxyu)bxqx + [pxaxy − (pxaxy)
2]ubxqx

+pxaxy(pxaxyu− pxax)bxqx + z(bxqx − vpxaxbxqx)pxaxbxqx

+zv[(pxaxbxqx)
2 − pxaxbxqx] + z(vpxaxbxqx − bxqx)

=
∑

ai(w
2
i − wi)bibxqx + [pxaxy − (pxaxy)

2]ubxqx

+
∑

pxaxyai(w
2
i − wi)bibxqx +

∑

zci(t
2
i − ti)dipxaxbxqx

+zv[(pxaxbxqx)
2 − pxaxbxqx] +

∑

zci(t
2
i − ti)di.

For any u, v ∈ A∗, if u = w1w2 and v = w2w3, where w1, w2, w3 ∈ A∗, we
denote cm(u, v) = w1w2w3.

Definition 3.4. For any x ∈ A+, we define (x)s by induction on |x|.

(1) For |x| = 1, (x)s = x.

(2) For |x| > 1, by induction (x)s = cm((px)sax, bx(qx)s).

For example, x = a1a2a2a1a1a2a1 ∈ A+. Since px = a1, ax = a2, bx = a2,
qx = a1, we have (x)s = cm(a1a2, a2a1) = a1a2a1.

Lemma 3.5. For any x ∈ A+, the word (x)s is unique.

Proof. If |(x)s| < |(px)saxbx(qx)s|, we suppose that (x)s = cm((px)sax,
bx(qx)s) = v1v2v3, (x)

′
s = cm′((px)sax, bx(qx)s) = w1w2w3, where (px)sax =
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v1v2 = w1w2, bx(qx)s = v2v3 = w2w3, |v2| ≥ 1, |w2| ≥ 1. Suppose
w2 = cv2 = bxd, where c, d ∈ A∗. If (x)s 6= (x)′s, then |c| ≥ 1, bx ∈
alph(c), and there exists t ∈ A∗ such that c = bxt. Then (qx)s = tv2dw3

and bx ∈alph(v2) ⊆alph((qx)s) which contradicts bx /∈ alph(qx).

If |(x)s| = |(px)saxbx(qx)s|, then (x)s = (px)saxbx(qx)s.

This shows that for any x ∈ A+, (x)s is unique.

Denote

R = {w2 − w | w ∈ A∗},

S = { paubq − (pabq)s | p, q ∈ A∗, a, b ∈ A, (p)s = p, (q)s = q, a /∈ alph(p),

b /∈ alph(q), alph(pa) = alph(bq), u ∈ (alph(pa))∗, |paubq| > |(pabq)s|}.

Note that alph(pa) = alph(paubq) if paubq − (pabq)s ∈ S.

Let (I,<) be well-ordered set. Then we order A∗ by the deg-lex order. We
will use this order in this paper. For any f ∈ F 〈A〉, f means the leading term
of f . Suppose S is a subset of F 〈A〉. Then we denote Id(S) the ideal of F 〈A〉
generated by S.

Lemma 3.6. For any w ∈ A+, if (w)s 6= w, then there exist s1 ∈ S, a, b ∈ A∗,

such that w = as̄1b.

Proof. Induction on Card(alph(w)).

For Card(alph(w)) = 1, w = ami for some m ≥ 1. Since (w)s 6= w, we have
m ≥ 2. Setting s1 = a2i − ai, we have w = a2i a

m−2
i = s̄1a

m−2
i .

Suppose that Card(alph(w)) > 1. If (pw)s 6= pw or (qw)s 6= qw, by induction,
the result holds. If (pw)s = pw and (qw)s = qw, then w = (pw)sawubw(qw)s for
some u ∈ (alph(pa))∗ since (w)s 6= w. Now, we have s1 = w − (w)s ∈ S and
w = s1.

Lemma 3.7. Id(R) = Id(S) in F 〈A〉.

Proof. First we want to prove Id(S) ⊆ Id(R). Clearly, it suffices to show S ⊆
Id(R). For any paubq − (pabq)s ∈ S, let x1 = paubq and x2 = (pabq)s. Since
px1

= p = px2
, ax1

= a = ax2
, bx1

= b = bx2
, qx1

= q = qx2
, by Lemma 3.3, we

have

paubq − (pabq)s = (paubq − pabq) + (pabq − (pabq)s)

=
∑

ai(w
2
i − wi)bi +

∑

ci(v
2
i − vi)di ∈ Id(R).

Now we show R ⊆ Id(S). For any w2 − w ∈ R. There are two cases to
consider:

Case 1. Suppose (w)s = w. Since w = (w)s = cm((pw)saw, bw(qw)s) =
((pw)sawbw(qw)s)s, we have (pw)s = pw, (qw)s = qw and there exist u1, u2 ∈
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(alph(w))∗ such that w = pwawu1 = u2bwqw. Hence, if u = u1u2 then u ∈
alph(w))∗ and

w2 − w = pwawu1u2bwqw − ((pw)sawbw(qw)s)s

= (pw)sawubw(qw)s − ((pw)sawbw(qw)s)s ∈ S.

Case 2. If (w)s 6= w, then |w| > 2. We will prove this case by induction on
|w|.

For |w| = 2, since (w)s 6= w, we have w = a2i and w2 − w = a4i − a2i =
(a4i − ai)− (a2i − ai) in Id(S).

For |w| > 2, by Lemma 3.6, there exists s1 ∈ S satisfying (ps̄1)s = ps̄1 ,
(qs̄1)s = qs̄1 such that w = cs̄1d. Suppose s̄1 = ps̄1as̄1u1bs̄1qs̄1 . Then w =
c(ps̄1as̄1u1bs̄1qs̄1)d and

w2 − w

= c(ps̄1as̄1u1bs̄1qs̄1)dc(ps̄1as̄1u1bs̄1qs̄1)d− c(ps̄1as̄1u1bs̄1qs̄1)d

= c(ps̄1as̄1u1bs̄1qs̄1)dc(ps̄1as̄1u1bs̄1qs̄1)d−c(ps̄1as̄1u1bs̄1qs̄1)sdc(ps̄1as̄1u1bs̄1qs̄1)d

+c(ps̄1as̄1u1bs̄1qs̄1)sdc(ps̄1as̄1u1bs̄1qs̄1)d− c(ps̄1as̄1u1bs̄1qs̄1)sdc(ps̄1as̄1u1bs̄1

qs̄1)sd+ c(ps̄1as̄1u1bs̄1qs̄1)sdc(ps̄1as̄1u1bs̄1qs̄1)sd− c(ps̄1as̄1u1bs̄1qs̄1)d

= c[ps̄1as̄1u1bs̄1qs̄1 − (ps̄1as̄1u1bs̄1qs̄1)s]dc(ps̄1as̄1u1bs̄1qs̄1)d

+c(ps̄1as̄1u1bs̄1qs̄1)sdc[ps̄1as̄1u1bs̄1qs̄1 − (ps̄1as̄1u1bs̄1qs̄1)s]d

+c(ps̄1as̄1u1bs̄1qs̄1)sdc(ps̄1as̄1u1bs̄1qs̄1)sd− c(ps̄1as̄1u1bs̄1qs̄1)sd

−c[ps̄1as̄1u1bs̄1qs̄1 − (ps̄1as̄1u1bs̄1qs̄1)s]d,

by induction, c(ps̄1as̄1bs̄1qs̄1)sdc(ps̄1as̄1bs̄1qs̄1)sd − c(ps̄1as̄1bs̄1qs̄1)sd ∈ Id(S).
This implies w2 − w ∈ Id(S).

4. A Gröbner-Shirshov Basis

By Lemma 3.7, we have F 〈A | S〉 = F 〈A | R〉 which is equivalent to M =
sgp〈A | S〉 = sgp〈A | R〉.

The following theorem is the main result in this paper.

Theorem 4.1. With the deg-lex ordering on A∗,

S = { paubq − (pabq)s | p, q ∈ A∗, a, b ∈ A, (p)s = p, (q)s = q, a /∈ alph(p),

b /∈ alph(q), alph(pa) = alph(bq), u ∈ (alph(pa))∗, |paubq| > |(pabq)s|}

is a Gröbner-Shirshov basis in F 〈A〉.

Proof. We will prove that all the compositions in S are trivial. Assume that
f = paubq − (pabq)s, g = p′a′u′b′q′ − (p′a′b′q′)s ∈ S.

First we prove that all intersection compositions are trivial.
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Case 1. No one of {a, b, a′, b′} is in the intersection, i.e. q = u1u2, p′ =
u2u3, |u2| ≥ 1, w = paubu1u2u3a

′u′b′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

There exist w1, w2 ∈ A∗ such that (pabq)s = w1bq = w1bu1u2, (p
′a′b′q′)s =

p′a′w2 = u2u3a
′w2.

(f, g)w = −(pabq)su3a
′u′b′q′ + paubu1(p

′a′b′q′)s

= −w1bu1u2u3a
′u′b′q′ + paubu1u2u3a

′w2

≡ −w1bu1(p
′a′b′q′)s + (pabq)su3a

′w2

≡ −w1bu1p
′a′w2 + w1bqu3a

′w2

≡ −w1bu1u2u3a
′w2 + w1bu1u2u3a′w2

≡ 0.

Case 2. One of {a, b, a′, b′} is in the intersection. We may assume that
u = u1u2, p′ = u2bqu3, w = paubqu3a

′u′b′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

Clearly, alph(bqu3) ⊆ alph(p′), and alph(p′) = alph(u2) ∪ alph(bqu3) ⊆
alph(u) ∪ alph(bqu3) = alph(bqu3). We have alph(bqu3) = alph(p′). Then
bqu3a

′u′b′q′ − (bqu3a
′b′q′)s ∈ S. There exist w1, w2 ∈ A∗, such that (pabq)s =

w1bq, (p
′a′b′q′)s = p′a′w2 = u2bqu3a

′w2, (bqu3a
′b′q′)s = bqu3a

′w2.

(f, g)w = −(pabq)su3a
′u′b′q′ + pau1(p

′a′b′q′)s

= −w1bqu3a
′u′b′q′ + pau1u2bqu3a

′w2

≡ −w1(bqu3a
′b′q′)s + (pabq)su3a

′w2

≡ −w1bqu3a
′w2 + w1bqu3a

′w2

≡ 0.

Case 3. Two of {a, b, a′, b′} is in the intersection. There are three subcases.

(i) p = u1u2, p′ = u2aubqu3, w = paubqu′
3u

′b′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u



Gröbner-Shirshov Bases for Free Idempotent Monoids 767

Since alph(u2a) ⊆ alph(pa) = alph(bq) ⊆ alph(bqu3) and alph(u) ⊆
alph(bq) ⊆ alph(bqu3), alph(p

′) = alph(u2a)∪alph(u)∪alph(bqu3) = alph(bqu3).
So we have bqu3a

′u′b′q′ − (bqu3a
′b′q′)s ∈ S. There exist w1, w2 ∈ A∗, such that

(pabq)s = w1bq, (p
′a′b′q′)s = p′a′w2 = u2aubqu3a

′w2, (bqu3a
′b′q′)s = bqu3a

′w2.

(f, g)w = −(pabq)su3a
′u′b′q′ + u1(p

′a′b′q′)s

= −w1bqu3a
′u′b′q′ + u1u2aubqu3a

′w2

≡ −w1(bqu3a
′b′q′)s + (pabq)su3a

′w2

≡ −w1bqu3a
′w2 + w1bqu3a

′w2

≡ 0.

(ii) u = u1u2, u′ = u3u4, w = pau1p
′a′u′b′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

Since alph(u2) ⊆ alph(bq), alph(u3) ⊆ alph(p′a′), alph(bq) ⊆ alph(p′a′u3) =
alph(p′a′) ∪ alph(u3) = alph(p′a′), alph(p′a′) ⊆ alph(u2bq) = alph(u2) ∪
alph(bq) = alph(bq). Then, alph(pa) = alph(bq) = alph(p′a′) = alph(b′q′).
So pavb′q′− (pab′q′)s ∈ S, where v ∈ (alph(pa))∗. There exist w1, w2 ∈ A∗, such
that (pabq)s = paw1, (p

′a′b′q′)s = w2b
′q′.

(f, g)w = −(pabq)su4b
′q′ + pau1(p

′a′b′q′)s

= −paw1u4b
′q′ + pau1w2b

′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(iii) u = u1p
′, u′ = qu2, b = a′, w = paubqu2b

′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

Clearly, alph(pa) = alph(b′q′). We have pavb′q′ − (pab′q′)s, where v ∈
(alph(pa))∗. There exist w1, w2 ∈ A∗, such that (pabq)s = paw1, (p

′a′b′q′)s =
w2b

′q′.

(f, g)w = −(pabq)su4b
′q′ + pau1(p

′a′b′q′)s

= −paw1u4b
′q′ + pau1w2b

′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

Case 4. Three of {a, b, a′, b′} is in the intersection. There are five subcases.

(i) p = u1u2, u′ = u3u4, q = u5a
′u3, w = u1p

′a′u′b′q′.
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a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

5
u

Clearly, alph(bq) = alph(p′a′). There exist w1, v1, v2, v3 ∈ A∗, such that
(pabq)s = paw1, (p

′a′b′q′)s = v1v2v3.

(f, g)w = −(pabq)su4b
′q′ + u1(p

′a′b′q′)s

= −paw1u4b
′q′ + u1v1v2v3

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(ii) p = u1u2, u′ = u3bqu4, w = paubqu4b
′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

Clearly, we have alph(bq) = alph(p′a′). There exists w1 ∈ A∗, such that
(pabq)s = paw1.

(f, g)w = −(pabq)su4b
′q′ + u1(p

′a′b′q′)s

= −paw1u4b
′q′ + u1p

′a′u3b
′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(iii) pa = u1p
′a′u3, u′ = u3ubqu4, w = paubqu4b

′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

Clearly, we have alph(bq) = alph(p′a′). There exists w1 ∈ A∗, such that
(pabq)s = paw1.

(f, g)w = −(pabq)su4b
′q′ + u1(p

′a′b′q′)s

= −paw1u4b
′q′ + u1p

′a′u3b
′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(iv) pa = u1u2, u′ = qu3, w = paubqu3b
′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u
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Since b = a′ /∈ alph(p′), a ∈ alph(p′), a 6= b. Since alph(pa) = alph(bq),
b ∈ alph(q). Since alph(q) ⊆ alph(u′), we have |alph(u′)| ≥ 1. There exists
w1 ∈ A∗, such that (pabq)s = paw1.

(f, g)w = −(pabq)su3b
′q′ + u1(p

′a′b′q′)s

= −paw1u3b
′q′ + u1p

′a′b′q′

≡ −(pab′q′)s + paubb′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(v) p = u1p
′, a = a′, u′ = ubqu2, w = paubqu2b

′q′.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

Clearly, alph(pa) = alph(b′q′) and |alph(u′)| ≥ 1. There exists w1 ∈ A∗, such
that (pabq)s = paw1.

(f, g)w = −(pabq)su2b
′q′ + u1(p

′a′b′q′)s

= −paw1u2b
′q′ + u1p

′a′b′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

Case 5. All of {a, b, a′, b′} is in the intersection. There are seven subcases.

(i) p = u1u2, q′ = u3u4, p′ = u2aubu5, w = paubqu4.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

5
u

Clearly, alph(pa) = alph(b′q′).

(f, g)w = −(pabq)su4 + u1(p
′a′b′q′)s

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

(ii) p = u1u2, q′ = u3u4, p′ = u2au5, q = u6b
′u3, w = paubqu4.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

3
u

4
u

5
u

6
u
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Clearly, alph(pa) = alph(b′q′) and |alph(u)| ≥ 1, |alph(u′)| ≥ 1.

(f, g)w = −(pabq)su4 + u1(p
′a′b′q′)s

= −pabqu4 + u1p
′a′b′q′

= −pabu6b
′u3u4 + u1u2au5a

′b′q′

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

Since a ∈ alph(u′) ⊆ alph(p′a′) ⊆ alph(p), this contradicts with a /∈ alph(p).
Then the following two cases will not happen.

a b

'a 'b

p u q

'p 'u 'q

a b

'a 'b

p u q

'p 'u 'q

Since a ∈ alph(b′q′) ⊆ alph(p′a′) ⊆ alph(p), this contradicts with a /∈
alph(p). Then the following case will not happen.

a b

'a 'b

p u q

'p 'u 'q

(iii) p = u1u2, q
′ = u3u4, a′ = b, w = paubqu4.

a b

'a 'b

p u q

'p 'u 'q

Clearly, alph(p′) = alph(q).

(f, g)w = −(pabq)su4 + u1(p
′a′b′q′)s

≡ −(pab′q′)s + (pab′q′)s

≡ 0.

Similarly, we can prove following cases.

(iv) a = a′, w = pa′u′b′q′.

a b

'a 'b

p u q

'p 'u 'q

(v) a = a′, w = pa′u′b′q′.

a b

'a 'b

p u q

'p 'u 'q
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(vi) a = b′, w = paq′.

a b

'a 'b

p u q

'p 'u 'q

(vii) a = a′, b = b′, w = paubq′.

a b

'a 'b

p u q

'p 'u 'q

Thus, all intersection compositions in S are trivial.

Now, we prove all inclusion compositions are also trivial.

Case 1. There are three subcases.

(i) u = u1ḡu2, w = pau1p
′a′u′b′q′u2bq.

a b

'a 'b

p u q

'p 'u 'q

(f, g)w = −(pabq)s + pau1(p
′a′b′q′)su2bq

≡ −(pabq)s + (pabq)s

≡ 0.

Similarly, we can prove following two cases.

(ii)

a b

'a 'b

p u q

'p 'u 'q

(iii)

a b

'a 'b

p u q

'p 'u 'q

Case 2. p = u1p
′, q = q′u2, a = a′, b = b′, w = paubq.

a b

'a 'b

p u q

'p 'u 'q

1
u 2

u
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(f, g)w = −(pabq)s + u1(p
′a′b′q′)su2

≡ −(pabq)s + (pabq)s

≡ 0.

Case 3. There are four subcases.

(i) p = u1p
′, u = u′b′q′u2, a = a′, w = paubq.

a b

'a 'b

p u q

'p 'u 'q

1
u

2
u

There exists w1 ∈ A∗ such that (p′a′b′q′)s = p′a′w1.

(f, g)w = −(pabq)s + u1(p
′a′b′q′)su2bq

≡ −(pabq)s + u1p
′a′w1u2bq

≡ −(pabq)s + (pabq)s

≡ 0.

Similarly, we can prove the following three cases.

(ii)

a b

'a 'b

p u q

'p 'u 'q

(iii)

a b

'a 'b

p u q

'p 'u 'q

(iv)

a b

'a 'b

p u q

'p 'u 'q

So all the possible compositions in S are trivial.

By Lemma 2.1 and Theorem 4.1, Irr(S) is an F-basis of F 〈A | S〉 which is
also a normal form of sgp〈A | R〉.

We have Irr(S) =
⋃n

k=0 Bk, where Bk = {w ∈ Irr(S) | Card(alph(w)) = k}.
Now we get Bk by induction on k:
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(1) For k = 0, B0 = {ε}.

(2) For k = 1, B1 = A.

(3) For k > 1, by induction B1
k = {ya | y ∈ Bk−1, a ∈ A \ alph(y)}, B2

k =
{cm(u, v) | u, v ∈ B1

k, alph(u) = alph(v)} and Bk = B1
k

⋃

B2
k.

Noting that by the proof of Lemma 3.5, cm(u, v) is unique in the set B2
k in

(3).

Corollary 4.2. The set
⋃∞

k=0 Bk is a normal form of the free idempotent monoid

on A = {ai|i ∈ I}, where Bk is defined as above.

Now, as a special case of Corollary 4.2, we have the following corollary which
is due to Green and Rees, see [6].

Corollary 4.3. [6] The free idempotent monoid on A is finite and has exactly

n
∑

k=0

(

n

k

)

∏

1≤i≤k

(k − i+ 1)2
i

elements, where n = Card(A).

Proof. Denote bk = Card(Bk), where 0 ≤ k ≤ n. Then b0 = 1, b1 = n. If
1 < k ≤ n, since Bk = B1

k

⋃

B2
k, where B1

k = {ya | y ∈ Bk−1, a ∈ A \ alph(y)}
and B2

k = {cm(u, v) | u, v ∈ B1
k, alph(u) = alph(v)}, we have

Card(B1
k) = bk−1 · (n− k + 1)

and

Card(B2
k) = bk−1 · (n− k + 1) · [

bk−1 · (n− k + 1)

Ck
n

− 1].

Then bk =
b2
k−1

·(n−k+1)2

Ck
n

. It is easy to get bk =
(

n
k

)

k
∏

i=1

(k− i+1)2
i

. Now we have

Card(Irr(S)) =

n
∑

k=0

bk =

n
∑

k=0

(

n

k

)

∏

1≤i≤k

(k − i + 1)2
i

.
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