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Abstract. The study of languages defined by generalized principal right congruences

on a free monoid generated by a finite alphabet was initiated by Prodinger in 1980.

In this paper, we introduce some kinds of semifilters related to suffix-closed languages

and investigate languages defined by generalized principal right congruences associated

with these semifilters. As an application, a characterization of regular languages is

reobtained.
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1. Introduction

It is well known that the class of regular languages forms an important class of
languages in theoretical computer science. A language over a finite alphabet is
regular if it can be accepted by a finite states automaton. Furthermore, regular
languages also have a lot of remarkable algebraic characterizations. In particular,
regular languages can be characterized by using the finiteness of the indexes of
principal right congruences determined by themselves. In view of this point,
we now investigate and generalize regular languages by applying generalizing
principal right congruences.
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This idea was realized first by Prodinger in [4], he explored a generalization
model of principal right congruences by using so-called left divisible semifilters.
By applying generalized principal right congruences determined by left divisible
semifilters, Prodinger generalized regular languages over a finite alphabet.

In [4], Prodinger pointed out that the cofinite semifilter seemed to be the
most interesting semifilter and proposed a problem related to this semifilter. In
1983, Guo-Wang-Li [1] solved this problem. In fact, they showed that regular
languages over a finite alphabet can be characterized by using the finiteness of
the index of a right congruence determined by the cofinite semifilter.

In this paper, we introduce some kinds of new semifilters related to suffix-
closed languages and investigate languages defined by generalized principal right
congruences associated with these semifilters. As an application, a characteriza-
tion of regular languages is reobtained.

2. Preliminaries

Throughout this paper, X is a finite nonempty set that is called a finite alphabet

in which any element is called a letter over X , and X∗ always denotes the free
monoid generated by X . Moreover, w ∈ X∗ and L ⊆ X∗ are called a word and
a language over X , respectively. In particular, the identity of X∗ is called the
empty word over X and denoted by 1. The length of w ∈ X∗ is the number of
letters appearing in w and is denoted by |w|.

Let S be a monoid, L,K ⊆ S and z ∈ S. Then, we denote it by

z−1L = {w ∈ S | zw ∈ L}, Lz−1 = {w ∈ S | wz ∈ L}.

Moreover, we use L to denote the complement of L in S. We also denote the set
of finite subsets of S by F(S), and the complement of the symmetric difference
of L and K by L ◦K, respectively. Formally, we have

F(S) = {F ⊆ S | F is finite}, L ◦K = (L ∩K) ∪ L ∪K.

Now, we recall some concepts dealing with semifilters on a monoid, which
play central role in our discussions. Let S be a monoid, 2S the power set of S
and L ⊆ 2S. Then L is called a semifilter on S if the following hold:

(1) S ∈ L ,

(2) (∀A,B ∈ L ) A ◦B ∈ L .

A semifilter L on S is called left divisible if

(∀A ∈ L )(∀z ∈ S) z−1A ∈ L .

The followings are examples of semifilters on a monoid S.

(1) {S}.

(2) C (S) = {L ⊆ S | L is finite }, C (S) is called the cofinite semifilter on S.
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(3) LM (S) = {L ⊆ S | L ⊆ M} for a given M ⊆ S.

(4) LF(S),M (S) = {L ⊆ S | (∃F ∈ F(S)) L ⊆ FM} for a given M ⊆ S.

It is easy to see that {X∗} and C (X∗) are left divisible semifilters on X∗.
Moreover, it is clear to see that LM (S) ⊆ LF(S),M (S) for any M ⊆ S.

Now, we recall Prodinger’s generalization model of principal right congru-
ences by using left divisible semifilters on X∗. Recall that an equivalence ρ on
X∗ is called a right congruence if x ρ y implies that xz ρ yz for all x, y, z ∈ X∗.
The index of an equivalence ρ is the number of ρ-classes of X∗. For convenience,
we denote the class of regular languages over X by R(X) or R if no confusion

arises. For any L ⊆ X∗, the relation P
(r)
L is defined as follows:

xP
(r)
L y if and only if P

(r)
L (x, y) = X∗,

where
P

(r)
L (x, y) = {v ∈ X∗ | xv ∈ L if and only if yv ∈ L}.

It can be proved that P
(r)
L is a right congruence on X∗, which is called the

principal right congruence on X∗ determined by L. The following characteriza-
tions of regular languages are well-known.

Theorem 2.1. [3, 5] Let L ⊆ X∗. Then L is regular if and only if the index of

P
(r)
L is finite.

Let L be a left divisible semifilter on X∗ and L ⊆ X∗. Define

xP
(r)
L ,L y if and only if P

(r)
L (x, y) ∈ L .

Then from [4], P
(r)
L ,L is a right congruence on X∗. Furthermore,

P
(r)
L = P

(r)
{X∗},L ⊆ P

(r)
L ,L

for any L ⊆ X∗. Thus, the principal right congruences determined by languages
are generalized by using the left divisible semifilters on X∗. Furthermore, if we
denote

R
(r)
L

= {L ⊆ X∗ | the index of P
(r)
L ,L is finite},

then by Theorem 2.1, R ⊆ R
(r)
L

. Thus, regular languages are generalized by
this method.

In [4], Prodinger proposed the following question: Does R = RC (X∗)? Guo-
Wang-Li [1] gave a positive answer for this question. In this paper, we mainly
concentrate on the semifilters LM (X∗) and LF(X∗),M (X∗), where M ⊆ X∗.
The following result gives some elementary properties of LF(S),M (S) and LM (S)
for a 1-free monoid S and a given M ⊆ S. A monoid S with identity 1 is 1-free
if xy = 1 implies that x = y = 1 for all x, y ∈ S. Obviously, X∗ is 1-free.

Proposition 2.2. Let S be a 1-free monoid and M ⊆ S. Then, the following

statements hold:
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(1) LF(S),M (S) = 2S if and only if M ∈ LF(S),M (S);

(2) LM (S) = 2S if and only if M = S;

(3) LF(S),M (S) = {S} (resp. LM (S) = {S}) if and only if M = ∅;

(4) C (S) ⊆ LF(S),M (S) if and only if 1 ∈ M ;

(5) LF(S),M (S) ⊆ C (S) if and only if M ∈ F(S).

Proof. (1) The necessity part is trivial. Now, let L ∈ 2S and M ⊆ FM for some
F ∈ F(S). Take F ∪ {1} = F ′ ∈ F(S). Then, L ⊆ S = F ′M , which implies
that L ∈ LF(S),M (S).

(2) If M = S, then LM (S) = {L ⊆ S | L ⊆ S} = 2S. Conversely, if M 6= S,
then M 6∈ LM (S), since M is not a subset of M .

(3) Clear.

(4) Let C (S) ⊆ LF(S),M (S). Then, S \ {1} ∈ LF(S),M(S) and so S \ {1} ⊆
FM for some F ∈ F(S). This yields that 1 ∈ FM and 1 ∈ M , since S is 1-free.
Conversely, if 1 ∈ M and L ∈ C (S), then L is finite and L ⊆ LM . This shows
that L ∈ LF(S),M (S).

(5) The necessity follows from the fact M ∈ LF(S),M(S). The sufficiency is
clear.

3. Some Semifilters Related to Suffix-Closed Languages

In this section, we consider some properties of several kinds of semifilters related
to suffix-closed languages over X . For the sake of convenience, for M ⊆ X∗,
in the sequel, we shall use C , LM and LF ,M to denote C (X∗), LM (X∗) and
LF(X∗),M (X∗), respectively. Recall that a language L over X is called prefix-

closed (resp. suffix-closed) if Lz−1 ⊆ L (resp. z−1L ⊆ L) for any z ∈ X∗.
We denote the set of prefix-closed languages and suffix-closed languages over X
by P(X∗) and S(X∗), respectively. In general, LM and LF ,M may be not left
divisible. However, we have the following result.

Proposition 3.1. Let M ⊆ X∗. Then LM is left divisible if and only if M ∈
S(X∗).

Proof. Let LM be left divisible and u ∈ X∗. Then, M ∈ LM and so u−1M ∈

LM . This implies that u−1M = u−1M ⊆ M . Thus, M ∈ S(X∗). Conversely,
let A ∈ LM , M ∈ S(X∗) and u ∈ X∗. Then, A ⊆ M and u−1M ⊆ M . This
yields that u−1A = u−1A ⊆ u−1M ⊆ M , that is, u−1A ∈ LM . This shows that
LM is left divisible.

Proposition 3.2. Let ∅ 6= M ⊆ X∗. If LF ,M is left divisible, then 1 ∈ M .

Proof. Let LF ,M be left divisible and z ∈ M . Then M ∈ LF ,M and z−1M ∈

LF ,M . This implies that 1 ∈ z−1M = z−1M ⊆ F ′M for some F ′ ∈ F(X∗).
Therefore, 1 ∈ M .
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Remark 3.3. The converse of Proposition 3.2 is not true. For example, let a ∈ X

and M = {a
n(n+1)

2 +1 | n ≥ 1} ∪ {1}. Then LF ,M is not left divisible. In
fact, in this case, M ∈ LF ,M . If LF ,M is left divisible, then a−1M ∈ LF ,M .

Hence, there exists F ∈ F(X∗) such that a−1M = a−1M ⊆ FM . Denote

T = max{|f | | f ∈ F}. Take n ≥ T + 2. Then, a
n(n+1)

2 ∈ a−1M ⊆ FM . This

implies that a
n(n+1)

2 = fm for some f ∈ F and m = a
s(s+1)

2 +1 ∈ M such that
s < n. But this yields that

|f | =
n(n+ 1)

2
− |m| ≥

n(n+ 1)

2
−

n(n− 1)

2
− 1 = n− 1 ≥ T + 1.

A contradiction.

Proposition 3.4. If M ∈ S(X∗), then LF ,M is left divisible.

Proof. Let L ∈ LF ,M and z ∈ X∗. Then, there exists F ∈ F(X∗) such that

L ⊆ FM . We assert that z−1L ⊆ F ′M , where z−1F∪{1} = F ′ ∈ F(X∗). In fact,
if w 6∈ z−1L, then zw ∈ L. This implies that zw ∈ FM . Let zw = fm for some
f ∈ F and m ∈ M . If w is a suffix of m, then by hypothesis, w ∈ M ⊆ F ′M .
Otherwise, there exists f ′ ∈ X∗ such that w = f ′m and zf ′ = f ∈ F , this
implies that w ∈ (z−1F )M ⊆ F ′M .

Remark 3.5. On the other hand, if M ⊆ X∗ and LF ,M is left divisible, we claim
that M may be not in S(X∗). In fact, by (4) and (5) of Proposition 2.2, 1 ∈ M

and M ∈ F(X∗) if and only if LF ,M = C . In this case, LF ,M is left divisible
but M may not be in S(X∗).

Proposition 3.6. Let M ∈ S(X∗). Then LF ,M = 2X
∗

if and only if M = X∗.

Proof. The sufficiency follows from (1) of Proposition 2.2. Now, let M 6= X∗

and w ∈ M . Since M ∈ S(X∗), we have X∗w ⊆ M . On the other hand, by
hypothesis, M ⊆ FM for some F ∈ F(X∗). This shows that X∗w ⊆ FM . Let
T = max{|f | | f ∈ F} and u ∈ X∗ such that |u| > T + 1. Then, uw = fm for
some f ∈ F and m ∈ M . Observe that |w| > |m| (otherwise, m ∈ X∗w ⊆ M),
it follows that f = uf ′ ∈ F for some f ′ ∈ X∗. A contradiction.

4. R
(r)
C

,R
(r)
LM

and R
(r)
LF,M

In this section, we shall explore the relationship among R,R
(r)
C

,R
(r)
LM

and

R
(r)
LF,M

, where M ∈ S(X∗). From the previous sections, we know that C , LM

and LF ,M are all left divisible semifilters on X∗. For our purpose, we need the
following two lemmas which can be found in Guo-Wang-Shum [2].
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Lemma 4.1. Let L ∈ P(X∗) and L be infinite. Then there exists

C = {1, a1, a1a2, · · · , a1a2 · · · an, · · · } ⊆ L

such that C is infinite, where ai ∈ X.

To give the next lemma, we need the following alphabetic order “≤” on X∗:
For two words u and v with different lengths, u < v if |u| < |v|. For the two
words with the same length, the order is the lexicographic order.

Lemma 4.2. Let ρ be a right congruence on X∗ and {Li | i ∈ I} be the set of all

ρ-classes. Then,

S = {si | si is the least element in Li with respect to the order ≤, i ∈ I}

is a prefix-closed language. In this case, S is called the least cross-section of ρ.

Proposition 4.3. Let M ∈ S(X∗). Then R
(r)
LF,M

= R
(r)
LM

.

Proof. Observe that LM ⊆ LF ,M , it follows that R
(r)
LM

⊆ R
(r)
LF,M

. Conversely,

if L ∈ R
(r)
LF,M

∩ R
(r)
LM

, then the least cross-section (see Lemma 4.1) S of P
(r)
LM ,L

is infinite. By Lemma 4.2, there exists

C = {1, a1, a1a2, · · · , a1a2 · · · an, · · · } ⊆ S

such that C is infinite, where ai ∈ X . Since L ∈ R
(r)
LF,M

, there exist two

distinct elements x, y ∈ C such that xP
(r)
LF,M ,L y. Therefore, P

(r)
L (x, y) ⊆ FM

for some F ∈ F(X∗). Denote T = max{|f | | f ∈ F} and take u ∈ X∗ satisfying

|u| > T . We assert that P
(r)
L (xu, yu) ⊆ M . In fact, if v ∈ P

(r)
L (xu, yu), then

uv ∈ P
(r)
L (x, y) ⊆ FM . This yields that uv = fm for some f ∈ F and m ∈ M .

Since |u| > |f |, v is a suffix of m. Note that M ∈ S(X∗), v ∈ M . Hence,

xuP
(r)
LM ,L yu.

Without loss of generality, we let x < y, y = a1a2 · · ·at and u =

at+1 · · · at+T+1. Then, by the above discussions, xuP
(r)
LM ,L yu and yu ∈ C ⊆ S.

In view of the definition of S, we have xu ≥ yu. This implies that y ≤ x. A
contradiction.

Remark 4.4. In general, P
(r)
LF,M ,L 6= P

(r)
LM ,L. For example, let X = {a} and

M = {1, a}. Then,

LM = {K ⊆ X∗ | M ⊆ K} = {a2a∗, a∗, a+, a∗\{a}}.

By Proposition 2.2, LF ,M = C . Let L = {a2, a3} and F = {1, a, a2, a3} ∈

F(X∗). Obviously, P
(r)
L (1, a2) = F 6∈ LM and P

(r)
L (1, a2) ∈ LF ,M .
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As an application of Proposition 4.3, we can reobtain the main result of [1]
which gives a positive answer of the question proposed in [4].

Corollary 4.5. R
(r)
C

= R.

Proof. Let M = {1}. Then we have LM = {X+, X∗} and LF ,M = C . Observe

that P
(r)
L = P

(r)
LM ,L∩ ∼◦

L for each L ⊆ X∗, where

∼◦
L= {(x, y) ∈ X∗ ×X∗ | x ∈ L if and only if y ∈ L}.

By Proposition 4.3, R
(r)
C

= R
(r)
LM

= R
(r)
{X∗} = R.

Finally, we consider the relationship between R and R
(r)
LM

. To this aim, the
following result is needed.

Lemma 4.6. [6, Lemma 3.15] Let L ⊆ X∗ and L be infinite. Then, there exists

L′ ⊆ L such that L′ 6∈ R.

Proposition 4.7. Let M ∈ S(X∗). Then R
(r)
LM

= R if and only if M ∈ F(X∗).

Proof. If M 6∈ F(X∗), then by Lemma 4.6, there exists L ⊆ M such that

L 6∈ R. Since M ⊆ P
(r)
L (x, y) for every x, y ∈ X∗, we have P

(r)
L (x, y) ∈ LM

for every x, y ∈ X∗. This implies L ∈ R
(r)
LM

. A contradiction. Conversely, let
M ∈ F(X∗). Observe that M ∈ S(X∗), 1 ∈ M . By Proposition 2.2, LF ,M = C .

By Proposition 4.3 and Corollary 4.5, we have R
(r)
LM

= R
(r)
LF,M

= R.
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