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Abstract. A graph G(p, q) is said to be odd harmonious if there exists an injec-
tion f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) →
{1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. In this paper we
prove that path union of r copies of Km,n, path union of r copies of Kmi,ni

, 1 ≤ i ≤ r,
Kt

m,n, K
t
(m1,n1),(m2,n2),··· ,(mt,nt)

, join sum of graph 〈Km,n;Km,n; · · · ,Km,n(t copies)〉,

〈Km1,n1
;Km2,n2

; · · · ,Kmt,nt
〉, circle formation of r copies ofKm,n when r ≡ 0 (mod 4),

S(t.Km,n) and P t
n(t.n.Kp,q) are odd harmonious graphs.

Keywords: Harmonious labeling; Odd harmonious labeling; Path union of graphs; Open
star of graphs; Join sum of graphs; One point union of path of graphs.

1. Introduction

Throughout this paper by a graph we mean a finite, simple and undirected
one. For standard terminology and notation we follow Harary [4]. A graph
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G = (V,E) with p vertices and q edges is called a (p, q) – graph. The graph
labeling is an assignment of integers to the set of vertices or edges or both, subject
to certain conditions. An extensive survey of various graph labeling problems
is available in [2]. Labeled graphs serves as useful mathematical models for
many applications such as coding theory, including the design of good radar
type codes, synch-set codes, missile guidance codes and convolution codes with
optimal autocorrelation properties. They facilitate the optimal nonstandard
encoding of integers. Graham and Sloane [3] introduced harmonious labeling
during their study of modular versions of additive bases problems stemming
from error correcting codes. A graph G is said to be harmonious if there exists
an injection f : V (G) → Zq such that the induced function f∗ : E(G) →
Zq defined by f∗(uv) = (f(u) + f(v)) (mod q) is a bijection and f is called
harmonious labeling of G. The concept of an odd harmonious labeling was due
to Liang and Bai [17]. A graph G is said to be odd harmonious if there exists
an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function
f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection.
If f(V (G)) = {0, 1, 2, ....q} then f is called as strongly odd harmonious labeling
and G is called as strongly odd harmonious graph.The odd harmoniousness of
graph is useful for the solution of undetermined equations. An interested reader
can refer to [1, 17, 18, 19, 20]. The following results have been published in [17].
(1) If G is an odd harmonious graph, then G is a bipartite graph. Hence any

graph that contains an odd cycle is not an odd harmonious.

(2) If a (p, q) – graph G is odd harmonious, then 2
√
q ≤ p ≤ (2q − 1).

(3) If G is an odd harmonious Eulerian graph with q edges, then q ≡ 0, 2
( mod 4).

Motivated by the results in [17], [19] and [20], we have established that several
graphs admit odd harmonious labeling (see [5] - [14]).

Definition 1.1. [15] Let G be a graph and G1, G2, G3, · · · , Gn, n ≥ 2 be n copies

of graph G. Then the graph obtained by adding an edge from Gi to Gi+1 (1 ≤
i ≤ n− 1) is called path union of graph G.

Let ui,1, ui,2, · · · , ui,m and vi,1, vi,2, · · · , vi,n, 1 ≤ i ≤ r, be the vertices of the

ith copy Km,n. We join ui,m with vi+1,1 by an edge, 1 ≤ i ≤ r − 1 to obtain the

path union of Km,n.

Definition 1.2. [16] A graph obtained by replacing each vertex of K1,n except

the apex vertex by the graphs G1, G2, · · · , Gn is known as open star of graph,

denoted by S(G1, G2, G3, · · · , Gn). If we replace each vertices of K1,n except the

apex vertex by the graph G, that is G1 = G2 = · · · = Gn = G, such open star of

graph denoted by S(n.G).

Let vi1, v
i
2, · · · , vim, ui

1, u
i
2, · · · , ui

n, where 1 ≤ i ≤ t be the vertices of the ith

copy of Km,n. The graph G = S(t.Km,n) is obtained by replacing each vertices

of K1,t except the apex vertex of K1,t by the graph Km,n. Let u0 be the central

vertex of the graph G. We join the central vertex u0 with the vertices vi1, where

1 ≤ i ≤ t.
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Definition 1.3. A graph G is obtained by replacing each edge of K1,t by a path

Pn of length n on n + 1 vertices is called one point union for t copies of path

Pn, denoted by P t
n.

Let vi1, v
i
2, · · · , vim and ui

1, u
i
2, · · · , ui

n, where 1 ≤ i ≤ t be the vertices of

t copies of Km,n. The graph Kt
m,n is obtained by identifying the vertices vi1,

1 ≤ i ≤ t of each copy and consider it as a central vertex u.

Definition 1.4. [15] Consider t copies of graph G0. The graph G = 〈G(1)
0 ;

G
(2)
0 ; · · · ;G(t)

0 〉 obtained by joining two copies of the graph G
(i)
0 and G

(i+1)
0 by a

vertex 1 ≤ i ≤ t− 1 is called join sum of graphs.

Definition 1.5. A graph G is obtained by replacing each vertices of P t
n except the

central vertex by the graphs G1, G2, · · · , Gn is known as one point union for path

of graphs, denoted by P t
n(G1, G2, G3, · · · , Gn) where P t

n is the one point union

of t copies of path Pn. If we replace each vertices of P t
n except the central vertex

by the graph H, that is G1 = G2 = G3 = · · · = Gn = H, such one point union

of path graph denoted by P t
n(t.n.H).

Definition 1.6. Let ui,1, ui,2, · · · , ui,m and vi,1, vi,2, · · · , vi,n be the vertices of

the ith copy of Km,n, where 1 ≤ i ≤ r. We join the vertices ui,m to ui+1,1,

1 ≤ i ≤ r − 1 and also join the vertex ur,m to u1,1 to construct the circle

formation of r copies of Km,n.

2. Main Results

In this section we prove that path union of r copies of Km,n, path union of
r copies of Kmi,ni

, 1 ≤ i ≤ r, Kt
m,n, Kt

(m1,n1),(m2,n2),··· ,(mt,nt)
, join sum of

graph 〈Km,n;Km,n; · · · ,Km,n(t copies)〉, 〈Km1,n1
;Km2,n2

; · · · ,Kmt,nt
〉, circle

formation of r copies of Km,n when r ≡ 0(mod 4), S(t.Km,n) and P t
n(t.n.Kp,q)

are odd harmonious graphs.

Theorem 2.1. The path union of r copies of Km,n, r > 1 is an odd harmonious

graph.

Proof. Let G be a path union of r copies of Km,n, r > 1. Let ui,1, ui,2, · · · , ui,m

and vi,1, vi,2, · · · , vi,n, 1 ≤ i ≤ r, be the vertices of the ith copy of the graph G.
In path union of graph Km,n, |V (G)| = r(m + n) and |E(G)| = rmn + r − 1.
We define a labeling f : V (G) → {0, 1, 2, · · · , 2(rmn+ r − 1)− 1} as follows:

f(u1,j) = 2n(j − 1), 1 ≤ j ≤ m,

f(ui,j) = 2n(m− 1) + 2m(i− 2) + 2j, 2 ≤ i ≤ r and 1 ≤ j ≤ m,

f(v1,j) = 2j − 1, 1 ≤ j ≤ n,

f(vi,j) = 2n+ 2m(i− 2)(n− 1) + 2m(j − 1) + 2i− 3, 2 ≤ i ≤ r, 1 ≤ j ≤ n.
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The induced edge labels are

f∗(u1,jv1,k) = 2n(j − 1) + 2k − 1, 1 ≤ j ≤ m and 1 ≤ k ≤ n,

f∗(ui,jvi,k) = 2n(m− 1 + 2m(i− 2) + 2j + 2n+ 2m(i− 2)(n− 1)

+2m(k − 1) + 2i− 3, 2 ≤ i ≤ r, 1 ≤ j ≤ m and 1 ≤ k ≤ n,

f∗(ui,mvi+1,1) = 2i(nm+ 1)− 1, 1 ≤ i ≤ r − 1.

In view of the above defined labeling pattern, the path union of r copies of Km,n

is an odd harmonious graph.

An odd harmonious labeling of 3 copies of K2,3 is shown in Figure 1.

s s

s s s

0 6

1 3 5

s s

s s s

7

8 10

11 15

s s

s s s

12 14

17 21 25

Figure 1: An odd harmonious labeling of 3 copies of K2,3

Theorem 2.2. The path union of complete bipartite graphs Km1,n1
,Km2,n2

, · · · ,
Kmt,nt

is an odd harmonious graph, where m1, n1,m2, n2, · · · ,mt, nt ∈ N.

Proof. Let G be a path union of complete bipartite graphs Km1,n1
,Km2,n2

, · · · ,
Kmt,nt

, where m1, n1,m2, n2, · · · ,mt, nt ∈ N. Let ui,j(1 ≤ j ≤ mi), vi,j(1 ≤
j ≤ ni) be the vertices of the complete bipartite graph Kmi,ni

, i = 1, 2, · · · , t.
In order to construct the path union of Kmi,ni

, we join ui,mi
with vi+1,1, 1 ≤

i ≤ t − 1 by an edge. In path union of complete bipartite graphs Kmi,ni
,

i = 1, 2, · · · , t,

|V (G)| = (m1 + n1) + (m2 + n2) + · · ·+ (mt + nt),

|E(G)| = (m1n1 +m2n2 + · · ·+mtnt) + t− 1.

We define a labeling f : V (G) → {0, 1, 2, · · · , 2m1n1 + · · ·+ 2mtnt + 2t− 3} as
follows:

f(u1,j) = 2n1(j − 1), 1 ≤ j ≤ m1,

f(u2,j) = 2n1(m1 − 1) + 2j, 1 ≤ j ≤ m2,

f(ui,j) = 2n1(m1 − 1) + 2[mi−1 +mi−2 + · · ·+m2] + 2j,

1 ≤ j ≤ mi and i = 3, 4, 5, · · · , t,
f(v1,j) = 2j − 1, 1 ≤ j ≤ n1,

f(v2,j) = 2n1 + 1 + 2m2(j − 1), 1 ≤ j ≤ n2,

f(vi,j) = 2n1 + 2(i− 2) + 1 + 2[mi−1(ni−1 − 1) +mi−2(ni−2 − 1) + · · ·
+m2(n2 − 1)] + 2mi(j − 1), 1 ≤ j ≤ ni, i = 3, 4, · · · , t.
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The induced edge labels are

f∗(u1,jv1,k) = 2n1(j − 1) + 2k − 1, 1 ≤ j ≤ m1 and 1 ≤ k ≤ n1,

f∗(ui,jvi,k) = 2[mi−1ni−1 +mi−2ni−2 + · · ·+m2n2 +m1n1]

+2mi(k − 1) + 2j + 2i− 3, 1 ≤ k ≤ ni,

1 ≤ j ≤ mi and i = 2, 3, · · · , t,
f∗(ui,mi

ui+1,1) = 2[nimi + ni−1mi−1 + · · ·+ n2m2 + n1m1] + 2i− 1,

1 ≤ i ≤ t− 1.

In view of the above defined labeling pattern, path union of complete bipartite
graphs Km1,n1

,Km2,n2
, · · · ,Kmt,nt

is an odd harmonious graph.

An odd harmonious labeling of path union of K2,3,K2,2,K3,5 is shown in
Figure 2.

s s s

s s s s

s s

s s s

s s s s s

0 6 8 10 12 14 16

1 3 5 7 11 13 19 25 31 37

Figure 2: An odd harmonious labeling of K2,3,K2,2,K3,5

Theorem 2.3. The join sum of graph G = 〈Km,n;Km,n; · · · ;Km,n(t copies)〉 is

odd harmonious, t > 1.

Proof. Let G be a join sum of complete bipartite graph Km,n (t copies). Let
ui,j (1 ≤ j ≤ n) and vi,j (1 ≤ j ≤ n) be the vertices of ith copy of Km,n, i =
1, 2, · · · , t. Let w1, w2, · · · , wi−1 be the vertices of join sum of complete bipartite
graphs. We join the vertices (ui,m, wi) and (wiui+1,1), i = 1, 2, 3, · · · , t − 1
by an edge. The join sum of complete bipartite graph is having |V (G)| =
t(m+ n) + t− 1 and |E(G)| = mnt+ 2(t− 1). We define a labeling f : V (G) →
{0, 1, 2, · · · , 2[mnt+ 2(t− 1)]− 1} as follows:

f(ui,j) = 2n(i− 1)(m− 1) + 2(i− 1) + 2n(j − 1), 1 ≤ i ≤ t, 1 ≤ j ≤ m,

f(vi,j) = 2n(i− 1) + 2i− 3 + 2j, 1 ≤ i ≤ t, 1 ≤ j ≤ n,

f(wi) = 2i(n+ 1)− 1, 1 ≤ i ≤ t− 1.

The induced edge labels are

f∗(ui,jvi,k) = 2n(i− 1)(m− 1) + 2(i− 1) + 2n(j − 1) + 2n(i− 1) + 2i

+2k − 3, 1 ≤ i ≤ t, 1 ≤ j ≤ m and 1 ≤ k ≤ n,
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f∗(ui,mwi) = 2i(nm+ 2)− 3, 1 ≤ i ≤ t− 1,

f∗(wiui+1,1) = 2i(nm+ 2)− 1, 1 ≤ i ≤ t− 1.

In view of the above defined labeling pattern, the join sum of t copies of
complete bipartite graph Km,n is an odd harmonious graph.

An odd harmonious labeling of 〈K3,5;K3,5;K3,5〉 is shown in Figure 3.

s s s

s s s ss

s s s

s s s ss

s s s

s s s ss

s s

0 10 20

1 3 5 7 9

11

22 32 42

13 15 17 19 21

23

44 54 64

25 27 29 31 33

Figure 3: An odd harmonious labeling of join sum of 3 copies of K3,5

Theorem 2.4. The join sum of complete bipartite graphs G = 〈Km1,n1
;

Km2,n2
; · · · ;Kmt,nt

〉 is odd harmonious, where m1, n1,m2, n2, · · · ,mt, nt ∈ N.

Proof. Let G be a join sum of complete bipartite graphs Km1,n1
;

Km2,n2
; · · · ;Kmt,nt

〉, where m1, n1, · · · ,mt, nt ∈ N. Let ui,j (1 ≤ j ≤ mi)
and vi,j (1 ≤ j ≤ ni) be vertices of the complete bipartite graphs Kmi,ni

, i =
1, 2, · · · , t. Let w1, w2, · · · , wt−1 be the vertices of join sum of the complete bipar-
tite graphs. We join the vertices (ui,mi

, wi), (wi, ui+1,1), i = 1, 2, 3, · · · , t− 1 by
an edge to construct the join sum of graphs G = 〈Km1,n1

;Km2,n2
; · · · ;Kmt,nt

〉.
In graph G, |V (G)| = (m1 + n1) + (m2 + n2) + · · · + (mt + nt) + t − 1
and |E(G)| = (m1n1 + m2n2 + · · · + mtnt) + 2(t − 1). We define a labeling
f : V (G) → {0, 1, · · · , 2[(m1n1 + · · ·+mtnt) + 2(t− 1)]− 1} as follows:

f(ui,j) = 2[ni−1mi−1 + ni−2mi−2 + · · ·+ n1m1]− 2[ni + ni−1 + · · ·+ n1]

+2nij + 2(i− 1), 1 ≤ i ≤ t and 1 ≤ j ≤ mi,

f(vi,j) = 2[ni−1 + ni−2 + · · ·+ n1] + 2j + 2i− 3, 1 ≤ i ≤ t and 1 ≤ j ≤ ni,

f(wi) = 2[ni + ni−1 + · · ·+ n1] + 2(i− 1) + 1, 1 ≤ i ≤ t− 1.

The induced edge labels are

f∗(ui,jvi,k) = 2[ni−1mi−1 + ni−2mi−2 + · · ·+ n1m1] + 2ni(j − 1)

+2k + 4i− 5, 1 ≤ i ≤ t, 1 ≤ k ≤ ni and 1 ≤ j ≤ mi,

f∗(ui,mi
wi) = 2[nimi + ni−1mi−1 + · · ·+ n1m1] + 4(i− 1) + 1, 1 ≤ i ≤ t,

f∗(wiui+1,1) = 2[nimi + ni−1mi−1 + · · ·+ n1m1]− 2ni+1 + 2ni + 4i− 1,

1 ≤ i ≤ t− 1.
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In view of the above defined labeling pattern, the join sum of the complete
bipartite graphs 〈Km1,n1

;Km2,n2
; · · · ;Kmt,nt

〉 is an odd harmonious graph.

An odd harmonious labeling of 〈K2,3;K2,2;K3,5〉 is shown in Figure 4.

s s s
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s s s

s s

0 6

1 53

7
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12

13

15 17 19 21 23

14 3424

Figure 4: An odd harmonious labeling of 〈K2,3;K2,2;K3,5〉

Theorem 2.5. The graph Kt
m,n, t > 1 is odd harmonious.

Proof. Let the graph G be Kt
m,n. Let vi1, v

i
2, · · · , vim and ui

1, u
i
2, · · · , ui

n, where

1 ≤ i ≤ t, be the vertices of the ith copy of G. Let v be the central vertex of
G. In graph G, |V (G)| = t(m+ n− 1) and |E(G)| = mnt. We define a labeling
f : V (G) → {0, 1, 2, · · · , 2mnt− 1} as follows:

f(v) = 0,

f(vji ) = 2mn(t− j) + 2n(i− 1), 2 ≤ i ≤ m and 1 ≤ j ≤ t,

f(uj
i ) = 2n(j − 1) + 2i− 1, 1 ≤ i ≤ n and 1 ≤ j ≤ t.

The induced edge labels are

f∗(vuj
i ) = 2n(j − 1) + 2i− 1, 1 ≤ i ≤ n and 1 ≤ j ≤ t,

f∗(vji u
j
s) = 2mn(t− j) + 2n(i− 1) + 2n(j − 1) + 2s− 1,

2 ≤ i ≤ m, 1 ≤ s ≤ n and 1 ≤ j, k ≤ t.

In view of the above defined labeling pattern, Kt
m,n, t > 1 is an odd harmonious

graph.

An odd harmonious labeling of K3
3,4 is shown in Figure 5.

Theorem 2.6. The graph Kt
(m1,n1),(m2,n2),··· ,(mt,nt)

, t > 1 is odd harmonious.

Proof. Let G be a graph Kt
(m1,n1),(m2,n2),··· ,(mt,nt)

. Let vi1, v
i
2, · · · , vmi

i and

ui
1, u

i
2, · · · , un

i
i where 1 ≤ i ≤ t be the vertices of the ith copy of G. Iden-

tify the first vertex vi1, 1 ≤ i ≤ t of each copy and consider that as a central
vertex v.

In graphG, |V (G)| = (m1+n1)+(m2+n2−1)+(m3+n3−1)+· · ·+(mt+nt−1)
and |E(G)| = m1n1 + m2n2 + · · · + mtnt. We define a labeling f : V (G) →
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Figure 5: An odd harmonious labeling of K3
3,4.

{0, 1, 2, · · · , 2(m1n1 +m2n2 + · · ·+mtnt)− 1} as follows:

f(v) = 0,

f(vti) = 2nt(i − 1), 1 ≤ i ≤ mt,

f(uj
i ) = 2i− 1 + 2[n1 + n2 + · · ·+ nj−1], 1 ≤ i ≤ nj and 1 ≤ j ≤ t,

f(vji ) = f(vm
j+1
j+1) + 2(nj + nj+1) + 2nj(i− 2), 1 ≤ i ≤ mj ,

j = t− 1, t− 2, · · · , 1.

The induced edge labels are

f∗(vuj
i ) = 2i− 1 + 2(n1 + n2 + · · ·+ nj−1), 1 ≤ i ≤ nj, 1 ≤ j ≤ t,

f∗(vji u
k
s) = f(vm

j+1
j+1) + 2(nj + nj+1) + 2nj(i− 2) + 2s− 1 + 2(n1 + n2 + · · ·

+nk−1), 2 ≤ i ≤ mj , 1 ≤ j, k ≤ t− 1 and 1 ≤ s ≤ nk,

f∗(vtiu
t
s) = 2nt(i− 1) + 2s− 1 + 2(n1 + n2 + · · ·+ nt−1),

2 ≤ i ≤ mt and 1 ≤ s ≤ nt.

In view of the above defined labeling pattern, Kt
(m1,n1),(m2,n2),··· ,(mt,nt)

is an odd
harmonious graph.

An odd harmonious labeling of K3
(2,2),(2,3),(3,4) is shown in Figure 6.

s s s s s s s

s ss s
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Figure 6: An odd harmonious labeling of K3
(2,2),(2,3),(3,4)
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Theorem 2.7. The circle formation of r copies of Km,n when r ≡ 0(mod 4) is

odd harmonious.

Proof. Let G be a graph of circle formation of r copies of Km,n. Let
ui,1, ui,2, · · · , ui,m and vi,1, vi,2, · · · , vi,n be the vertices of the ith copy of Km,n,
where 1 ≤ i ≤ r.

In graph G, |V (G)| = r(m+n) and |E(G)| = r(mn+1). We define a labeling
f : V (G) → {0, 1, 2, · · · , 2r(mn+ 1)− 1} as follows:

f(ui,j) = (i − 1)(nm+ 1) + 2nj − 2n, i = 1, 3, 5, · · · , r
2
− 1 and 1 ≤ j ≤ m,

f(ui,j) = (i − 1)nm+ 2nj − 2n+ i+ 1, i =
r

2
+ 1,

r

2
+ 3, · · · , (r − 1),

1 ≤ j ≤ m,

f(ui,j) = (i − 2)nm+ 2nj + i− 1, i = 2, 4, 6, · · · , r and 1 ≤ j ≤ m,

f(vi,j) = (i − 1)nm+ 2j + i− 2, i = 1, 3, 5, · · · , r − 1 and 1 ≤ j ≤ n,

f(vi,j) = inm− 2n+ 2j + i− 2, i = 2, 4, 6, · · · , r
2
and 1 ≤ j ≤ n,

f(vi,j) = inm− 2n+ 2j + i, i =
r

2
+ 2,

r

2
+ 4, · · · , r and 1 ≤ j ≤ n.

The induced edge labels are

f∗(ui,jvi,k) = 2(i− 1)nm+ 2i− 3 + 2nj − 2n+ 2k, i = 1, 2, 3, · · · , r
2
,

f∗(ui,jvi,k) = 2(i− 1)nm+ 2i− 1 + 2nj − 2n+ 2k,

i =
r

2
+ 1,

r

2
+ 2,

r

2
+ 3, · · · , r,

for 1 ≤ j ≤ m and 1 ≤ k ≤ n.

In view of the above defined labeling pattern, the circle formation of r copies
of Km,n is an odd harmonious graph.

An odd harmonious labeling of circle formation of 4 copies of K2,3 is shown
in Figure 7.

Theorem 2.8. An open star of complete bipartite graph S(t.Km,n), t > 1 is odd

harmonious.

Proof. Let G = S(t.Km,n) be a graph obtained by replacing each vertices of K1,t

except the apex vertex of K1,t by the graph Km,n. Let u0 be the apex vertex
of K1,t. That is u0 is the central vertex of the graph G. Let vi1, v

i
2, · · · , vim,

ui
1, u

i
2, · · · , ui

n where 1 ≤ i ≤ t be the vertices of the ith copy of S(t.Km,n).
We join the central vertex u0 with the vertices vi1, where 1 ≤ i ≤ t. In G =
S(t.Km,n), |V (G)| = t(m+n+1) and |E(G)| = t(mn+1). We define a labeling
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Figure 7: An odd harmonious labeling circle formation of 4 copies of K2,3

f : V (G) → {0, 1, 2, · · · , 2t(mn+ 1)− 1} as follows:

f(u0) = 0,

f(vik) = 2nt(k − 1) + 2i− 1, 1 ≤ i ≤ t and 1 ≤ k ≤ m,

f(ui
k) = 2k + 2(n+ 1)(t− i), 1 ≤ i ≤ t and 1 ≤ k ≤ n.

The induced edge labels are

f∗(u0v
i
1) = 2i− 1, 1 ≤ i ≤ t,

f∗(viku
i
z) = 2ntk − 2ni+ 2z + 2t− 1, 1 ≤ i ≤ t, 1 ≤ z ≤ n and 1 ≤ k ≤ m.

In view of the above defined labeling pattern S(t.Km,n) is an odd harmonious
graph.

An odd harmonious labeling of S(6.K2,3) is shown in Figure 8.
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Figure 8: An odd harmonious labeling of S(6.K2,3).
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Theorem 2.9. An one point union of path of graph P t
n(t.n.Kp,q) is odd harmo-

nious if t is odd.

Proof. Let G = P t
n(t.n.Kp,q). Let ul,k,i (1 ≤ l ≤ t, 1 ≤ k ≤ n and 1 ≤ i ≤ p)

and vl,k,j (1 ≤ l ≤ t, 1 ≤ k ≤ n and 1 ≤ j ≤ q) be the vertices of kth copy of path
union of n copies of Km,n lies in the lth branch of the graph G, l = 1, 2, · · · , t.
We join the vertices of ul,1,1 with u0 by an edge, l = 1, 2, · · · , t. Also we join the
vertices vl,k,m to ul,k+1,1 for k = 1, 2, · · · , n − 1 and l = 1, 2, · · · , t by an edge.
In G = P t

n(t.n.Kp,q), |V (G)| = tn(p+ q) + 1 and |E(G)| = tn(pq + 1).

We define a labeling f : V (G) → {0, 1, 2, · · · , 2tn(pq + 1)− 1} as follows:

f(u0) = 0,

f(ul,1,1) = 2l− 1, 1 ≤ l ≤ t,

f(vl,1,1) = 2 + 4(t− l), 1 ≤ l ≤ t,

f(ul,k,i) = 2l− 1 + 2tq(i− 1) + tp(p+ q − 1)(k − 1), 1 ≤ l ≤ t,

1 ≤ k ≤ n, 1 ≤ i ≤ p,

f(vl,k,j) = 2 + 4(t− l) + 2t(j − 1) + 2tq(k − 1), 1 ≤ l ≤ t,

1 ≤ k ≤ n and 1 ≤ j ≤ q.

The induced edge labels are

f∗(u0ul,1,1) = 2l− 1, 1 ≤ l ≤ t,

f∗(ul,k,ivl,k,j) = 2l− 1 + 2tq(i− 1) + tp(p+ q − 1)(k − 1) + 2

+4(t− l) + 2t(j − 1) + 2tq(k − 1), 1 ≤ l ≤ t, 1 ≤ k ≤ n,

1 ≤ i ≤ p and 1 ≤ j ≤ q,

f∗(vl,k,qul,k+1,1) = 4(t− l) + 2t(q − 1) + ktp(p+ q − 1 + 2tq(k − 1)

+2l+ 1, 1 ≤ l ≤ t and 1 ≤ k ≤ n− 1.

In view of the above defined labeling pattern, P t
n(t.n.Kp,q) is an odd harmonious

graph.

An odd harmonious labeling of P 3
2 (3.2.K2,3) is shown in Figure 9.
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