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Abstract. In this paper a new class of Cayley digraphs, namely, Cayley conjugate
digraphs C(G,S) associated with a finite group G and a subset S of G is introduced.
The adjacency in C(G,S) is defined in terms of a conjugacy relation in G by the
elements of S. Further, its basic properties as well as the structure of components of
C(G,S) are studied.
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1. Introduction

In 1936 Konig [17] posed the question whether for any abstract group G, there
is a graph G such that the automorphism group of G is isomorphic to G, or, not?
This question was answered by Frucht [10] affirmatively by using the notion of
color preserving automorphsims of a Cayley digraph associated with the given
group. A directed graph, or, a digraph D consists of a finite set V of points
called vertices and a set E of ordered pairs of distinct elements of V called edges
and it is denoted by D (V,E). Let G be a group and let S be a subset of G.
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The Cayley digraph D (G,S) corresponding to G and S has G as vertex set and
E = {(g, gs)/g ∈ G, s ∈ S} as the edge set. The element s is called the color
or label of the edge (g, gs). In fact the edges are defined by the right regular
representations of G by the elements of S, which are used in Cayley Theorem
in establishing that every group G is isomorphic to a permutation group of G.
It is well established (see [21, pp. 447, 448]) that the group of color preserving
automorphisms of the Cayley digraph D(G,S) associated with a group G and a
subset S of G is isomorphic to G.

Extensive studies on Cayley graphs have been carried out by C.H. Li [7], E.
Knill [8], Imrich and Watkins [13], J. Morris [15], Y. Nam [23], Biggs [3] and
others. Arithmetic Cayley graphs associated with the Euler totient function, the
divisor function and the set of quadratic residues and quartic residues modulo
a prime are studied in [4, 5, 18, 19]. In recent times considerable research work
has been carried out on Cayley graphs associated with commutative rings [1],
groups [2, 16, 22] and semigroups [11, 14, 16].

In this study, a new class of graphs called Cayley conjugate digraphs C(G,S)
associated with a finite group G and a subset S of G is introduced and it is
established that these graphs are directed graphs with loops and multiple edges,
which are disconnected, balanced and regular. The structure of components of
these graphs is also studied. The reader is referred to Bondy and Murty [6],
Narsingh Deo [20] and Frank Harary [9] for graph theory and Herstein [12] for
group theory terminology and notations that are not explained here.

2. Basic Properties of The Cayley Conjugate Digraph C(G,S).

Definition 2.1. Let G be a finite group and S be a subset of G. The Cayley

conjugate digraph C(G,S) has the vertex set V = G and the edge set E =
{(g, s−1gs)/s ∈ S}. The element s in S is called the color, or, label of the edge

(g, s−1gs) in C(G,S).

Example 2.2. Let S4 = {ai / 0 ≤ i ≤ 23} be the permutation group of the set
{1, 2, 3, 4}, where

e = a0 = (1), a1 = (1 2), a2 = (1 3), a3 = (1 4), a4 = (2 3), a5 = (2 4),

a6 = (3 4), a7 = (1 2 3), a8 = (1 3 2), a9 = (1 3 4), a10 = (1 4 3), a11 = (1 4 2),

a12 = (1 2 4), a13 = (2 4 3), a14 = (2 3 4), a15 = (1 2 3 4), a16 = (1 2 4 3),

a17 = (1 3 4 2), a18 = (1 3 2 4), a19 = (1 4 3 2), a20 = (1 4 2 3),

a21 = (1 2)(3 4), a22 = (1 3)(2 4), a23 = (1 4)(2 3).

For the subset S = {β, τ}, where β = (1 2 3 4) and τ = (1 2), let us construct
the graph C(G,S) by using the following calculations:

τ−1eτ = e τ−1a12τ = a11 β−1eβ = e β−1a12β = a9
τ−1a1τ = a1 τ−1a13τ = a10 β−1a1β = a3 β−1a13β = a8
τ−1a2τ = a4 τ−1a14τ = a9 β−1a2β = a5 β−1a14β = a7
τ−1a3τ = a5 τ−1a15τ = a17 β−1a3β = a6 β−1a15β = a15
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τ−1a4τ = a2 τ−1a16τ = a19 β−1a4β = a1 β−1a16β = a18

τ−1a5τ = a3 τ−1a17τ = a15 β−1a5β = a2 β−1a17β = a20

τ−1a6τ = a6 τ−1a18τ = a20 β−1a6β = a4 β−1a18β = a17

τ−1a7τ = a8 τ−1a19τ = a16 β−1a7β = a12 β−1a19β = a19

τ−1a8τ = a7 τ−1a20τ = a18 β−1a8β = a11 β−1a20β = a16

τ−1a9τ = a14 τ−1a21τ = a21 β−1a9β = a14 β−1a21β = a23

τ−1a10τ = a13 τ−1a22τ = a23 β−1a10β = a13 β−1a22β = a22

τ−1a11τ = a12 τ−1a23τ = a22 β−1a11β = a10 β−1a23β = a21

Since τ−1a1τ = a1, (a1, a1) is an edge with color τ and this is a loop. Fur-
ther τ−1a2τ = a4 gives an edge (a2, a4) with color τ . Similarly, the equation
β−1a4β = a1 shows that (a4, a1) is an edge with color β. In this way the other
edges can be found and the conjugate digraph C(G,S) is given in Fig. 1. Here
each edge is denoted by its color. This graph has five components, namely,
I, II, III, IV , and V .

Figure 1: The conjugate digraph C(G,S)

Note 2.3. Observe that S generates S4 in this example.

Example 2.4. Let G=S4, and S={β}, where β=(1 2 3 4). By using the calcula-
tions given in Example 2.2, the digraph C(G,S) is given in Fig. 2.

Note 2.5. Observe that in this example S is not a generating subset of S4.
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Figure 2: The digraph C(G,S)

Theorem 2.6. The digraph C(G,S) is disconnected.

Proof. Let S be a subset of a group G. Consider the vertex e in the digraph
C(G,S), where e is the identity element in G. Since s−1es = e, for every s in S,
each s in S induces an edge from e to e, which is a loop at the vertex e. Further,
if there is an edge from a vertex g to e, then s−1gs = e. This gives, g = e, which
shows that e is not adjacent to any other vertex of C(G,S). So e is an isolated
vertex of C(G,S) and thus it is disconnected.

Theorem 2.7.

(1) A vertex v in the digraph C(G,S) has a loop if, and only if, S ∩ N(v) is

nonempty, where N(v) is the normalizer of v in G.

(2) The number of loops at a vertex v is |S ∩N(v)|.

(3) The digraph C(G,S) has at least 2|S| loops.

Proof. (1). C(G,S) has a loop at the vertex v ⇐⇒ s−1vs = v, for some
s ∈ S ⇐⇒ vs = sv, for some s ∈ S, ⇐⇒ s ∈ N(v) fore some s ∈ S ⇐⇒
S ∩N(v) 6= ∅.

(2). Let v be a vertex in C(G,S). By (i) each element in S ∩N(v) induces a
loop at v. Further each element s in S−(S∩N(v)) induces an edge (v, s−1vs) at
v and this edge is not a loop, since s 6∈ N(v) implies that s−1vs 6= v. Therefore
the total number of loops at a vertex v is |S ∩N(v)|.

(3). From the proof of Theorem 2.6, it is evident that there are |S| loops at
the vertex e. Further, for each s in S, s−1ss = s, so that each s in S induces a
loop at the vertex s. Hence the digraph C(G,S) has at least one loop at each
s ∈ S, whose number is |S|. Hence the digraph C(G,S) has at least 2|S| loops.
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The following theorem gives a graphical representation of the centre of a
group.

Theorem 2.8. Let S be a generating subset of G. The set of all vertices in

C(G,S) having loops only, forms the centre Z(G) of the group G.

Proof. Let A be the set of all vertices in C(G,S) having loops only. For any
element v in Z(G), s−1vs = vs−1s = v, which shows that there is a loop at v,
so that Z(G) ⊆ A.

On the other hand, let v ∈ A and g ∈ G. Since S is a generating set of G,
g = s1s2...sn, for some s1, s2, ..., sn ∈ S, so that

g−1vg = (s1s2...sn)
−1v(s1s2...sn) = s−1

n s−1
n−1s

−1
n−2...s

−1
2 s−1

1 vs1s2...sn.

As A consists of vertices having only loops, s−1
1 vs1 = s−1

2 vs2 = ... = s−1
n vsn = v,

which gives g−1vg = v, so that v ∈ Z(G) and hence Z(G) = A.

Remark 2.9. Theorem 2.8 need not be true if S is not a generating subset of G.
In the example 2.4, the subset S = {(1 2 3 4)} is not a generating set of S4.
The subset {e, a15, a19, a22} of vertices, which have loops only, is not the centre
of S4.

Theorem 2.10. The digraph C(G,S) has only loops at each vertex if, and only

if, S ⊆ Z(G), where Z(G) is the centre of G.

Proof. C(G,S) has only loops at each of its vertex v

⇐⇒ s−1vs = v, for all v ∈ G and for all s ∈ S

⇐⇒ vs = sv, for all v ∈ G and for all s ∈ S

⇐⇒ s ∈ Z(G), the center of G, for all s ∈ S.

The following corollary is immediate.

Corollary 2.11. If S generates G and the digraph C(G,S) has only loops, then

the group G is abelian.

Definition 2.12. A digraph D(V,E) can alternatively be viewed as the finite set V
of points together with a relation R on V, where R = E. In the digraph D(V,R)
if R is a reflexive relation on V, then D(V,R) is called a reflexive digraph; if R
is a symmetric relation on V, then D(V,R) is called a symmetric digraph and

if R is a transitive relation on V, then D(V,R) is called a transitive digraph. A

reflexive, symmetric and transitive digraph is called an equivalence digraph.

The following theorems give the conditions under which the Cayley conjugate
digraph C(G,S) becomes an equivalence digraph.
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Theorem 2.13. The digraph C(G,S) is reflexive if S ∩ Z(G) 6= ∅ .

Proof. Let S ∩Z(G) 6= ∅. Then there is an element s ∈ S and s ∈ Z(G), so that
sv = vs, for every v ∈ G, or, s−1vs = v for every v ∈ G. This shows that for
every v ∈ G, (v, v) is an edge of C(G,S), which is a loop at v and the digraph
C(G,S) is reflexive.

Theorem 2.14. The digraph C(G,S) is transitive if, and only if, S is a subgroup

of G.

Proof. Let S be a subgroup of G and let (a, b) and (b, c) be any two edges
of C(G,S). Then, for some s1, s2 ∈ S, b = s−1

1 as1 and c = s−1
2 bs2, so that

c = (s1s2)
−1a(s1s2). Since S is a subgroup of G, s1, s2 ∈ S implies that s1s2 ∈ S

and hence (c, a) is also an edge of C(G,S), so that the digraph is transitive.

Conversely, let the digraph C(G,S) be transitive. Let s1, s2 ∈ S and
a ∈ G. Then (a, s−1

1 as1) and (s−1
1 as1, s

−1
2 (s−1

1 as1)s2) are edges in C(G,S). This
shows that (a, s−1

1 as1) and (s−1
1 as1, (s1s2)

−1a(s1s2)) are edges in C(G,S). Since
C(G,S) is transitive, (a, (s1s2)

−1a(s1s2)) is also an edge in C(G,S). This gives
s1s2 ∈ S, so that S is a closed subset of G. Since G is finite, S is a subgroup of
G.

Theorem 2.15. The digraph C(G,S) is an equivalence digraph if, and only if, S
is a subgroup of G.

Proof. Let the digraph C(G,S) be an equivalence digraph. Then C(G,S) is a
transitive digraph, and hence by Theorem 2.14, S is a subgroup of G. On the
other hand, if S is a subgroup of G, then by Theorem 2.14, the digraph C(G,S)
is transitive. Further S ∩Z(G) 6= ∅, as the identity element e ∈ S ∩Z(G). So by
Theorem 2.13, the digraph C(G,S) is reflexive. Let (a, b) be an edge of C(G,S).
Then b = s−1as, or, a = (s−1)−1bs−1 for some s ∈ S. Since S is a subgroup of
G, s−1 ∈ S and (b, a) is also an edge of C(G,S). Therefore the digraph C(G,S)
is symmetric and hence it is an equivalence digraph.

Definition 2.16. [20, p. 195] The number of edges incident into a vertex v of a

digraph D is called the in-degree of v and it is denoted by d−(v) .The number of

edges incident out of a vertex v of a digraph D is called the out-degree of v and

it is denoted by d+(v).

Definition 2.17. [20, p. 195] A digraph D is said to be balanced if for every vertex

v of D the in-degree equals the out-degree, that is, d−(v) = d+(v).

Definition 2.18. [20, p. 197] A balanced digraph is said to be regular if every

vertex has the same in-degree and out-degree as every other vertex.
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Theorem 2.19. The Cayley conjugate digraph C(G,S) is balanced, 2|S| -regular
and the number of edges in C(G,S) is |G||S|.

Proof. Let v be any vertex of C(G,S). Clearly each element s in S induces
exactly one out-edge (v, s−1vs) and exactly one in-edge (svs−1, v) at v. Hence

Figure 3: One out-edge and one in-edge

d−(v) = |S| = d+(v), where d−(v) is the in-degree and d+(v) is the out-degree
of the vertex v, so that the digraph C(G,S) is balanced. Also the degree of any
vertex v is d−(v) + d+(v) = 2|S|. So the digraph C(G,S) is 2|S| - regular. Since
the digraph C(G,S) is 2|S| -regular and the number of vertices in C(G,S) is
|G|, the sum of the degrees of the vertices in C(G,S) is 2|S||G|. Since each edge
induces two degrees, the total number of edges in C(G,S) is |G||S|.

3. Structure of the Components of C(G,S)

In Theorem 2.6, it is proved that the digraph C(G,S) is disconnected, so that
it is decomposed into the disjoint union of its components. In this section we
study the nature of the components in the digraph C(G,S). Conditions under
which parallel edges exist in C(G,S) are also discussed at the end of this section.

Theorem 3.1. The components of the digraph C(G,S) are of the form C(G
′

, S),
for some subset G

′

of G.

Proof. Let W be a component of C(G,S). Then the vertex set of W is a subset
of G, say G

′

. We shall show that W = C(G
′

, S).

Let f be an edge of C(G
′

, S). Then f = (v, s−1vs) for some v ∈ G
′

and s ∈ S.
So v ∈ G

′

and hence (v, s−1vs) is an edge in C(G,S). Since any two components
of a digraph are edge disjoint as well as vertex disjoint, v ∈ G

′

implies that the
vertex s−1vs must lie in the vertex set G

′

of W. So f = (v, s−1vs) is an edge of
W, so that C(G

′

, S) ⊆ W .

Also, if (a, b) is any edge in W, then it is also an edge in C(G,S), so that b =
s−1as, for some s ∈ S. Since a ∈ G

′

, the vertex set of W, the edge (a, s−1as) ∈
C(G

′

, S) =⇒ (a, b) ∈ C(G
′

, S). This shows that W ⊆ C(G
′

, S) and W =
C(G

′

, S).
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Theorem 3.2. Every component of C(G,S) is strongly connected.

Proof. Let W be any component of C(G,S). Then by Theorem 3.1, W =
C(G

′

, S), for some subset G
′

of G. As in Theorem 2.19, one can see that W
is balanced and 2|S|-regular. That is, every component of C(G,S) is connected
and balanced, so that it is an Euler digraph [20, Theorem 9.1, p. 204]. Since
every Euler digraph is strongly connected, every component of C(G,S) is also
strongly connected [20].

Theorem 3.3. Let S be a set of generators of G. Then any two vertices of C(G,S)
lie in the same component if, and only if, they are conjugate in G.

Proof. Let S be a set of generators of G and let u and v be any two vertices of
the digraphC(G,S), which are conjugate in G. Then v = g−1ug, for some g in
G. Since S is a set of generators of G and g ∈ G, we have g = s1s2...sn, for some
s1,s2,...sn ∈ S. Thus,

v = (s1s2...sn)
−1u(s1s2...sn) = s−1

n s−1
(n−1)...s

−1
2 s−1

1 us1s2...sn.

Setting u = u0, u1 = s−1
1 u0s1, u2 = s−1

2 u1s2, ..., v = un = s−1
n un−1sn, one can

see that (u0, u1), (u1, u2), ..., (un−1, un) are edges in C(G,S) and the vertices u
and v are connected by a directed path u0s1u1s2u2...snun, where u = u0 and
un = v, showing that the vertices u and v lie in the same component of C(G,S).

Conversely, let us assume that the vertices u and v lie in the same component
of the digraph C(G,S). Since a component of C(G,S) is strongly connected,
the vertices u and v are connected by a directed path, say u0r1u1r2u2...rnun,
where u = u0, v = un, r1, r2, ..., rn ∈ S and u0, u1, ..., un ∈ G. Since the vertices
ui−1and ui are joined by the edge corresponding to the label ri, we have ui =
r−1
i ui−1ri, 1 ≤ i ≤ n. Therefore

v = un = r−1
n r−1

n−1r
−1
n−2...r

−1
2 r−1

1 u0r1r2...rn−1rn

= (r1r2...rn−1rn)
−1u(r1r2...rn−1rn) = g−1ug,

where g = r1r2...rn−1rn ∈ G, so that u and v are conjugate in G.

Remark 3.4. The above theorem need not be true if S is not a set of generators
of G. In the digraph given in the Example 2.4, S is not a generating set of G.
The vertices a8 and a9 are 3−cycles, so that they are conjugate to each other in
S4, but they lie in different components.

Remark 3.5. If S generates G, from Theorem 3.3, all vertices in a conjugacy
class of G lie in the same component of C(G,S) and vice versa. So, the number
of components of the digraph C(G,S) is equal to the number of conjugacy classes
of G. Since the components of a graph induce a partition of the vertex set of the
graph, the conjugacy classes of G partition the group G, which is nothing but
the class equation for the group G. We use this fact in the following theorem.
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Theorem 3.6. If S generates G, a component of C(G,S) has at most (|G|)/2
vertices.

Proof. Let G be a group and let S be a subset of G such that < S >= G.
Let v be any vertex of a component W of C(G,S). By Theorem 3.3, all vertices
of W are conjugate to v in G. So |W | = C(v), where C(v) = {g−1vg/g ∈ G}
is the conjugacy class of v in G. But |C(v)| = |G|/|N(v)|, where N(v) is the
normalizer of v in G. Since N(v) contains at least two elements, namely, v and
e, the identity element of G, |N(v)| ≥ 2. Thus |W | = |C(v)| ≤ |G|/2.

Remark 3.7. Let v be any vertex of C(G,S). Clearly each element s in S induces
an out-edge at the vertex v in C(G,S). If S = G, then v has |G| out-edges
in C(G,S). Since any component of C(G,S) has at most |G|/2 vertices, the
component containing the vertex v also has at most |G|/2 vertices. Thus, at
least two out-edges at v induced by different colors, say s1 and s2 have the same
terminating vertex, say w. This gives the possibility of parallel edges in the
digraph C(G,S). The following theorem gives an important criterion regarding

Figure 4: Parallel edges

parallel edges in C(G,S).

Theorem 3.8. The vertex v in the digraph C(G,S) has parallel out-edges if, and

only if, for some s ∈ S, the coset N(v)s contains an element of S other than s.

Proof. A vertex v in C(G,S) has parallel out-edges

⇐⇒ for some s ∈ S there exists t ∈ S,t 6= s such that (v, s−1vs) and

(v, t−1vt) are parallel edges

⇐⇒ for some s ∈ S there exists t ∈ S, t 6= s such that s−1vs = t−1vt

⇐⇒ for some s ∈ S there exists t ∈ S, t 6= s such that ts−1v = vts−1

⇐⇒ for some s ∈ S there exists t ∈ S, t 6= s such that ts−1 ∈ N(v)

⇐⇒ for some s ∈ S there exists t ∈ S,t 6= s such that t ∈ N(v)s.

Conclusion. The structure of component preserving automorphisms and compo-
nent preserving inner automorphisms of C(G,S) are studied separately.

Acknowledgement. The authors express their thanks to Prof. L. Nagamuni
Reddy for his valuable suggestions during the preparation of this paper. The



90 V.S. Pandugayala and M. Levaku

authors also thank Prof. K.P. Shum for his valuable suggestions and the referees
for their critical comments, which enhanced the clarity of the paper.

References

[1] M. Afkhami, K.K. Hasshyarmanesh, On the cozero-divizor graphs of commutative
rings, Southeast Asian Bull. Math. 35 (3) (2011) 753–762.

[2] M. Alaeiyan, On normal edge-transitive Cayley graphs of some abelian groups,
Southeast Asian Bull. Math. 33 (1) (2009) 13–19.

[3] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.

[4] J.A. Bondy, U.S.R. Murty, Graph Theory and Related Topics, Acad. Press, New
York, 1979.

[5] M. Budden, N. Calkins, W.N. Hack, J. Lambert, K. Thompson, Enumeration of
triangles in quartic residue graphs, Integers 11 #A48 (2011), 16 pages.

[6] N. Deo, Graph Theory with Applications to Engineering and Computer Science,
Prentice-Hall of India Pvt. Ltd., New Delhi, 1979.

[7] R. Frucht, Graphs of degree three with a given abstract group, Canad. J. Math.
1 (1949) 365–378.

[8] F. Harary, Graph Theory, Addison Wesley Reading, 1969.

[9] I.N. Herstein, Topics in Algebra, 2nd Ed., Vikas Publishing House Private Limited,
New Delhi, 1975.

[10] W. Imrich, M.E. Watkins, On automorphism groups of cayley graphs, Period
Math. Hungar. 7 (1976) 243–258.

[11] G.M. Jian and S.H. Fan, On undirected Cayley graphs of some completely simple
semigroups, Southeast Asian Bull. Math. 33 (2009) 741–749.

[12] L. John, A.N.P. Kumari, Semigroup theoretical study of Cayley graphs of rectan-
gular bands, Southeast Asian Bull. Math. 35 (4) (2011) 943–950.

[13] C.H. Li, On isomorphisms of finite Cayley graphs: A survey, Discrete Mathematics
256 (2002) 301–334.

[14] A.V. Kelerav, C.E. Praeger, On transitive Cayley graphs of groups and semi-
groups, European Journal of Combinatorics 24 (2003) 59–72.

[15] E. Knill, Notes on connectivity of Cayley coset digraphs, arXiv:math/9411221v1.

[16] D. Konig, Theorie der Endlichen und Unendlichen Graphen, Leipzig, 1936;
Reprinted Chelsea, New York, 1950.

[17] M. Levaku, Studies on Domination Parameters and Enumeration of Cycles in
Some Arithmetic Graphs, Ph.D. Thesis, Sri Venkateswara University, Tirupati,
India, 2002.

[18] B. Maheswari, L. Madhavi, Enumeration of triangles and Hamilton cycles in
quadratic residue Cayley graphs, Chamchuri Journal of Mathematics 1 (1) (2009)
95-103.

[19] B. Maheswari, L. Madhavi, Enumeration of Hamiltion cycles and triangles in Euler
Totient Cayley graphs, Graph Theory Notes of New York LIX (2010) 28–31.

[20] J. Morris, Connectvity of Cayley graphs: A special family, (A survey article),
NSERC Undergraduate Research Award Article, Dept. of Mathematics and
Statistics, Trent University, Peterborough, 2004.

[21] Y. Nam, Isomorphism classes of Cayley permutation graphs, J. Korean Math.
Soc. 34 (2) (1997) 337–344.

[22] K.R. Parthasarathy, Basic Graph Theory, Tata Mc.Graw-Hill Publishing Com-
pany Limited, 1994.

[23] P. Wang and J.S. Li, On the normality of Cayley digraphs of valancy 2 in non-
abelian group of odd order, Southeast Asian Bull. Math. 24 (2) (2000) 323–329.


