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1. Introduction

There have been various works on topological semigroups and their structures,
a lot of which were initiated by A.D. Wallace in 1953 [15]. Representations
of semigroups by transformations of sets give rise to the notion of acts over
semigroup. Aspects of topological semigroups as well as topological acts over
topological semigroups can be found in [3, 4, 8, 9, 12]. In this paper we concerned
about the topological acts over a topological monoid from a categorical point of
view. Some studies of the category of topological S-acts were accomplished by
Khosravi [5, 6], where (S, τS) is a topological monoid. Khosravi introduced the
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notions of free topological S-acts over a topological space, over a set as well as
over an S-act. Then by using the notion of free topological S-acts over S-acts
he characterized projective topological S-acts. Then Khosravi [6] considered the
category S-CReg of Hausdorff completely regular topological S-acts, where S
is a completely regular Hausdorff topological monoid and studied the coproduct,
free object over completely regular space and characterized the projective object
in this category. He also characterized the algebraic and topological structure
of a projective topological S-act for an arbitrary topological monoid S. In this
paper we identify the product, coproduct in the category of topological S-acts.
Then we revisit (cf. Proposition 3.8) the result of Khosravi [5, Prop. 3.9], for the
construction of free topological S-act over a set and observe its general structure
(cf. Corollary 3.11). We define indecomposable topological S-act which is more
general than what is meant by Khosravi [6] and observe that every topological
S-act has a unique decomposition into indecomposable topological subacts (cf.
Definition 3.18 and Theorem 3.22). Then we study projective topological S-
act and revisit (cf. Theorem 3.26) one characterization [6, Theorem 2.2] of it.
Finally we define generator in the category of topological S-acts and obtain some
of its characterization (cf. Theorem 3.30) which are analogous to [7, Theorem
2.3.16].

We now briefly recall some preliminaries needed in the sequel.

2. Preliminaries

For a monoid S, a set A is a left S-act [7] if there is an action S ×A→ A given
by (s, a) 7→ sa satisfying (st)a = s(ta) and 1Sa = a for all s, t ∈ S and a ∈ A.
A nonempty subset B of an S-act A is said to be a subact of A if SB ⊆ B. An
S-act A is called cyclic if A = Sa for some a ∈ A. For S-acts A and B, a map
f : A → B is an S-map if f(sa) = sf(a) for all s ∈ S, a ∈ A. The category
formed by left S-acts together with S-maps is denoted by S-Act.

Definition 2.1. [12] A monoid S with a topology τS is a topological monoid if the
multiplication S × S → S is (jointly) continuous in both the variables, i.e., if
st ∈ U ∈ τS for some s, t ∈ S, then there exist V ∈ τS containing s and W ∈ τS
containing t such that VW ⊆ U .

Definition 2.2. [12] For a topological monoid (S, τS), a left S-act A with a topol-
ogy τA is said to be a left topological S-act if the action S × A→ A is (jointly)
continuous, i.e., if sa ∈ X ∈ τA for some s ∈ S, a ∈ A then there exist U ∈ τS
containing s and Y ∈ τA containing a such that UY ⊆ X. Analogously right
topological S-act is defined.

Here we give some usual examples of (left) topological S-acts.



On Categorical Properties of Topological S-Acts 3

Example 2.3.
(1) (S, τS) itself is a topological S-act, where the S-action is given by monoid

multiplication.

(2) Any S-act A together with the indiscrete topology is a topological S-act.

(3) Let (A, τA) be a topological S-act. Then any subact B of A together with
the subspace topology τB is also a topological S-act.

Remark 2.4. [5] For a topological monoid (S, τS) we denote the category of all
left topological S-acts together with continuous S-maps by S-Top. Analogously
we denote the category of right topological S-acts together with continuous S-
maps by Top-S.

For further notion and examples of topological S-acts we refer to [12, 5, 6].
For preliminaries on topologies and category theory we refer respectively to [11]
and [10, 1].

In the subsequent discussion by S-act we mean left S-act and by topologi-
cal S-act we mean left topological S-act (cf. Definition 2.2) unless mentioned
otherwise.

3. Categorical Properties of Topological S-Acts

We begin this section by producing a canonical example of topological S-act.

Example 3.1. Let (S, τS) be a topological monoid. For any non-empty set X ,
consider SX = {f | f : X → S} with product topology τ together with left
S-action defined as

S × SX → SX

(s, f) 7→ sf (x 7→ sf(x)).

Then a routine verification shows that (SX , τ) is a topological S-act.

The following result describes the product in the category of topological S-
acts.

Proposition 3.2. Let (Aα, τα)α∈Λ be a collection of topological S-acts. Suppose
∏

α∈ΛAα is the product of (Aα)α∈Λ in S-Act with canonical projections, pβ :
∏

α∈ΛAα → Aβ for β ∈ Λ. Then (
∏

α∈ΛAα,
∏

α∈Λτα) is the product of the family
(Aα, τα)α∈Λ in S-Top, where

∏

α∈Λτα is the product topology on
∏

α∈ΛAα.

Proof. Suppose ×α∈ΛAα is the cartesian product of the family (Aα)α∈Λ of S-
acts with projections pβ : ×α∈ΛAα → Aβ defined by pβ((xα)α∈Λ) := xβ , where
β ∈ Λ, (xα)α∈Λ ∈ ×α∈ΛAα. Then we know from [7] that this cartesian product
together with the S-action defined on it as componentwise multiplication by
elements of S is the product of (Aα)α∈Λ in S-Act and is denoted by

∏

α∈ΛAα.

Let sx ∈ U ∈
∏

α∈Λτα, where s ∈ S, x = (xα)α∈Λ ∈
∏

α∈ΛAα. Then
there exist Uαi

∈ ταi
, where αi ∈ Λ, i = 1, 2, ..., n, for some n ∈ N such
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that sx ∈
⋂n

i=1p
−1
αi

(Uαi
) ⊆ U . Therefore we see that for all i = 1, 2, ..., n,

pαi
(sx) ∈ Uαi

which implies sxαi
∈ Uαi

. Then for each i = 1, 2, ..., n, there exist
Vαi

∈ τS and Wαi
∈ ταi

with s ∈ Vαi
, xαi

∈ Wαi
such that Vαi

Wαi
⊆ Uαi

.
Thus we have

s ∈

n
⋂

i=1

Vαi
= V ∈ τS and x ∈

n
⋂

i=1

p−1
αi

(Wαi
) =W ∈

∏

α∈Λ

τα.

Now since pαi
(VW ) ⊆ VWαi

⊆ Vαi
Wαi

⊆ Uαi
for all i = 1, 2, ..., n, therefore

denoting
⋂n

i=1p
−1
αi

(Uαi
) as U we have VW ⊆ U , where s ∈ V ∈ τS , x ∈ W ∈

∏

α∈Λτα. Hence (
∏

α∈ΛAα,
∏

α∈Λτα) is a topological S-act.

Let (Q, τQ) be a topological S-act and fα : Q→ Aα be a family of morphisms
for all α ∈ Λ. Define f : Q →

∏

α∈ΛAα by f(x) = (fα(x))α. Now for Uα ∈ τα,
x ∈ f−1(p−1

α (Uα)) if and only if f(x)(α) ∈ Uα if and only if x ∈ f−1
α (Uα).

Therefore the continuity of fα implies that f−1(p−1
α (Uα)) = f−1

α (Uα) ∈ τQ.
Hence f is a continuous S-map from (Q, τQ) to (

∏

α∈ΛAα,
∏

α∈Λτα) such that
pαf = fα for all α ∈ Λ.

Again let g : Q →
∏

α∈ΛAα be another continuous S-map such that pαg =
fα holds for all α ∈ Λ. Then for y ∈ Q, pαg(y) = fα(y) for all α ∈ Λ, which in
turn implies that g(y) = (fα(y))α = f(y). Therefore f = g. This completes the
proof.

Notation 3.3. In what follows we write
∏

α∈Λ(Aα, τα) for (
∏

α∈ΛAα,
∏

α∈Λτα).
If (Aα, τα) = (A, τ) for all α ∈ Λ then we use the notation

∏

α∈Λ(A, τ) for
∏

α∈Λ(Aα, τα).

The following result describes the coproduct in the category of topological
S-acts.

Proposition 3.4. Let (Aα, τα)α∈Λ be a collection of topological S-acts. Suppose
∐

α∈ΛAα is the coproduct of (Aα)α∈Λ in S-Act with canonical injections ιβ :
Aβ →

∐

α∈ΛAα for β ∈ Λ. Then (
∐

α∈ΛAα,
∐

α∈Λ τα) is the coproduct of the
family (Aα, τα)α∈Λ in S-Top, where

∐

α∈Λ τα is the disjoint union topology, and
∐

α∈Λ τα is defined to be the finest topology on
�

∪
α∈Λ

Aα such that each ιβ : Aβ →

�

∪
α∈Λ

Aα is continuous.

Proof. Suppose
�

∪
α∈Λ

Aα is the disjoint union of the family (Aα)α∈Λ of S-acts with

injections ιβ : Aβ →
∐

α∈ΛAα defined by ιβ(a) := (a, β), where β ∈ Λ, a ∈ Aβ .
Then we know from [7] that the disjoint union together with the S-action defined
on it as

S ×
�

∪
α∈Λ

Aα →
�

∪
α∈Λ

Aα

(s, (a, β)) 7→ (sa, β)

is the coproduct of (Aα)α∈Λ in S-Act and is denoted by
∐

α∈ΛAα.
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Let s(a, β) ∈ U ∈
∐

α∈Λ τα for some s ∈ S, (a, β) ∈
∐

α∈ΛAα. Then

(sa, β) ∈ U , i.e., sa ∈ ι−1
β (U) ∈ τβ . Now (Aβ , τβ) being a topological S-act there

exist V ∈ τS containing s and Wβ ∈ τβ containing a such that VWβ ⊆ ι−1
β (U) =

Uβ (say). Denoting ιβ(Wβ) as W , we have (a, β) ∈ W ∈
∐

α∈Λ τα such that
VW = ιβ(VWβ) ⊆ U . Hence (

∐

α∈ΛAα,
∐

α∈Λ τα) is a topological S-act.

Let (Q, τQ) be a topological S-act and fα : Aα → Q be a family of morphisms
for all α ∈ Λ. Define f :

∐

α∈ΛAα → Q by f((a, α)) = fα(a), where α ∈
Λ, a ∈ Aα. Clearly f is an S-map. Now let m ∈ f−1(V ) ⊆

∐

α∈ΛAα. Therefore
m = (a, β) for some β ∈ Λ, a ∈ Aβ . Now (a, β) ∈ f−1(V ) implies that fβ(a) ∈ V
whence a ∈ f−1

β (V ), i.e., m ∈ ιβ(f
−1
β (V )). So f−1(V ) ⊆ ∪

α∈Λ
ια(f

−1
α (V )). The

reverse inclusion follows in a similar manner. Thus f−1(V ) = ∪
α∈Λ

ια(f
−1
α (V )),

which is clearly open in
∐

α∈ΛAα. Thus we have a continuous S-map f such
that fια = fα for all α ∈ Λ.

Let g :
∐

α∈ΛAα → Q be another continuous S-map such that gια = fα
holds for all α ∈ Λ, i.e., for any a ∈ Aα, gια(a) = fα(a) for all α ∈ Λ. Therefore
g(a, α) = fα(a) which implies that g = f . This completes the proof.

Notation 3.5. In what follows we write
∐

α∈Λ(Aα, τα) for (
∐

α∈ΛAα,
∐

α∈Λ τα).
If (Aα, τα) = (A, τ) for all α ∈ Λ then we use the notation

∐

Λ(A, τ) for
∐

α∈Λ(Aα, τα).

Remark 3.6. The coproduct, described in the above proposition for S-Top when
restricted to S-CReg (the category of completely regular Hausdorff S-acts), is
the same as that of Khosravi [6] which is explained below.

Suppose (Aα, τα)α∈Λ is a family of topological S-acts in the category [6]
S-CReg of completely regular Hausdorff S-acts with continuous S-maps be-
tween them as morphisms, where S is a Hausdorff completely regular topo-
logical monoid and (A, τ) is the coproduct of (Aα, τα)α∈Λ in S-Top. Let F
be a closed subset of A and (a, β) ∈ A r F for some β ∈ Λ, a ∈ Aβ . Now
since ι−1

β (F ) is closed in (Aβ , τβ), there exists a continuous map fβ : Aβ → R

such that fβ(ι
−1
β (F )) = 1 and fβ(a) = 0, and for every α ∈ Λ, α 6= β define

fα : Aα → R by fα(x) = 1 for all x ∈ Aα. Now consider the mapping f : A→ R

given by (y, α) 7→ fα(y), α ∈ Λ, y ∈ Aα. Then clearly f is a continuous real
valued function such that f(F ) = 1, f((a, β)) = 0. Therefore (A, τ) is com-
pletely regular. Now for (x, α), (y, γ) ∈ A with α 6= γ in Λ there exist open sets
ια(Aα), ιγ(Aγ) ∈ τ such that ια(Aα) ∩ ιγ(Aγ) = φ. Again for (m,α), (n, α) ∈ A
with m 6= n there exist Uα, Vα ∈ τα containing m,n respectively such that
Uα ∩ Vα = φ. Therefore ια(Uα), ια(Vα) ∈ τ such that ια(Uα) ∩ ια(Vα) = φ.
Hence (A, τ) is a completely regular Hausdorff S-act and thus is the coproduct
of the family (Aα, τα)α∈Λ in S-CReg.

Definition 3.7. [5] Let (S, τS) be a topological monoid. A topological S-act (F, τF )
together with a map ι : X → F is said to be a free topological S-act over a given
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set X if for any topological S-act (A, τA) and for any mapping σ : X → A, there
exists a unique continuous S-map σ : (F, τF ) → (A, τA) such that σι = σ.

We recall from [7] that for a monoid S, the free S-act over a set X is the S-act
S × (S ×X) → S ×X, (s, (t, x)) 7→ (st, x) for t, s ∈ S and x ∈ X together with
the map ι : X → S×X, x 7→ (1S , x). From now on we denote this act as F (X).
Now by providing a direct proof we revisit the following result of Khosravi [5,
Proposition 3.9].

Proposition 3.8. [5] Let (S, τS) be a topological monoid and X be a set. Then
the free topological S-act on the set X is F (X) with the topology τS×X , where
τX in the definition of τS×X is the discrete topology, and τS×X is the product
topology on S ×X.

Proof. Consider the one-one map ι : X → F (X) defined by x 7→ (1S , x) and
for a topological S-act (A, τA) consider a function σ : X → A. We define
σ : (F (X), τS×X) → (A, τA) by σ((s, x)) = sσ(x). Clearly σ is an S-map. Let
sσ(x) ∈ U ∈ τA. Then (A, τA) being a topological S-act, there exist V ∈
τS , W ∈ τA such that s ∈ V, σ(x) ∈W and VW ⊆ U . Thus there exist V ∈ τS
containing s and σ−1(W ) ∈ τX containing x such that σ(V ×σ−1(W )) ⊆ VW ⊆
U . Hence σ is a continuous S-map such that σι(x) = σ((1S , x)) = σ(x), i.e.,
σι = σ.

Proposition 3.9. Let (S, τS) be a topological monoid and X be a non-empty set.
Then

∐

X(S, τS) (cf. Notation 3.5) together with the map f : X →
∐

X(S, τS)
defined by f(x) := (1S , x), is free over X in S-Top.

Proof. Let (A, τA) be a topological S-act and g : X → A be a mapping. We
define g :

∐

X(S, τS) → (A, τA) by g((s, x)) := sg(x). Clearly g is an S-map.
Let V ∈ τA, t ∈ ι−1

x (g−1(V )) where for x ∈ X, ιx : (S, τS) →
∐

X(S, τS) is the
natural injection given by s 7→ (s, x). Then tg(x) ∈ V , which implies that there
exist Ut ∈ τS and W ∈ τA with t ∈ Ut, g(x) ∈ W such that UtW ⊆ V . Let
s ∈ Ut. Then g((s, x)) = sg(x) ∈ UtW ⊆ V which implies (s, x) ∈ g−1(V ), i.e.,
s ∈ ι−1

x (g−1(V )). Thus for every t ∈ ι−1
x (g−1(V )), there exists Ut ∈ τS such that

t ∈ Ut ⊆ ι−1
x (g−1(V )). Hence ι−1

x (g−1(V )) is open in S implying the continuity
of the S-map g such that for x ∈ X, gf(x) = g((1S , x)) = g(x).

Let h be another continuous S-map such that hf = g. Then we have, for all
x ∈ X ,

hf(x) = gf(x)
i.e., h((1S , x)) = g((1S , x))
i.e., sh((1S , x)) = sg((1S , x))
i.e., h((s, x)) = g((s, x))
i.e., h = g.

This completes the proof.
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Remark 3.10. It follows from the above result that any topological monoid
(S, τS) is a free topological S-act.

Corollary 3.11. Let (S, τS) be a topological monoid. A topological S-act (F, τF )
is free over a set X if and only if it is isomorphic to

∐

X(S, τS).

Proof. In view of Definition 3.7 and Proposition 3.9 the result follows from the
categorical fact that free object over a set in a category is unique upto isomor-
phism.

Proposition 3.12. For any topological S-act (A, τA) there exists a free topological
S-act (F, τF ) such that (A, τA) is an epimorphic image of (F, τF ).

Proof. Let (F (A), τ) be the free topological S-act over the set A where ι : A→
F (A) is given by ι(a) = (1S , a). Then by Definition 3.7, for the identity map
idA : A → A, there exists a continuous S-map f : (F (A), τ) → (A, τA) such
that fι = idA. Now f being a surjective continuous S-map is an epimorphism.
Hence (A, τA) is an epimorphic image of a free topological S-act.

Definition 3.13. A topological S-act (P, τP ) is projective in S-Top category,
if for any epimorphism π : (A, τA) → (B, τB) between two topological S-acts
(A, τA), (B, τB) and any morphism ϕ : (P, τP ) → (B, τB), there exists a mor-
phism ϕ : (P, τP ) → (A, τA) such that ϕ = πϕ.

Proposition 3.14. Every free topological S-act is projective.

Proof. It is well known [7] that in a concrete category if epimorphisms are sur-
jective then every free object is projective. We prove here that in S-Top epi-
morphisms are surjective which in turn proves the result.

Let f : (A, τA) → (B, τB) be an epimorphism in S-Top. Define the relation
θ on B by xθy if and only if either x = y or x, y ∈ Imf . Then for x 6= y
in B, xθy implies that there exist m,n ∈ A such that x = f(m), y = f(n).
Therefore for s ∈ S, sx = f(sm), sy = f(sn), which implies that sxθsy. Hence
θ is a congruence on B and B/θ together with the indiscrete topology τ is a
topological S-act where the action is defined as

S ×B/θ → B/θ
(s, [x]θ) 7→ [sx]θ.

Now define

g : B → B/θ and h : B → B/θ by
x 7→ [x]θ and x 7→ [f(c)]θ for some fixed c ∈ A.

Since τ is indiscrete both the S-maps are continuous such that gf(a) = [f(a)]θ =
[f(c)]θ = hf(a), for all a ∈ A. Therefore we have gf = hf , which implies that
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g = h, since f is an epimorphism. Thus for any x ∈ B, [x]θ = g(x) = h(x) =
[f(c)]θ, which implies B = Imf . Hence f is surjective.

We recall below one result on projective topological S-acts from [6, Proof of
Lemma 2.1] for its immediate use in Example 3.17.

Proposition 3.15. [6] For any idempotent e ∈ S, Se together with the subspace
topology τSe is a projective topological S-act.

Remark 3.16. That the converse of Prop. 3.14 is not true is illustrated in the
following example.

Example 3.17. Consider the topological monoid (Z, τdis), where Z is the mul-
tiplicative monoid and τdis is the discrete topology. Then in view of Prop. 3.15,
({0}, τ{0}) is a projective topological Z-act where τ{0} = {φ, {0}}. But we show
below that it is not free. Suppose it is free over a set X with corresponding
mapping ι : X → {0} defined by x 7→ 0 for all x ∈ X . Consider the topological
Z-act (Z, τdis) and a map f : X → Z given by x 7→ 1 for all x ∈ X . Then
there exists continuous Z-map f : ({0}, τ{0}) → (Z, τdis) such that fι = f which

implies that f(0) = 1 - a contradiction since f is a Z-map. Hence ({0}, τ{0}) is
not free.

Definition 3.18. We call a topological S-act (A, τA) decomposable if there is an
indexed set Λ of cardinality at least two and non-empty closed proper subacts Xi

of A, i ∈ Λ such that A =
⋃

i∈ΛXi and for each pair i, j ∈ Λ, with i 6= j, Xi ∩
Xj = φ. In this case A =

⋃

i∈ΛXi is called a decomposition of (A, τA). Otherwise
(A, τA) is called indecomposable. A subact B of A is said to be indecomposable if
(B, τB) is an indecomposable topological S-act where τB is the induced topology.

Remark 3.19. Recall that [7] an S-act A is called decomposable in S-Act if there
exist two subacts B,C ⊆ A such that A = B ∪ C and B ∩ C = φ. Otherwise
A is called indecomposable. We call a topological S-act (A, τA) algebraically
indecomposable if the underlying S-act A is indecomposable in S-Act, whereas
this notion is called indecomposable topological S-act by Khosravi [6]. Clearly
every algebraically indecomposable topological S-act is indecomposable. But
the converse is not true which is evident from the following example.

Example 3.20. Let us consider the topological multiplicative monoid (N, η),
where η is the discrete topology and the topological N-act (Z, τ) with τ as the
indiscrete topology and the action given by

N× Z → Z

(n, a) 7→ na.
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Here (Z, τ) is indecomposable since it has no non-empty closed proper subact.
But there are subacts Z+∪{0},Z− such that Z = (Z+∪{0}) ∪ Z−. Hence (Z, τ)
is algebraically decomposable.

Lemma 3.21. For topological S-act (A, τA), let (Ai)i∈I be subacts of A such that
(Ai, τi) (τi’s are subspace topologies) are indecomposable topological S-acts. Then
⋃

i∈IAi equipped with the subspace topology τ∗ is an indecomposable topological
S-act whenever

⋂

i∈IAi 6= φ.

Proof. Clearly (
⋃

i∈IAi, τ
∗) is a topological S-act. Let

⋃

i∈IAi =
⋃

α∈ΛXα be a
decomposition of (

⋃

i∈IAi, τ
∗), where Xα’s are non-empty closed proper subacts

in
⋃

i∈IAi. Take x ∈
⋂

i∈IAi with x ∈ Xβ for some β ∈ Λ. Then for k ∈ I, Ak =
⋃

α∈Λ(Ak∩Xα), where (Ak∩Xα) is a closed subact of Ak for all α ∈ Λ. But since
(Ak, τk) is indecomposable, it follows that Ak ∩ Xα = φ for all α ∈ Λ, α 6= β.
This is true for all k ∈ I. Therefore

⋃

i∈IAi = Xβ - a contradiction. Hence the
proof.

Theorem 3.22. Every topological S-act (A, τA) has a unique decomposition into
indecomposable subacts.

Proof. Take a ∈ A. Since the cyclic S-act Sa is indecomposable in S-Act[7],
Sa equipped with subspace topology τSa induced by τA is indecomposable in S-
Top. Let Sub(A) be the collection of all subacts of A. Then by Lemma 3.21, we
get that Ua = ∪{V ∈ Sub(A) | (V, τV ) is indecomposable and a ∈ V } (where τV
is the subspace topology on V ) together with the subspace topology τa induced
by τA is indecomposable topological S-act.

Let Ua denote the closure of Ua in (A, τA). We claim to prove that Ua is
an indecomposable subact of (A, τA). For this, let s ∈ S, b ∈ Ua and U be an
open set in A containing sb. Then (A, τA) being a topological S-act there exist
W ∈ τA containing b such that sW ⊆ U . Now b ∈ W ∈ τA implies that there
exists some y ∈W ∩Ua such that sy ∈ Ua∩sW ⊆ Ua∩U , i.e., Ua∩U 6= φ. Hence
sb ∈ Ua. Now if Ua =

⋃

i∈IXi, where Xi’s are closed proper subacts of Ua, then
Ua =

⋃

i∈I(Xi∩Ua). But since Ua is indecomposable we must have Ua = Xk∩Ua

for some k ∈ I, which in turn implies that Ua = Xk - a contradiction. Thus
Ua together with the induced topology is an indecomposable topological S-act
containing a. Therefore Ua = Ua, i.e., Ua is closed.

For x, y ∈ A, we get that Ux = Uy or Ux ∩ Uy = φ. Indeed, z ∈ Ux ∩ Uy

implies Ux, Uy ⊆ Uz. Thus x ∈ Ux ⊆ Uz, y ∈ Uy ⊆ Uz, i.e., Uz ⊆ Ux ∩ Uy.
Therefore Ux = Uy = Uz. Denote by A′ a representative subset of elements
x ∈ A with respect to the equivalence relation ∼ defined by x ∼ y if and only if
Ux = Uy. Then A = ∪

x∈A′

Ux is a decomposition of A in indecomposable subacts.

Now for uniqueness, let A = ∪
α∈B

Vα be another decomposition of (A, τA) into

indecomposable subacts. Then there exists at least one Uy for some y ∈ A′, such
that Uy 6= Vα for all α ∈ B. Now Uy = A∩Uy = ∪

α∈B
(Vα ∩Uy). For a ∈ Vβ ∩Uy
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for some β ∈ B implies Vβ ⊆ Ua = Uy. By hypothesis we have Uy 6= Vβ therefore
for α ∈ B, either Vα ∩ Uy = φ or Vα ( Uy. Let J = {α ∈ B | Vα ( Uy}. It is
evident that J is a non-empty, non-singleton set such that Uy = ∪

α∈J
Vα, where

Vα is indecomposable subact for all α ∈ J . Thus we have a decomposition of
the topological S-act (Uy, τy) - a contradiction. Hence A = ∪

x∈A′

Ux is the unique

decomposition of A in indecomposable subacts.

Theorem 3.23. For any indecomposable projective topological S-act (P, τ) there
exists an idempotent e ∈ S such that (P, τ) is isomorphic to (Se, τSe), where τSe

is the subspace topology.

Proof. For any p ∈ P , consider the continuous S-map σp : (S, τS) → (P, τ)
defined by s 7→ sp. Then there exists a continuous S-map

σ =
∐

p∈P

σp :
∐

p∈P

(Sp, τp) → (P, τ) ((Sp, τp) = (S, τS))

(s, p) 7→ σp(s)

such that Imσ = P . Therefore (P, τ) being projective there exists a continu-
ous S-map γ : (P, τ) →

∐

p∈P

(Sp, τp) such that σγ = idP . Consider (γ(P ), τ∗),

where τ∗ is the subspace topology, i.e., τ∗ = {U ∩ γ(P ) | U ∈
∐

p∈P

τp}. Then

V ∈ τ∗ implies that V = V ′ ∩ γ(P ) for some V ′ ∈
∐

p∈P

τp, which implies that

γ−1(V ) = γ−1(V ′) ∈ τ . Hence γ : (P, τ) → (γ(P ), τ∗) is continuous and also
σ∗ = σ|γ(P ) : (γ(P ), τ

∗) → (P, τ) is continuous such that σ∗γ = σγ = idP and
γσ∗ = idγ(P ). Hence (γ(P ), τ∗) is isomorphic to (P, τ) and thus is indecompos-
able. Now consider the injections ιp : Sp →

∐

x∈P

Sx defined by s 7→ (s, p). Then

we have an algebraic decomposition of γ(P ) as follows :

γ(P ) = ∪
x∈P

(γ(P ) ∩ ιx(S)) = ∪
x∈P

Ax. (1)

Then for any p ∈ P ,

γ(P )rAp = ∪
x∈Pr{p}

Ax = γ(P ) ∩

(

∪
x∈Pr{p}

ιx(S)

)

∈ τ∗.

Also SAp = S(γ(P ) ∩ ιp(S)) ⊆ (γ(P ) ∩ ιp(S)) = Ap. Therefore Ap is a closed
subact of γ(P ) for all p ∈ P . Now since (γ(P ), τ∗) is indecomposable, therefore
γ(P ) ⊆ ιm(S) for a unique m ∈ P . So we have, P = idP (P ) = σγ(P ) ⊆
σιm(S) = σm(S) = Sm ⊆ P , i.e., P = Sm.

Now for the epimorphism, σm : (S, τS) → (P, τ), there exists a continuous
S-map ϕ : (P, τ) → (S, τS) such that σmϕ = idP . Denote ϕ(m) = e ∈ S. Since
m = idP (m) = σmϕ(m) = σm(e) = em, we have e = ϕ(m) = ϕ(em) = eϕ(m) =
e2. Again ϕ(P ) = ϕ(Sm) = Sϕ(m) = Se.
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Also (P, τ) is isomorphic to ϕ(P ) together with subspace topology. Therefore
(P, τ) is isomorphic to (Se, τSe).

Remark 3.24. As mentioned earlier that by indecomposable topological S-acts
Khosravi [6] meant the topological S-acts which are algebraically indecompos-
able and obtained a characterization [6, Lemma 2.1] similar to as that of Theo-
rem 3.23, which we recall below.

Theorem 3.25. [6] Any indecomposable projective S-space P is cyclic and there
exists e2 = e ∈ S such that P is topologically isomorphic to Se.

Khosravi [6, Theorem 2.2] proved the following result using Theorem 3.25.
But it can be proved by using our result given in Theorem 3.23.

Theorem 3.26. A topological S-act (P, τP ) is projective if and only if (P, τP ) =
∐

i∈I(Pi, τi) where each (Pi, τi) is isomorphic to (Sei, τSei) for some idempotent
ei ∈ S together with subspace topology τSei , i ∈ I.

To conclude the paper we introduce the notion of generator in the category
S-Top and characterize it (cf. Theorem 3.30) which is a partial analogue of [7,
Theorem 2.3.16].

Definition 3.27. A topological S-act (G, τG) is said to be a generator in S-Top
if for f, g : (X, τX) → (Y, τY ) in S-Top with f 6= g there exists a continuous
S-map α : (G, τG) → (X, τX) such that fα 6= gα.

Remark 3.28. Suppose (S, τS) is a topological monoid and (X, τX), (Y, τY ) are
topological S-acts. Then for notational convenience we denote the set of all con-
tinuous S-maps from (X, τX) to (Y, τY ) by C(X,Y ) when there is no ambiguity
regarding the topology of X and Y .

Before giving a characterization of generators in S-Top we recall the following
Lemma from [7].

Lemma 3.29. [7] Suppose C is an arbitrary category and G ∈ C is a generator
in C. If for every X ∈ C there exists X

∐

X in C such that the injections
u1, u2 : X → X

∐

X are different, then MorC(G,X) 6= φ for all X ∈ C, where
MorC(G,X) denotes the set of all morphisms from G to X in C.

Theorem 3.30. Suppose (S, τS) is a topological monoid. For (G, τG) ∈ S-Top,
the following conditions are equivalent:

(i) (G, τG) is a generator in S-Top.

(ii) Every (X, τX) ∈ S-Top is an epimorphic image of
∐

C(G,X)

(G, τG).
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(iii) For every (X, τX) ∈ S-Top there exists a set I such that (X, τX) is an
epimorphic image of

∐

I

(G, τG).

(iv) There exists an epimorphism π : (G, τG) → (S, τS).

(v) (S, τS) is a retract of (G, τG).

(vi) There exists ψ2 = ψ ∈ C(G,G) such that ψ(G) is topologically isomorphic
to (S, τS).

Proof. (i)⇒(ii). Suppose (X, τX), (Y, τY ) ∈ S-Top and f, g : (X, τX) → (Y, τY )
are continuous S-maps such that f 6= g. We already have from Lemma 3.29 that
C(G,X) 6= φ. Now consider the diagram in S-Top (see Fig. 1).

Fig. 1

where ια’s are the canonical injections into
∐

C(G,X)

(G, τG) and [(α)] is coproduct

induced. By (i) there exists β ∈ C(G,X) such that fβ 6= gβ. Therefore if we
assume that f [(α)] = g[(α)] then we have f [(α)]ιβ = g[(α)]ιβ which implies that
fβ = gβ - a contradiction. This proves that [(α)] is an epimorphism.

(iii) follows trivially from (ii).

(iii)⇒(iv). Let f :
∐

i∈I(Gi, τi) → (S, τS) be an epimorphism, where
(Gi, τi) = (G, τG) for all i ∈ I. Since epimorphisms are surjective in S-Top (cf.
proof of Prop. 3.14) there exists (g, k) ∈

∐

i∈I(Gi, τi) such that k ∈ I, g ∈ Gk and
f((g, k)) = 1S. Therefore for any s ∈ S, s = s.1S = s.f((g, k)) = f((sg, k)) =
fιk(sg), where ιk : (Gk, τk) →

∐

i∈I(Gi, τi) denotes the canonical injection.
Then π = fιk : (Gk, τk) → (S, τS) is a surjection and also being the composition
of two continuous S-maps is a continuous S-map. Thus π : (G, τG) → (S, τS) is
an epimorphism in S-Top.

(iv)⇒(v). Consider the diagram in S-Top (see Fig. 2).

In view of Remark 3.10 and Prop. 3.14 (S, τS) is projective so there exists a
continuous S-map γ : (S, τS) → (G, τG) such that πγ = idS . Hence the proof.

(v)⇒(vi). Let π : (G, τG) → (S, τS) be a retraction in S-Top. Then there
exists a continuous S-map γ : (S, τS) → (G, τG) such that πγ = idS . Then
clearly ψ = γπ ∈ C(G,G) is an idempotent and since γ(1S) ∈ G we get that
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γ(1S) = γ(πγ(1S)) = (γπ)γ(1S) ∈ ψ(G) i.e., Sγ(1S) ⊆ ψ(G) = γπ(G) = γ(S) =
Sγ(1S). Thus γ(S) = ψ(G). Also since γ is a coretraction, (S, τS) is isomorphic
to (γ(S), τγ(S)), where τγ(S) is the subspace topology induced from τG. Hence
ψ(G) is topologically isomorphic to (S, τS).

Since ψ(G) is topologically isomorphic to (S, τS), (iv) follows from (vi).

(iv)⇒(i). Consider f, g : (X, τX) → (Y, τY ) in S-Top with f 6= g. Then
there exists x ∈ X such that f(x) 6= g(x). In view of Prop. 3.9 (S, τS) is a free
topological S-act over any singleton set {a} so we consider the diagram (see Fig.
3)

Fig. 2 Fig. 3

where φ(a) = x, ψ(a) = 1S . Then there exists φ : (S, τS) → (X, τX) in S-Top
such that φψ = φ i.e., φ(1S) = x. Then we have φπ : (G, τG) → (X, τX) such
that f(φπ) 6= g(φπ), since π is an epimorphism. Hence the proof.

4. Concluding Remark

The results obtained in the paper may be considered to be some of the necessary
tools required to initiate the study of Morita equivalence of topological monoids
whose counterpart for monoids and semigroups has been a topic of sustained
research interest which is evident from various works mentioned in [7] and [14,
2, 13].

Acknowledgement. The authors are grateful to the learned referees for their
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