
Southeast Asian
Bulletin of
Mathematics
c©SEAMS. 2021

Southeast Asian Bulletin of Mathematics (2021) 45: 833–848

On k-Comma Codes∗

Haiyan Liu
School of Statistics and Mathematics, Yunnan University of Finance and Economics,

Kunming, Yunnan, China

Email: liuhy19@qq.com

K. P. Shum
Institute of Mathematics, Yunnan University, Kunming, 650091, China

Email: kpshum@ynu.edu.cn

Jing Leng†

Department of Mathematics and Physics, Mianyang Normal University, Mianyang,

Sichuan, China

Email: lengjingai0813@163.com

Received 25 May 2021
Accepted 9 September 2021

Communicated by K. Denecke

Dedicated to the memory of Professor Yuqi Guo (1940–2019)

AMS Mathematics Subject Classification(2000): 20M35; 68R15; 68Q70

Abstract. Let L be a nonempty language over an alphabet A and k ≥ 0. Then, we

call L a k-comma code if L satisfies LAkL ∩ A+LA+ = ∅. It is obvious that the k-

comma codes are a generalization of comma-free codes. Our aim in this paper is to

further study the properties of the k-comma codes. As one can easily observe that

the family of infix codes is not closed under composition and therefore, we concen-

trate on the closure properties of the k-comma codes under composition and decom-

position. Consequently, we give a sufficient and necessary condition under which the

concatenation of two disjoint k-comma codes X and Y is still a k-comma code un-

der the assumption that X ∪ Y is an infix code. Obviously, the 1-1-comma codes

are a generalization of 1-comma codes. Thus, by using the structure properties of

1-1-comma codes, we show that the 1-1-comma property is decidable for regular lan-

∗This research is supported by National Natural Science Foundation of China #11861051.
†Corresponding author.

834 H.Y. Liu et al.

guages. Finally, we characterize the automata which accept the words in X1 where

X1 =
{

u ∈ A+|(∀w ∈ Ak)uwu ∩A+uA+ = ∅
}

.

Keywords: Decidability; Automaton; Combinatorics of words; k-Comma code.

1. Introduction

It is well-known in the literature that the codes play a crucial role in many
disciplines such as information processing, data compression, cryptography, in-
formation transmission and so on [6, 7, 11, 17]. In recent years, the theory of
codes has becomes an important principle in the field of theoretical computer
science. In particular, the theory of codes has a wide applications in combina-
torics of words. In addition, the study of codes has been rapidly developed in
the area of automata, formal languages, theory of semigroup and AG groupoids.
For a detailed treatment of the theory of codes, the readers are referred to the
well known monogrphies of codes by S. Ling and C. Xing [19], C. E. Shannon
[22], R. Hill [10], J. Berrstel, D. Perrin and C. Reutenauver [1].

Various codes with specific algebraic properties such as infix codes, comma-
free codes, intercodes and k-comma codes have been initiated and studied for
various purpose, for instance, the definition of k-comma codes was first initiated
by the idea of genes (coding segments) are usually interrupted by noncoding
segments, formerly known as junk segments. In this aspect, C. E. Shannon, R.
W. Hamming, E. N. Gilbert and G. E. Sacks are big names for their outstanding
contribution to establish a strong foundation of coding theory. For more infor-
mation on coding theory and their applications, the readers are referred to the
papers [6, 7, 9, 18, 22, 24]. It is noted that the theory of k-comma codes have
been extensively studied as an independent subject in the theory of variable-
length codes, the readers are referred to [2, 4, 20, 21]. On the other hand,
regular languages and finite automata are also the essential concepts and tools
in the study of theoretic computer science. In an early study, Y. Rabin and A. V.
Scott have given some algorithms to test whether or not the language accepted
by a given automaton is the empty set, or an infinite set [12]. Further, Ito et al.
established the relationship between the regular languages and primitive words
[13]. The theory of codes is closely related to formal languages: a code is a lan-
guage. Most of the decision problems related to code properties are decidable
for regular languages whereas they often become undecidable for context-free
languages [17]. Decidability of general code properties is also investigated in the
literature [3, 5, 8, 14, 15, 16, 21].

This paper is organized as follows. In Section 2, we define some basic notions
and notations. In Section 3, we investigate the closure properties of k-comma
codes with k ≥ 0 under composition and decomposition. In Section 4, we give a
sufficient and necessary condition under which the concatenation of two disjoint
k-comma codes is still a k-comma code under the assumption that the union of
the two codes is an infix code. The notion of 1-1-comma codes is a generalization

On k-Comma Codes 835

of 1-comma codes. It is known that the family of 1-1-comma codes is equal to
2X1 where X1 =

{

u ∈ A+|(∀w ∈ Ak)uwu ∩A+uA+ = ∅
}

. In Section 5, we
prove the decidability of the property of being a 1-1-comma code for regular
languages. In addition, we characterize the automata which accept the words in
X1.

2. Preliminaries

Let A be a finite alphabet containing at least two letters and A∗ the free monoid
generated by A. Then, we call the elements and subsets of A∗ the words and
languages overA respectively. Let A+ = A∗\{1} be the free semigroup generated
by A, where 1 is the identity of the monoid A∗, called the empty word. Then,
the length of word w is denoted by |w|. As usual, we use |L| to denote the
cardinality of language L over A. For any L1, L2, L ⊆ A∗, we let

L1L2 = {xy| x ∈ L1, y ∈ L2},

Ln = {x1x2 · · ·xn|xi ∈ L, i = 1, 2, · · · , n},

L−1
1 L2 = { y ∈ A∗|(∃x ∈ L1)xy ∈ L2},

L1L
−1
2 = { y ∈ A∗|(∃x ∈ L2)yx ∈ L1}.

For any two words x, y in A∗, we call x a prefix (resp. suffix, infix) of y if
y = xu (resp. y = ux, y = uxv) for some u, v ∈ A∗. Call a prefix (resp. suffix,
infix) x of y is proper (resp. nontrivial) if x 6= y(resp. 0 < |x| < |y|). Call x is
an internal factor if u, v 6= 1. It is clear to see the following three relations

≤p = {(x, y) ∈ A∗ × A∗|x is a prefix of y},

≤s = {(x, y) ∈ A∗ × A∗|x is a suffix of y},

≤d = {(x, y) ∈ A∗ × A∗|x ≤p y & x ≤s y},

on A∗ are partial orders. Now we denote the set of all nontrivial prefixes (resp.
nontrivial suffixes) of y by P (y) (resp. S(y)). For a language L over A, we let

P (L) =
⋃

y∈L

P (y),

S(L) =
⋃

y∈L

S(y),

PS(L) = P (L) ∩ S(L).

Let y ∈ A+. Then, we call the word y primitive if y is not the power of another
word. It is well known that every word y ∈ A+ can be expressed uniquely as
a power of a primitive word. The word y is said to be unbordered if x ≤d y for
some x ∈ A+ implies x = y. Otherwise, y is said to be bordered. The set of all
primitive (resp. unbordered) words is denoted by Q (resp. U).

836 H.Y. Liu et al.

Let L ⊆ A+. Then, we call L a code over A if

x1x2 · · ·xm = y1y2 · · · yn, xi, yj ∈ L, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

implies that m = n and xi = yi, i = 1, 2, · · · , n. L is called a prefix code (resp.
suffix code, infix code) if no word in L is a prefix (resp. suffix, infix) of another
word in L. Also, we call L a bifix code if it is both a prefix code and a suffix
code. Obviously, every infix code is a bifix code.

A (finite) automaton is a quintuple A = (S,A, δ, s0, T) such that:

S is a finite nonempty set called the set of states,

A is a finite alphabet called the set of inputs,

δ is a mapping from S ×A into S called the state transition function,

s0 is a distinguished element of S called the initial state, and T is a subset
of S called the set of final states.

The function δ can be extended to a mapping of S×A∗ into S by δ(s, 1) = s
and δ(s, xa) = δ(δ(s, x), a) for any s ∈ S, x ∈ A∗ and a ∈ A.

For an automaton A = (S,A, δ, s0, T), we let T (A) = {x ∈ A∗|δ(s0, x) ∈ T }.
Then, T (A) is said to be the language accepted by A. Thus, we call a language
L ⊆ A∗ regular if there exists an automaton A such that L = T (A).

We now give the the following crucial definitions.

Definition 2.1. [23] Let L be a nonempty language over A. Then, L is said to be

a comma-free code if L2 ∩ A+LA+ = ∅.

Definition 2.2. [4] Let L be a nonempty language over A and k ≥ 0. Then, L is

called a k-comma code if LAkL ∩ A+LA+ = ∅.

Clearly, a 0-comma code is just a comma-free code. It is well-known that
each word in a k-comma code is longer than k [4].

Definition 2.3. [4] Let L be a nonempty language over A and k ≥ 0. Then, L is

called a 1-k-comma code if every singleton of L is a k-comma code.

3. Composition and Decomposition of k-Comma Codes

Firstly, we introduce the notion of composition of codes.

Definition 3.1. [1] Let Y and Z be two codes over B and A respectively with B =
alph(Y). If there exists a bijection β: B → Z, then for any word w = b1b2 · · · bs,
bi ∈ B, i = 1, 2, · · · , s, the correspondence

w 7→ β(b1)β(b2) · · ·β(bs)

provides a free monoid homomorphism β∗: B∗ → Z∗. We treat β∗ as β. It can

be easily checked that X = β(Y) ⊆ Z+ is a code, which is called the composition

On k-Comma Codes 837

of Y and Z by means of β and denoted by X = Y ◦β Z or simply X = Y ◦ Z
when the context permits it.

It is easy to check that the family of infix codes is not closed under compo-
sition. For example, let B = {c, d, e}, A = {a, b},

Y = {c, de} ⊆ B+, Z = {a3b2, aba3, b2a2b} ⊆ A+

and β : B∗ → A∗, where β(c) = a3b2, β(d) = aba3, β(e) = b2a2b. It is
clear that X = Y ◦β Z = {a3b2, aba3b2a2b} is not an infix code. However, the
conclusion is completely different for some particular families of infix codes, for
example k-comma codes, k ≥ 0.

Firstly, we introduce a known result on the composition of comm-free codes.

Lemma 3.2. [1] Let Y, Z be two composable codes and X = Y ◦ Z. If Y and Z
are both comma-free codes, then so is X.

For k ≥ 0, it is known that the family of k-comma codes and comma-free
codes are incomparable, but not disjoint[4], for example, language {abk+1a} is
both a k-comma code and a comma-free code.

Theorem 3.3. Let Y, Z be two composable codes, X = Y ◦Z and k ≥ 0. If Y and

Z are both k-comma codes and comma-free codes, then X is both a k-comma

code and a comma-free code.

Proof. Assume that X,Z ⊆ A∗, Y ⊆ B∗, β : B∗ → A∗ a monomorphism and
β(B) = Z, β(Y) = X . Then, by Lemma 3.2, X is common-free. Suppose that
X is not a k-comma code. Then there exists x, y, z ∈ X , u, v ∈ A+ and w ∈ Ak

such that xwy = uzv. Since X ⊆ Z∗, we can let

x = z
(1)
1 z

(1)
2 · · · z(1)m ,

y = z
(2)
1 z

(2)
2 · · · z(2)n ,

z = z
(3)
1 z

(3)
2 · · · z

(3)
l .

where z
(1)
1 , z

(1)
2 , · · · , z

(1)
m , z

(2)
1 , z

(2)
2 , · · · , z

(2)
n , z

(3)
1 , z

(3)
2 , · · · , z

(3)
l ∈ Z, m,n, l ≥ 1,

that is,

xwy = z
(1)
1 z

(1)
2 · · · z(1)m wz

(2)
1 z

(2)
2 · · · z(2)n = uzv.

Since X is an infix code, z is neither an infix of x nor y. According to the lengths
of u and x, we divide the proof into the following two cases:

Case 1. If |u| < |x|.

When |y| ≤ |v| < |wy|, since Z is a k-comma code, every word in Z is longer

than k. The fact that Z is an infix code implies that z
(3)
l is a proper infix of

z
(1)
m w, it contradicts to Z being a k-comma code. When |z

(2)
2 · · · z

(2)
n | ≤ |v| < |y|,

838 H.Y. Liu et al.

if |v| = |z
(2)
2 · · · z

(2)
n |, since Z is an infix code, z

(3)
l−1 is a proper infix of z

(1)
m w,

which contradicts to Z being a k-comma code. If |z
(2)
2 · · · z

(2)
n | < |v| < |y|,

the fact that Z is an infix code also yields that z
(3)
l is an internal factor of

z
(1)
m wz

(2)
1 , a contradiction. When |v| < |z

(2)
2 · · · z

(2)
n |, there exists a positive

integer p and z′ ∈ A∗, where 2 ≤ p ≤ n, z′ <s z
(2)
p such that v = z′z

(2)
p+1 · · · z

(2)
n .

If z′ = 1, notice that |u| < |x|, so p < l. Since Z is an infix code, we have

z
(2)
p−i = z

(3)
l−i, i = 0, 1, · · · , p−1, and z

(2)
l−p is a proper infix of z

(1)
m w, a contradiction.

If z′ 6= 1, Z is an infix code also implies that z
(3)
l is an internal factor of z

(2)
p−1z

(2)
p ,

which contradicts to Z being comma-free.

Case 2. If |x| ≤ |u| < |xw|, since Z is an infix code and every word in Z

is longer than k, we have |xw| < |uz
(3)
1 | ≤ |xwz

(2)
1 |, but in this case, z

(3)
1 is a

proper infix of wz
(2)
1 , which contradicts to Z being a k-comma code.

Therefore, we complete the proof.

Now we discuss the decomposition of k-comma codes. Firstly, we consider
the special case k = 0.

Theorem 3.4. Let X,Y, Z be codes with X = Y ◦ Z. If X is a comma-free code,

then so is Y .

Proof. Assume that X,Z ⊆ A∗, Y ⊆ B∗, β : B∗ → A∗ be a monomorphism with
β(B) = Z and β(Y) = X . Suppose that Y is not a comma-free code. Then,
there exist x, y, z ∈ Y and u, v ∈ B+ such that xy = uzv. It implies that

β(xy) = β(x)β(y) = β(uzv) = β(u)β(z)β(v).

Notice β(u), β(v) ∈ Z+ and β(x), β(y), β(z) ∈ X . Hence X is not a comma-free
code, a contradiction.

As a consequence of the above theorem, we give the following remarks:

Remark 3.5. For three codes X,Y, Z with X = Y ◦Z, if X is a comma-free code,
then Z may not be a comma-free code. For example, let A = {a, b}, B = {c, d},

Y = {cd} ⊆ B+, Z = {a2b, aba} ⊆ A+

and β : B∗ → A∗, where β(c) = a2b, β(d) = aba. It is easy to check that
X = {a2baba}, X is a comma-free code, but Z not.

Remark 3.6.

(i) For X,Y, Z be codes over A with X = Y ◦ Z, k ≥ 1, if X is a k-comma
code, then both Y and Z may not be k-comma codes. For example, let
A = {a, b}, B = {c},

Y = {c2} ⊆ B+, Z = {abka} ⊆ A+

On k-Comma Codes 839

and β : B∗ → A∗, where β(c) = abka. It is clear that neither Y nor Z is a
k-comma code, but X = {(abka)2} is a k-comma code.

(ii) For X,Y, Z be codes over A with X = Y ◦ Z, k ≥ 1, if X is a k-comma
code, then Y and Z may not be a comma-free code. For example, let
A = {a, b}, B = {c},

Y = {c2} ⊆ B+, Z = {abkabk} ⊆ A+

and β : B∗ → A∗, where β(c) = abkabk. It is easy to check that X =
{(abkabk)2} is a k-comma code, neither Y nor Z is a comma-free code.

4. Results Related to Concatenation

In this section, we concentrate on the concatenation of k-comma codes. Let
L1, L2 be two k-comma codes over A. Then we first give a characterization
theorem L1L2 to be a k-comma code under the assumption that {L1, L2} is a
partition of an infix code L.

For ∅ 6= L1, L2 ⊆ A+, we denote

P̄ (L1) =

(

⋃

x∈P (L1)

L1x
−1

)

\ {1},

S̄(L1) =

(

⋃

x∈S(L1)

x−1L1

)

\ {1},

P̄ (L2, L1) =

(

⋃

x∈P (L1)

L2x
−1

)

\ {1},

S̄(L2, L1) =

(

⋃

x∈S(L2)

x−1L1

)

\ {1}.

In the following theorems, we use lg(L) to denote the minimum length of the
words in some language L over A. Then, we consider the product of infix codes
and obtain a characterization theorem of k-comma codes.

Theorem 4.1. Let L be an infix code over A with lg(L) > k, {L1, L2} a partition

of L. Then L1L2 is a k-comma code if and only if the following three conditions

hold:

(i) For every x ∈ S̄(L1), y ∈ PS(L2) with xy ∈ L2, if there exists z ∈ S̄(L2)
such that yz ∈ L2, then |z| > k and z /∈ AkP (L1).

(ii) For every x ∈ PS(L1), y ∈ P̄ (L2) with xy ∈ L1, if there exists z ∈ P̄ (L1)
such that zx ∈ L1, then |z| > k and z /∈ S(L2)A

k.

(iii) For every x ∈ S̄(L2, L1), y ∈ P̄ (L2, L1), one has |xy| 6= k.

840 H.Y. Liu et al.

Proof. We first notice that L1L2 is not a k-comma code if and only if there exist
u1, u2, u3 ∈ L1, v1, v2, v3 ∈ L2, w ∈ Ak, r, s ∈ A+ such that u1v1wu2v2 = ru3v3s
if and only if one of the following three cases holds:

Case 1. u3 = z1x for some z1 ∈ S(u1), v3 = yz, v1 = xy, w = zz2 for some
z2 ∈ A<k or z = wz2 for some z2 ∈ P (u2), see Figure 1.

Case 2. v3 = yz2 for some z2 ∈ P (v2), u2 = xy, u3 = zx, w = z1z for some
z1 ∈ A<k or z = z1w for some z1 ∈ S(v1), see Figure 2.

Case 3. u3 = z1x, v3 = yz2, w = xy for some z1 ∈ S(v1), z2 ∈ P (u2), see
Figure 3.

u3 v3

u1 v1 w u2 v2

x y zz1 z2

u3 v3

u1 v1 w

u2

v2

x y zz1

z2

Figure 1: Case 1

u3 v3

u1 v1 w u2 v2

x yzz1 z2

u3 v3

u1

v1

w u2 v2

x yz z2

z1

Figure 2: Case 2

u3 v3

u1 v1 w u2 v2

z2yxz1

Figure 3: Case 3

On k-Comma Codes 841

These results contradict to the condition 1, 2 and 3 respectively. Therefore,
the conditions 1, 2 and 3 hold if and only if L1L2 is a k-comma code.

By the proof of Theorem 4.1, it is easy to obtain an easier way to construct
a k-comma code of the form L1L2 as follows:

Corollary 4.2. Let L be an infix code over A with lg(L) > k, {L1, L2} a partition

of L. If L1 and L2 satisfy the following two conditions:

(i) P̄ (L2) ∩ S̄(L1) = ∅,

(ii) one of the following three statements is true:

(a) P (L1) ∩ S(L2) = ∅,

(b) P̄ (L2, L1) = ∅,

(c) S̄(L2, L1) = ∅,

then L1L2 is a k-comma code.

Proof. If L1L2 is not a k-comma code, by the proof of Theorem 4.1, then there
are three cases. In case 1 and case 2, x ∈ P̄ (L2)∩ S̄(L1) and y ∈ P̄ (L2)∩ S̄(L1),
respectively, a contradiction; in case 3, {z1, z2} ⊆ P (L1)∩ S(L2), x ∈ P̄ (L2, L1)
and y ∈ S̄(L2, L1), also a contradiction.

5. Automata and Regular Languages

In this section, we first prove that the property of being a 1-1-comma code
is decidable for regular languages which is based on the following two lemmas
(Lemmas 5.7 and 5.8, respectively). In proving these two lemmas, we adopt
the techniques which are similar to those arguments used for the proof of the
well-known Pumping Lemma.

Then, we give a characterization of the automata which accept the words in
X1 (see Lemma 5.3). For the sake of convenience, we first state the following
useful lemmas.

Lemma 5.1. [23] If ux = xy, u, x, y ∈ A∗, u 6= 1, then u = (αβ)i, x = (αβ)jα,
y = (βα)i for some αβ ∈ Q, i, j ≥ 1.

By Lemma 5.1, we are able to obtain that for any bordered primitive word
y, y can be written to be (αβ)iα, αβ ∈ Q. Furthermore, we define the following
three equalities:

NR>1 = {u ∈ A+|u = f i, f ∈ Q, |f | > 1, i > 1},

Q>1
B = {u ∈ Q|u ∈ (xy)+x, xy ∈ Q, x, y 6= 1, |y| > 1},

Q=1
B = {u ∈ Q|u ∈ (xy)+x, xy ∈ Q, x, y 6= 1, |y| = 1}.

842 H.Y. Liu et al.

Lemma 5.2. [23] Let u ∈ A+. If u is bordered, then there exist v ∈ A+ and

z ∈ A∗ such that u = vzv.

Lemma 5.3. [4] Let L be a language over A and k ≥ 0. Then L is a 1-k-comma

code if and only if L ∈ 2Xk\∅, where

Xk =
{

u ∈ A+|(∀w ∈ Ak)uwu ∩ A+uA+ = ∅
}

.

Lemma 5.4. [4] X1 = (U \A) ∩Q>1
B ∪NR>1.

Lemma 5.5. [4]
(

Q=1
B ∪ {ai|a ∈ A, i ≥ 1}

)

∩X1 = ∅.

Lemma 5.6. [4] A∗ =
(

Q=1
B ∪ {ai|a ∈ A, i ≥ 1}

)

∪X1.

Now, we state the following two crucial lemmas.

Lemma 5.7. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then T (A) ∩ Q=1

B 6= ∅ if and only if there exists y ∈ T (A) ∩ Q=1
B with |y| ≤

nn+2 + nn+1.

Proof. Here, we only prove the sufficiency part as the necessity part is obvious.
Now we may assume that T (A) ∩Q=1

B 6= ∅. Take y ∈ T (A) ∩Q=1
B such that

|y| = min{|x||x ∈ T (A) ∩Q=1
B }.

Suppose that |y| > nn+2+nn+1. Let y = (αβ)iα, αβ ∈ Q, i ≥ 1, |β| = 1. Then,
we distinguish the following two cases.

Case 1. If i ≤ n, |y| > nn+2 + nn+1 implies that |α| ≥ ni+1.

If |α| ≥ ni+1, then α can be decomposed into α = α1α2α3, |α2| ≥ 1 with

δ(s0, (αβ)
jα1) = δ(s0, (αβ)

jα1α2), j = 0, 1, · · · , i.

Let α = α1α3. Then, we can easily see that δ(s0, (αβ)
iα) = δ(s0, (αβ)

iα).
Thus, we have (αβ)iα ∈ T (A). Notice that (αβ)iα ∈ Q=1

B and |(αβ)iα| < |y|,
which contradicts to the definition of y.

Case 2. If i > n, there exist positive integers s, t, 1 ≤ s < t ≤ i such that

δ(s0, (αβ)
s) = δ(s0, (αβ)

t).

Thus
δ(s0, (αβ)

s(αβ)i−tα) = δ(s0, (αβ)
t(αβ)i−tα).

Hence δ(s0, (αβ)
iα) = δ(s0, (αβ)

i−t+sα). Therefore (αβ)i−t+sα ∈ T (A). It is
clear that (αβ)i−t+sα ∈ Q=1

B , which implies that (αβ)i−t+sα ∈ T (A) ∩ Q=1
B .

While |(αβ)i−t+sα| < |y|, it also contradicts to the definition of y.

On k-Comma Codes 843

Lemma 5.8. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then

T (A) ∩ {ai|a ∈ A, i ≥ 1} 6= ∅

if and only if there is a letter a in A, k < max
{

n, |A|
}

such that ak ∈ T (A).

Proof. The sufficient part is straightforward and we hence omit the proof. Now,
we proceed to show the converse part.

Since A is finite, without loss of generality, we may assume that T (A)∩{ai|a ∈
A, i ≥ 2} 6= ∅. Take y ∈ T (A) ∩ {ai|a ∈ A, i ≥ 2} with

|y| = min

{

|x|
∣

∣

∣
x ∈

(

T (A) ∩ {ai|a ∈ A, i ≥ 2}
)

}

.

If y = ai, a ∈ A, i ≥ max
{

n, |A|
}

, then i ≥ n. The fact that |Q| = n implies

that there exist positive integers j, k, l such that

ai = ajakal and δ(s0, a
jakal) = δ(s0, a

j(ak)∗al).

Thus aj+l ∈ T (A). But j + l < i, this yields a contradiction.

Therefore, for regular languages, we have the following theorem.

Theorem 5.9. Let L be a regular language. It is decidable whether or not L is a

1-1-comma code.

Proof. For a regular language L, by Lemma 5.3, 5.5, 5.6, 5.7 and 5.8, in order
to decide whether L is a 1-1-comma codes, we need only to check whether the
words of length less than min{nn+2 + nn+1, |A|} contain the words in Q=1

B or
the power of a letter.

Now, we are going to characterize the automata which accepts the words in
X1 (see Lemma 5.3). For this purpose, we need the following three lemmas:

Lemma 5.10. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then,

T (A) ∩NR>1 6= ∅

if and only if there exists y ∈ T (A) ∩NR>1 with

|y| ≤ (n− 1)(n+ 2)n−1 − n.

Proof. The sufficient part is trivial and we hence omit its proof. To prove the
necessity part, we assume that T (A)∩NR>1 6= ∅. Take y ∈ T (A)∩NR>1 with

|y| = min{|x||x ∈ T (A) ∩NR>1}.

844 H.Y. Liu et al.

Suppose that |y| exceeds the bound claimed in the lemma. Let y = f i, f ∈
Q, i > 1. Then there are the following two cases:

Case 1. If i ≥ n, then there exist two integers p, q, 1 ≤ p < q ≤ i such that
δ(s0, f

p) = δ(s0, f
q), which yields that

δ(s0, f
p+i−q) = δ(s0, f

q+i−q) = δ(s0, f
i).

Hence, fp+i−q ∈ T (A), clearly, fp+i−q ∈ NR>1. Thus, we deduce

fp+i−q ∈ T (A) ∩NR>1.

Notice that p+ i−q < i. This fact implies that |fp+i−q| < |y|, which contradicts
to the minimality of y.

Case 2. If i < n, |Q| = n and |y| ≥ (n − 1)(n + 2)n−1 − n + 1 imply that
|f | ≥ (n+ 2)i, then f has a decomposition

f = f1f2f3, |f1f3| > 1, |f2| ≥ 1,

such that

δ(s0, f
jf1) = δ(s0, f

jf1f2), j = 0, 1, · · · , i− 1. (1)

Let f̄ = f1f3. Then, for (1), we can obtain that δ(s0, f̄
i) = δ(s0, f

i), which
implies that f̄ i ∈ T (A). Hence

f̄ i ∈ T (A) ∩NR>1.

It is clear that |f̄ | < |f |, a contradiction.

Lemma 5.11. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then, T (A) ∩Q>1

B 6= ∅ if and only if there exists y ∈ T (A) ∩Q>1
B with

|y| ≤ nn+2 + nn+1 + n(n+ 2)n − n− 1.

Proof. The proof of sufficient part is immediate. We now proceed to prove the
necessity part. Assume that T (A) ∩Q>1

B 6= ∅. Take y ∈ T (A) ∩Q>1
B with

|y| = min{|x||x ∈ T (A) ∩Q>1
B }.

Suppose that |y| > nn+2 + nn+1 + n(n + 2)n − n − 1. Let y = (αβ)iα, αβ ∈
Q, i ≥ 1, |β| > 1. Then, we divide our proof into the following two cases.

Case 1. If i ≤ n, notice that |y| > nn+2 + nn+1 + n(n+2)n − n− 1, then we
have |α| ≥ ni+1 or |β| ≥ (n+ 2)i.

If |α| ≥ ni+1, then α has a decomposition α = α1α2α3 with |α2| ≥ 1 such
that

δ(s0, (αβ)
jα1) = δ(s0, (αβ)

jα1α2), j = 0, 1, · · · , i.

On k-Comma Codes 845

Let α = α1α3. Then, we have δ(s0, (αβ)
iα) = δ(s0, (αβ)

iα). Hence, (αβ)iα ∈
T (A). It is clear that (αβ)iα ∈ Q>1

B and |(αβ)iα| < |y|, contradicting the mini-
mality of y.

If |β| ≥ (n+ 2)i, then β has a decomposition

β = β1β2β3, |β2| > 1, |β1β3| > 1

and for all j = 1, 2, · · · , i− 1, we have

δ(s0, αβ1) = δ(s0, αβ1β2), (2)

δ(s0, (αβ)
jβ1) = δ(s0, (αβ)

jβ1β2).

Denote β1β3 = β. By (2), we have δ(s0, (αβ)
iα) = δ(s0, (αβ)

iα), thus (αβ)iα ∈
T (A). Observe that (αβ)iα ∈ Q>1

B and |(αβ)i| < |y|, which contradicts to the
choice of y.

Case 2. If i > n, then there exist two positive integers s, t, 1 ≤ s < t ≤ i
such that

δ(s0, (αβ)
s) = δ(s0, (αβ)

t),

which implies that

δ(s0, (αβ)
s(αβ)i−tα) = δ(s0, (αβ)

t(αβ)i−tα).

The above two equalities yield that δ(s0, (αβ)
i−t+sα) = δ(s0, (αβ)

iα). Hence,
(αβ)i−t+sα ∈ T (A). Notice that

(αβ)i−t+sα ∈ Q>1
B .

Hence, we have (αβ)i−t+sα ∈ T (A) ∩ Q>1
B . While |(αβ)i−t+sα| < |y|, a contra-

diction.

Lemma 5.12. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then,

T (A) ∩ (U \A) 6= ∅

if and only if there exists y ∈ T (A) ∩ (U \A) with |y| < 4n.

Proof. If there exists y ∈ T (A)∩(U \A) with |y| < 4n, the assertion is obviously
correct.

Conversely, assume T (A)∩ (U \A) 6= ∅. Let y ∈ T (A)∩ (U \A), and assume
that |y| is minimal with the property. Suppose that |y| ≥ 4n. Then, y has a
decomposition:

y = uvwx, |u| = |x| ≥ n, n = |v| ≤ |w| ≤ n+ 1.

|v| = n and |Q| = n imply that v has a decomposition v = v1v2v3 with v2 ∈ A+

such that
δ(s0, uv1) = δ(s0, uv1v2).

846 H.Y. Liu et al.

Hence, we have δ(s0, uv1v3wx) = δ(s0, uv1v2v3wx) = δ(s0, y) ∈ T (A).

By the choice of y, we have uv1v3wx(= y′) /∈ U \ A. Since y′ /∈ A, y′ is
bordered. By Lemma 5.2, there exist z ∈ A+ and s ∈ A∗ such that y′ =
zsz. Since |v1v3| < |v| ≤ |w|, |z| < |wx|. If |z| ≤ |x|(= |u|), then z ≤d y, which
contradicts to y ∈ U \ A. Then |x| < |z| < |wx|. Thus there exist v′, w′ ∈ A+

such that z = uv′ = w′x, w′ <s w. Of course, y also has another decomposition

y = uv̄w̄x, |u| = |x| ≥ n, n ≤ |w̄| ≤ |v̄| ≤ n+ 1.

Similar to the above discussion, there exists ȳ such that

ȳ = uv̄w̄1w̄3x = z̄tz̄ ∈ T (A) \ (U ∩ A)

with |u| < |z̄| < |uv̄|. Hence we have z̄ = uv̄′ = w̄′x, v̄′ <p v̄. According to the
lengths of z and z̄, there are the following three cases:

Case 1. |z| = |z̄|.

Since z = uv′ and z̄ = uv̄′, |v′| = |v̄′|. w′ <s w implies that |w′| ≤ n. Notice
that z = uv′ = w′x, thus v′ <s x. Similarly, |v̄′| ≤ n. Since z̄ = uv̄′ = w̄′x and
v̄′ <s x, v

′ = v̄′, and hence z = z̄. Thus z = z̄ <p uv̄ <p y and z̄ = z <s wx <s y,
which yields z <d y, which contradicts to the fact that y ∈ U \A.

Case 2. |z| > |z̄|, as shown in Figure 4 below.

Since z = uv′ and z̄ = uv̄′, |v′| > |v̄′|. Notice that |v′| = |w′| ≤ n ≤ |x|,
hence |v̄′| = |w̄′| ≤ n ≤ |x|. While z = uv′ = w′x and z̄ = uv̄′ = w̄′x, then
v′, v̄′ <s x. Thus there exists r ∈ A+ such that v′ = rv̄′. Since uv′ and uv̄′

� z -

� u -

� u -

r v̄′

v̄′
� z̄ -

Figure 4: |z| > |z̄|

have common suffix x, there exists ū such that ur = ūu. |r| < |x| implies that
u = r2r

i, i ≥ 1, r1r2 = r. Hence

z = uv′ = urv̄′ = r2r
irv̄′ = (r2r1)(r2r

i)v̄′ = (r2r1)z̄.

Thus, z̄ <s z. Since z̄ <p uv̄ <p y and z <s wx <s y, z̄ <s y and z̄ <p y, which
yields that z̄ <d y. It contradicts to y ∈ U \A.

Case 3. |z| < |z̄|, as shown in Figure 5.

Since z = w′x and z̄ = uv̄′ = w̄′x, |w̄′| > |w′|. Notice that z = uv′ = w′x and
z̄ = uv̄′ = w̄′x with |w′| ≤ n ≤ |u| and |w̄′| ≤ n ≤ |u|, we have that w′ and w̄′

have a common initial segment u. Then there exists t ∈ A+ such that w̄′ = w′t.

On k-Comma Codes 847

� z -

� z̄ -

� x -

� x -

w′

w′ t

Figure 5: |z| < |z̄|

Since z and z̄ have common prefix u, there exists x̄ such that xx̄ = tx. |t| < |u|
implies that x = tjt1, j ≥ 1, t1t2 = t. Then z = w′tx = w′ttjt1 = w′tjt1(t2t1) =
w′x(t2t1) = z(t2t1). Hence, we obtain z <p z̄. Observe that z̄ <p uv̄ <p y and
z <s wx <s y. Thus, we derive that z <s y and z <p y. Therefore, we obtain
z <d y, this contradicts to y is unbordered.

We now proceed to establish a theorem for finite automata.

Theorem 5.13. Let A = (S,A, δ, s0, T) be a finite automaton with |S| = n ≥ 2.
Then T (A) ∩X1 6= ∅ if and only if there exists y ∈ T (A) ∩X1 with

|y| ≤ nn+2 + nn+1 + n(n+ 2)n − n− 1.

Proof. The proof of this theorem is a direct consequence of Lemmas 5.4, 5.10,
5.11 and 5.12 in this section.

As an application of the automata theory, an automaton is said to be coac-

cessible if for any s ∈ Q, δ(s, x) ∈ T for some x ∈ A∗, this means that start from
any state, then we arrive a final state. For a coaccessible automaton, we now
can get a theorem below which is completely different from Theorem 5.13.

Theorem 5.14. Let A = {S,A, δ, s0, T } be a coaccessible automaton with |A| ≥ 2,
|S| = n, and k ≥ 0. Then, the following two statements hold:

(i) |T (A) ∩Xk| = ∞,

(ii) there is y ∈ T (A) ∩Xk with 2n+ k + 1 ≤ |y| ≤ n+ k + 2.

Proof. Take a, b ∈ A with a 6= b. Since A is coaccessible, we have

(∀i ≥ 1)(∃xi ∈ A∗)|xi| ≤ k & δ(s0, a
ibk+1axi) ∈ T (A).

If i 6= j, then aibk+1axi 6= ajbk+1axj ; If i ≥ n, then, it is clear that aibkaxi ∈ Xk.
Thus

{

aibk+1axi|i ≥ n
}

⊆ T (A) ∩Xk. Hence, we have aibk+1ax1 ∈ T (A) ∩Xk

and n+ k + 2 ≤ |a2k+1bx1| ≤ 2n+ k + 1. Thus, our proof is completed.

848 H.Y. Liu et al.

References

[1] J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata, Cambridge University
Press, Cambridge, 2010.

[2] C.H. Cao, H.Y. Liu, D. Yang, Characterizations of k-comma codes and k-comma
intercodes, Acta Inf. 53 (2016) 23–33.

[3] D.J. Cho, Y. Han, S.K. Ko, Decidability of involution hypercodes, Theoret. Com-
put. Sci. 550 (2014) 90–99.

[4] B. Cui, L. Kari, S. Seki, k-comma codes and their generalizations, Fund. Inf. 107
(2011) 1–18.

[5] H. Fernau, K. Reinhardt, L. Staiger, Decidability of code properties, RAIRO-Inf.
Theor. Appl. 41 (3) (2007) 243–259.

[6] E.N. Gilbert, A comparison of signalling alphabets, Bell System Technical Journal
31 (3) (1952) 504–522.

[7] R.W. Hamming, Error detecting and error correcting codes, Bell System Technical
Journal 20 (2) (1950) 147–160.

[8] Y.S. Han, K. Salomaa, D. Wood, Intercode regular languages, Fund. Inf. 76 (2007)
113–128.

[9] B. Hayes, The invention of the genetic code, American Scientist 86 (1998) 8–14.

[10] R. Hill, A First Course in Coding Theory, Oxford University press, New York,
1986.

[11] H. Hon and S. Han, A new construction and an efficient decoding method for
Rabin like Codes, IEEE Transaction 66 (2) (2018) 521–538.

[12] J.E. Hopcroft and T.D. Ullman, Formal Languages and Their Relation to Au-
tomata, Addison-Wesley, Massachusetts, 1976.

[13] M. Ito, M. Katsura, H.J. Shyr, S.S. Yu, Automata accepting primitive words,
Semigroup Forum 37 (1988) 45–52.

[14] M. Ito, H. Jürgensen, H.J. Shyr, G. Thierrin, n-Prefix-suffix languages, Intern. J.
Comput. Math. 30 (1989) 37–56.

[15] H. Jürgensen, K. Salomaa, S. Yu, Decidability of the intercode property, Elektro-
nische Informationsverarbeitung und Kybernetik 29 (6) (1993) 375–380.

[16] H. Jürgensen, K. Salomaa, S. Yu, Transducers and the decidability of indepen-
dence in free monoids, Theor. Comput. Sci. 134 (1994) 107–117.

[17] H. Jürgensen, S. Konstantinidis, Codes, In: Word, Language, Grammar, Ed. by
G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Vol. 1, Springer-
Verlag, 1997.

[18] B. Lewin, Genes IX, Jones and Bartlett Publishers, 2007.

[19] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press,
2004.

[20] H.Y. Liu and Y.Q. Guo, A note on 1-(k,m)-comma codes, J. Shandong University
(Natural Sci.) 54 (6) (2019) 11–15.

[21] H.Y. Liu, K. P. Shum, Y.Q. Guo, Some results on (k,m)-comma codes, B. Iran.
Math. Soc. 46 (4) (2020) 1143–1162.

[22] C.E. Shannon, A mathematical theory of communication, I, II, The Bell System
Technical Journal 27 (3) (1948) 379–423, 623–656.

[23] H.J. Shyr, Free Monoids and Languages, 3rd Ed., Hon Min Book Company,
Taichung, 2001.

[24] J. Watson, Genes, Girls and Gamow: After the Double Helix, Oxford University
Press, Oxford, 2001.

