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1. Introduction

Without using Linear Algebra techniques such as for being diagonalizable of
matrices (cf. [18], [33] as famous classical items), more directly, we would like to
study projections of matrix algebras over complex or real numbers, to classify
the generalized Bott projections (in our sense) and their spaces algebraically and
geometrically, in the three by three, and four by four matrix cases, and in the
general matrix case. In addition, as just a comparison, unitaries of the complex
matrix algebras are only reviewed.

Our motivation for this study comes from deep and thorough understanding
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the so called Bott projection as well as its basic properties as in [34] (cf. [2],
[26], [27], [28], and [29]). The Bott projection is viewed as a continuous, 2 × 2
matrix projection-valued function on the real two-dimensional sphere S2, which
also connects continuously the two standard rank one projections at north and
south poles on S2. The Bott projection does play an important role in the K-
theory of C∗-algebras (cf. [31] and [34], as well as [2], [26], [27], [28], and [29]).
Namely, it gives a non-trivial K-theory class of the C∗-algebra of all continuous,
complex-valued functions on the 2-sphere S2. As well, refer to [3] and [13] for
the topological K-theory of spaces, and moreover, see [9] for other topics.

In this paper, we review the Bott projections in the 2 × 2 matrix algebra
over complex numbers, and then obtain algebraic and geometric classification
results on the generalized Bott projections (in our sense) of matrix algebras over
complex or real numbers and on the spaces of the projections in the 3 × 3, and
4× 4 matrix cases, and in the general matrix case. In the 2× 2 matrix case, the
Bott projection and its properties are considered in details, with some refinement
or extension to the literature as in [34]. May as well refer to [31, 8.5], [32], [25],
and moreover, [4], [12], [22], [24]. There may be more other items found in the
literature. For some advanced or developed topics, may refer to [8], [10], [15].
[16], [17], and [21]. Furthermore, may refer to [1], [6], [7], [14], [19], [20], [23],
and [30].

The explicit formulae obtained by determining those projections algebraically
may be some useful as a convenient reference. As well, the geometric (or topo-
logical) structure for the spaces of the generalized Bott projections may have
some applications such as to the theory of C∗-algebras. Certainly, the geometric
(or topological) structure for the spaces may be considered as the first basic step
towards yet a noncommutative geometry (or topology) theory for C∗-algebras
(without stabilizing), such as the (stabilized) K-theory for C∗-algebras ([24],
[34]). As well, the homotopical structure for those spaces is also deduced, but
which is certainly well known (in Linear Algebra or Geometry) (cf. [18], [33]).

Unfortunately, this time we could not determine all the projections in those
cases (except the 2× 2 case), which may involve more further computation, but
such computation in the 3 × 3 case and more may be known to some experts.
This task may be considered in the future, but temporarily postponed.

Notation 1.1. We use the symbol ≡ as meaning a definition. Let i ∈ C with
i2 = −1. We use the symbol ≈ as meaning a homemorphism. We denote by
Mn(C) the n×n matrix Banach or C∗-algebra over C of complex numbers. For
convenience, we may consider the Euclidean norm on Mn(C) as the complex

n2-dimensional Euclidean vector space Cn2

, to equip its topolology. We denote
by Mn(R) the n× n matrix Banach algebra over R of real numbers.

Recall that an element p ∈ Mn(C) is a projection if and only if p = p2 = p∗

with p∗ the adjoint of p, i.e, the complex conjugate transpose pt of p. We denote
by P (Mn(C)) the space of all non-trivial projections of Mn(C) with relative
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topology, and by

P (Mn(C))
∼ = P (Mn(C)) ∪ {0n, 1n} (as union)

the space of all projections of Mn(C), where 0n is the zero matrix and 1n is the
identity matrix. Define P (Mn(R)) and P (Mn(R))

∼ similarly.

For a, b ∈ Mn(C) (n ≥ 1), we denote by a⊕ b the diagonal sum in M2n(C).

2. The 2× 2 Matrix Case

By solving the equation for the definition of 2× 2 matrix projections, we obtain
that, with several proper notations according to the calculation in the proof
below,

Theorem 2.1. If p = (pij) is a non-trivial projection of M2(C), then p is either

(1)

(

1 0
0 0

)

= 1⊕ 0 ≡ p1,

(

0 0
0 1

)

= 0⊕ 1 ≡ p2, or

(2)





1±
√

1−4|z|2

2 z

z
1∓

√
1−4|z|2

2



 ≡ p±(z) (compound order)

for any z ∈ C \ {0}, with 1 > 1− 4|z|2 ≥ 0 if and only if 0 < |z| ≤ 1
2 .

We may as well define p±(0) as

p+(0) = lim
z→0

p+(z) = p1 and p−(0) = lim
z→0

p−(z) = p2.

For z = 1
2e

iθ with θ ∈ R (mod 2π) and |z| = 1
2 ,

p±(
1

2
eiθ) =

(

1
2

1
2e

−iθ

1
2e

iθ 1
2

)

≡ p(
1

2
eiθ).

In particular,

p+(±
1

2
) = p−(±

1

2
) =

(

1
2

1
2

1
2

1
2

)

≡ p(
1

2
) ∈ M2(R).

Moreover, p+(z) = p−(z) for z ∈ C \ {0} if and only if |z| = 1
2 . Furthermore,

p±(z) ∈ M2(R) if and only if z ∈ R. Also, the extended p±(z) are viewed

as injective, continuous, projection-valued functions from the closed ball {z ∈
C | |z| ≤ 1

2} ≡ B(0, 1
2 ) with center 0 and radius 1

2 in C to P (M2(C)).

Proof. Suppose that p = p∗ = (pji). Then

p =

(

a z
z d

)

a, d ∈ R, z ∈ C.
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In addition, if p2 = p, then a2 + |z|2 = a, |z|2 + d2 = d, and (a+ d)z = z.

If z = 0, then a = 0 or 1, and d = 0 or 1.

If z 6= 0, then a+ d = 1, so that if |z| ≤ 1
2 , then

a =
1±

√

1− 4|z|2
2

and d =
1∓

√

1− 4|z|2
2

in R

by solving the quadratic equations above with respect to a and d. And if |z| ≥ 1
2 ,

then

a =
1

2
± i

√

|z|2 − 1

4
and d =

1

2
± i

√

|z|2 − 1

4
not in R,

and hence, this case does not exist.

If p+(z) = p−(z), then |z| = 1
2 by computing the (1, 1)-entry in the equation.

The injectivity and continuity for p±(z) are clear,

We may say that the functions p±(z) are the Bott projection (function) on
B(0, 1

2 ), whose domain can be converted as given later below.

Corollary 2.2. The space P (M2(R)) consists of p1, p2, and p±(t) for t ∈ R with

0 < |t| ≤ 1
2 , where p1 = limt→0 p+(t) ≡ p+(0), p2 = limt→0 p−(t) = p−(0), and

p+(± 1
2 ) = p(12 ) = p−(± 1

2 ).

Now letX and Y be topological spaces andK be a space viewed as a subspace
in both X and Y . We denote by X tK Y the K-jointed sum of X and Y (we
call so), which is defined to be the space obtained from attaching X and Y on
the space K, or in other words, as that in the disjoint union X tY of X and Y ,
the space K viewed in X is identified with K viewed in Y .

We denote by S2 the real 2-dimensional sphere in R3.

Theorem 2.3. There is a homeomorphism between the space P (M2(C))
∼ and the

disjoint union {02} t {12} t (B(0, 1
2 ) t 1

2
S1 B(0, 1

2 )), with

S2 ≈ B(0,
1

2
) t 1

2
S1 B(0,

1

2
) ≈ P (M2(C))

of all rank 1 projections of M2(C), where B(0, 2−1) t2−1S1 B(0, 2−1) is the

space obtained from attaching two copies of B(0, 2−1) along the set 1
2S

1 = {z ∈
C | |z| = 1

2}, as a 1
2S

1-jointed sum or a circle-jointed sum, where 1
2S

1 is homeo-

morphic to the real 1-dimensional sphere S1 = {z ∈ C | |z| = 1}.

Proof. Define a homeomorphism from B(0, 1
2 ) t 1

2
S1 B(0, 1

2 ) onto P (M2(C)) by

sending z ∈ B(0, 2−1) one copy with |z| ≤ 1
2 to p+(z), and w ∈ B(0, 2−1) the

other copy with |w| ≤ 1
2 to p−(w).

We may identify the space 1
2S

1 = {z ∈ C | |z| = 1
2} with S1. It follows from

elementary Topology that we can make the 2-sphere from attaching two distinct
closed unit balls as in R2 along their boundary as S1, in R3.
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Corollary 2.4. There is a homeomorphism between the space P (M2(R))
∼ and

the disjoint union {02} t {12} t ([− 1
2 ,

1
2 ] t 1

2
S0 [− 1

2 ,
1
2 ]), with

S1 ≈ ([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
]) ≈ P (M2(R))

of all rank 1 projections of M2(R), where [−2−1, 2−1] t 1

2
S0 [−2−1, 2−1] is the

space obtained from attaching two copies of the closed interval [−2−1, 2−1] at the
set 1

2S
0 = {t ∈ R | |t| = 1

2} = {± 1
2}, as a two-points-jointed sum, where 1

2S
0 is

homeomorphic to the real 0-dimensional sphere S0 = {t ∈ R | |t| = 1} = {±1}.

We say that two projections p and q of P (M2(C))
∼ are homotopic if there

is a continuous path in P (M2(C))
∼ connecting p and q. We denote by [p] the

homotopy class of p and by P (M2(C))
∼/ ∼ the set of all homotopy classes of

elements of P (M2(C))
∼.

The well known consequences are deduced:

Corollary 2.5. The homotopy classes within P (M2(C))
∼ are given by [02], [12],

and [1⊕ 0] = [0⊕ 1] ∈ P (M2(C))
∼/ ∼.

Proof. Note that limz→0 p+(z) = 1⊕0 and limz→0 p−(z) = 0⊕1 and that p±(z)
take the same value p(z) at z = 1

2e
iθ.

Corollary 2.6. The homotopy classes within P (M2(R))
∼ are given by [02], [12],

and [1⊕ 0] = [0⊕ 1] ∈ P (M2(R))
∼/ ∼.

For x = (xij) ∈ M2(C), we denote by tr(x) the canonical trace of x, which
is viewed as a function on M2(C), where tr(x) = x11 + x22. For x ∈ M2(C), we
denote by rk(x) the rank of x, as a function.

Corollary 2.7. There are bijections among the homotopy set P (M2(C))
∼/ ∼, the

image tr(P (M2(C))
∼) = {0, 1, 2}, and the image rk(P (M2(C))

∼) = {0, 1, 2}.
The same also holds for P (M2(R)))

∼.

Proof. The trace for any p ∈ P (M2(C)) determined explicitly above is easily
computed. Only to determine the rank of p, we may use a well known fact in
Linear Algebra as that each p has eigenvalues 0 or 1, and that there is a unitary
matrix u of M2(C) such that upu∗ is equal to either 0, 12, or p1. Without
using this, we may do computation as in Lemma 2.11 below, but complicated in
general. Note also that tr(upu∗) = tr(p) and that the trace on P (M2(C)) takes
only 1.

Let B(0, r) = {z ∈ C | |z| ≤ r} be the closed unit ball in C with center 0 and
radius r. By changing variables as in the statement below and computing the
components of p±(z) in Theorem 2.1, it follows that
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Proposition 2.8. [34, 5.I (e)] (Extended) We obtain

p+(
z

1 + |z|2 ) =
1

1 + |z|2
(

1 z
z |z|2

)

≡ B+(z), z ∈ C \ {0}

with 0 < |z| ≤ 1, where |z|
1+|z|2 ≤ 1

2 if and only if |z| ∈ [0,∞), as well as

p+(
z

1 + |z|2 ) =
1

1 + |z|2
(

|z|2 z
z 1

)

≡ B−(z), z ∈ C \ {0}

with |z| ≥ 1.

On the other hand,

p−(
z

1 + |z|2 ) =
1

1 + |z|2
(

|z|2 z
z 1

)

≡ B−(z), z ∈ C \ {0}

with 0 < |z| ≤ 1, as well as

p−(
z

1 + |z|2 ) =
1

1 + |z|2
(

1 z
z |z|2

)

≡ B+(z), z ∈ C \ {0}

with |z| ≥ 1.

Namely, the Bott projection(-valued function) in M2(C) as in [34] is defined
on C \ {0} as

B+(z) =
1

1 + |z|2
(

1 z
z |z|2

)

=

{

p+(
z

1+|z|2 ) 0 < |z| ≤ 1,

p−(
z

1+|z|2 ) |z| ≥ 1.

As well, we define

B−(z) =
1

1 + |z|2

(

|z|2 z

z 1

)

=

{

p−(
z

1+|z|2 ) 0 < |z| ≤ 1,

p+(
z

1+|z|2 ) |z| ≥ 1,

which may be called the dual Bott projection-valued function on C \ {0}.
In addition, we may set

B+(0) = 1⊕ 0 = p1 and B−(0) = 0⊕ 1 = p2,

and we have at infinity in any direction,

B+(∞) ≡ lim
|z|→∞

B+(z) = 0⊕1 = p2 and B−(∞) ≡ lim
|z|→∞

B−(z) = 1⊕0 = p1,

but within P (M2(C)).

Moreover, B±(z) are injective as continuous functions from C into

P (M2(C)). Also, B+(z) = B−(z) if and only if |z| = 1, but B+(z) = B−(w)
such that for any z ∈ C \ {0}, there is w ∈ C \ {0} such that z 6= w with

|z| < 1 < |w| or |w| < 1 < |z|, as well as B+(C \ {0}) = B−(C \ {0}) as images
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with B+(B(0, 1) \ {0}) = B−(B
◦(0, 1)c) and B+(B

◦(0, 1)c) = B−(B(0, 1) \ {0}),
where B◦(0, r) = {z ∈ C | |z| < r} is the open ball as the interior of B(0, r).

Furthermore, B±(z) respectively can extend to injective continuous functions

from the real 2-dimensional torus S2 ≈ C t {∞} the one-point compactfication

of C into P (M2(C)), with B+(S
2) = B−(S

2). Namely, by the same symbol

extended, B± are P (M2(C))-valued, continuous functions on S2.

Proof. Let f(x) = x
1+x2 for x ∈ R. Then the derivative f ′(x) = 0 if and only

if x = ±1. Note that f(±1) = ± 1
2 the maximum and the minimum of f(x)

respectively, f(0) = 0, and lim|x|→∞ f(x) = 0, and that f(x) is not injective on
[0,∞), as that for any 0 < x < 1, there is y > 1 such that f(x) = f(y), and that
f((0, 1]) = f([1,∞)) as images.

Compute only the (1, 1)-entry of p+(
z

1+|z|2 ) and p−(
z

1+|z|2 ) case by case as

1 +

√

1− 4
(

z
1+|z|2

)2

2
=

1 +

(√
(1−|z|2)2

1+|z|2

)

2
=







1
1+|z|2 |z| ≤ 1,

|z|2

1+|z|2 |z| ≥ 1,

1−
√

1− 4
(

z
1+|z|2

)2

2
=

1−
(√

(1−|z|2)2

1+|z|2

)

2
=







|z|2

1+|z|2 |z| ≤ 1,

1
1+|z|2 |z| ≥ 1.

If B±(z) = B±(w) respectively, then z = w.

If B+(z) = B−(z), then |z| = 1.

Theorem 2.9. There are identities and homeomorphisms as

B+(S
2) ≡ {B+(z) | z ∈ C ∪ {∞}} = {B−(z) | z ∈ C ∪ {∞}} ≡ B−(S

2)

=P (M2(C)) ≈ B(0,
1

2
) t 1

2
S1 B(0,

1

2
) ≈ B(0, 1) tS1 B(0, 1) ≈ S2.

In other words, the Bott projection-valued function B+ and the dual

Bott projection-valued function B− extended on S2 are homeomorphisms to

P (M2(C)).

Recall now that the complex projective plane CP (1) is defined to be the set
of all equivalence classes [(z1, z2)] (as directions) of points (z1, z2) ∈ C2\{(0, 0)},
where (z1, z2) is equivalent to (z′1, z

′
2) if and only if there is some non-zero λ ∈ C

such that λ(z1, z2) = (λz1, λz2) = (z′1, z
′
2).

Lemma 2.10. [34, 5.I (a)] The complex projective space CP (1) is homeomorphic

to the real 2-dimensional sphere S2.

Proof. Take [(0, 1)] ∈ CP (1). Let [(z1, z2)] ∈ CP (1)\{[(0, 1])}with z1 6= 0. Then
(z1, z2) = z1(1, z

−1
1 z2). Thus [(z1, z2)] = [(1, z−1

1 z2)]. Since [(1, z)] = [(1, w)] if
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and only if z = w ∈ C, CP (1) \ {[(0, 1])} is identified with C, which is homeo-
morphic to R2. Note as well that for (z1, z2) = z1(1, z

−1
1 z2) with z1 6= 0, if z1

converges to 0 ∈ C, then limz1→0 z
−1
1 z2 = ∞. Hence [(z1, z2)] = [(1, z−1

1 z2)] con-
verges to [(0, 1)] in CP (1) as z1 → 0. It then follows that CP (1) is homeomorphic
to S2 as the one-point compactification of R2.

Lemma 2.11. [34, 5.I (b)] (Extended) The Bott projection B+(z) at z ∈ C is

also the projection from C2 to the complex 1-dimensional subspace spanned by a

point (1, z) ∈ C2 as a column vector.

As well, the dual Bott projection B−(z) at z ∈ C is also the projection from

C2 to the complex 1-dimensional subspace spanned by a point (z, 1) ∈ C2 as a

column vector.

Moreover, for z ∈ C we obtain

B+(z)

(

−z
1

)

=

(

0
0

)

and B−(z)

(

1
−z

)

=

(

0
0

)

.

Proof. Indeed, compute that for (z1, z2) ∈ C
2,

B+(z)

(

z1
z2

)

=
1

1 + |z|2
(

1 z
z |z|2

)(

z1
z2

)

=
z1 + zz2
1 + |z|2

(

1
z

)

=
〈(z1, z2), (1, z)〉

‖(1, z)‖2
(

1
z

)

,

where 〈(z1, z2), (w1, w2)〉 = z1w1+z2w2 is the complex inner product for C2 and
‖(z1, z2)‖ =

√

〈(z1, z2), (z1, z2)〉 the norm. As well,

B−(z)

(

z1
z2

)

=
1

1 + |z|2
(

|z|2 z
z 1

)(

z1
z2

)

=
z1z + z2
1 + |z|2

(

z
1

)

=
〈(z1, z2), (z, 1)〉

‖(z, 1)‖2
(

z
1

)

.

Lemma 2.12. [34, 5.I (c)] (Extended) There is a homeomorphism from CP (1) \
{[(0, 1)]} to the subspace {B+(z) | z ∈ C} of P (M2(C)), defined by sending [(1, z)]
to B+(z) for z ∈ C.

There is also a homeomorphism from CP (1) \ {[(0, 1)]} to the subspace

{B−(z) | z ∈ C} of P (M2(C)), defined by sending [(1, z)] to B−(z) for z ∈ C.

Corollary 2.13. [34, 5.I (d)] (Extended) There are homeomorphisms as follows:

CP (1) ≈ S2 ≈ {B+(z) | z ∈ C} ∪ {p2} = B+(S
2)

= {B−(z) | z ∈ C} ∪ {p1} = B−(S
2) = P (M2(C)).

Unitaries 2.14. We now denote by U2(C) the group of 2× 2 unitary matrices of
M2(C). Namely, u ∈ U2(C) if and only if u∗u = 12 = uu∗.

For z ∈ C, we define

u+(z) =
1

√

1 + |z|2

(

1 −z
z 1

)

and u−(z) =
1

√

1 + |z|2

(

z 1
1 −z

)

.
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Lemma 2.15. [34, 5.I (f)] (Extended) For any z ∈ C, it follows that u(z)± ∈
U2(C). As well, u+(z) = u+(z)

∗ if and only if z = 0 and u−(z) = u−(z)
∗ if and

only if z ∈ R, and that

u+(z)p1u+(z)
∗ ≡ Ad(u+(z))p1 = B+(z) and Ad(u−(z))p1 = B−(z).

Now let

u =

(

u11 u12

u21 u22

)

≡
(

u1 u2

)

∈ U2(C)

with u1 and u2 as column vectors in C2. As a well known fact, there is an
equivalence between u ∈ U2(C) and u∗u = 12. Equivalently, ‖u1‖2 = |u11|2 +
|u21|2 = 1 = ‖u2‖2 = |u12|2 + |u22|2 and 〈u1, u2〉 = 0.

We denote by SU2(C) the normal subgroup of U2(C) with determinant 1.

Lemma 2.16. [5, pp. 7] There is a homeomorphism between SU2(C) and S3 the

3-dimensional sphere.

Proof. It follows from the norm 1, the inner product 0, and determinant 1 that
if u ∈ SU2(C), then

u =

(

u11 −u21

u21 u11

)

, ‖u1‖2 = 1.

Indeed, check that

〈u1, u2〉u12 + (det u)u22 = 0 u12 + 1 u22 = u22

=(u11u12 + u21u22)u12 + (u11u22 − u12u21)u22

=u11(|u12|2 + |u22|2) = u11,

〈u1, u2〉u22 − (det u)u12 = 0 u22 − 1 u12 = −u12

=(u11u12 + u21u22)u22 − (u11u22 − u12u21)u12

=u21(|u22|2 + |u12|2) = u21.

If ui1 = si1 + iti1 with si1, ti1 ∈ R, then

|u11|2 + |u21|2 = s211 + t211 + s221 + t221 = 1,

so that the vector u1 is identified with (s11, t11, s21, t21) ∈ S3.

As just a comparison with the above case of projections,

Lemma 2.17. [5, 11] There is a short exact sequence of groups or spaces as

1 → SU2(C) ≈ S3 → U2(C)
det−−−−→ U2(C)/SU2(C) ∼= S1 → 1,
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induced by determinant det.

Proof. If u ∈ U2(C), then u∗u = 12, which implies det udetu = 1.

3. The 3× 3 Matrix Case

Solving the equation for the definition of 3× 3 matrix projections implies that

Lemma 3.1. If p = (pij) is a projection of M3(C), then

p =





a z1 z2
z1 b z3
z2 z3 c



 a, b, c ∈ R, z1, z2, z3 ∈ C,

where

a2 + |z1|2 + |z2|2 = a, |z1|2 + b2 + |z3|2 = b, |z2|2 + |z3|2 + c2 = c,

and

(a+ b)z1 + z2z3 = z1, (a+ c)z2 + z1z3 = z2, z1z2 + (b + c)z3 = z3,

so that

a = a(z1, z2) ≡
1

2
±
√

1

4
− |z1|2 − |z2|2 if 0 ≤ |z1|2 + |z2|2 ≤ 1

4
,

b = b(z1, z3) ≡
1

2
±
√

1

4
− |z1|2 − |z3|2 if 0 ≤ |z1|2 + |z3|2 ≤ 1

4
,

c = c(z2, z3) ≡
1

2
±
√

1

4
− |z2|2 − |z3|2 if 0 ≤ |z2|2 + |z3|2 ≤ 1

4
.

Corollary 3.2. It follows from Lemma 3.1 the following:

(1) If z1 = z2 = z3 = 0, then a = 0 or 1, and b = 0 or 1, and c = 0 or 1.

(2) If z1 6= 0 and z2 = z3 = 0, or if z1 = z2 = 0 and z3 6= 0, then these

correspond to the 2×2 case. If z1 = z3 = 0 and z2 6= 0, then this also correspond

to the 2× 2 case similarly.

(1)′, (2)′ If z1 = 0 is zero, then z2 or z3 is zero. If z2 = 0 is zero, then z1 or

z3 is zero. If z3 = 0, then z1 or z2 is zero. These cases correspond to the cases

done above.

(3) The rest is the case where z1, z2, z3 are all non-zero.

Remark 3.3. Further computation and determination in the case (3) above are
postponed, and would be given in the future. It is certainly noticed by some
experts that the case (3) does happen.
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We may say that a projection p ∈ M3(C) is degenerate (on the off di-
agonal part) if it is in the case (1), and a non-trivial projection of M3(C) is
a generalized Bott projection if in the cases (1) or (2), and is generically

non-degenerate (on the off diagonal part) if in the case (3). We denote by
PB(M3(C)) the space of all generalized Bott projections of M3(C). Set

PB(M3(C))
∼ = PB(M3(C)) ∪ {03, 13}.

Define PB(M3(R)) and PB(M3(R))
∼ similarly. In what follows, we consider only

the cases (1) or (2).

With suitable notations according to the computation above, we formulate
the following theorem:

Theorem 3.4. If p = (pij) is a generalized Bott projection of M3(C), then p is

either (1) p1 = 1⊕ 02, p2 = 0⊕ 1⊕ 0, p3 = 02 ⊕ 1, or p1 + p2, p2 + p3, p1 + p3,
or (2)

p±(z1)⊕ {0, 1}, for z1 ∈ C \ {0} with 0 < |z1| ≤
1

2
,

{0, 1} ⊕ p±(z3), for 0 < |z3| ≤
1

2
, or

p±(z2)
∼ ⊕∼ {0, 1} ≡









1±
√

1−4|z2|2

2 0 z2

0 {0, 1} 0

z2 0
1∓

√
1−4|z2|2

2









(split)

for any z2 ∈ C \ {0}, with 0 < |z2| ≤ 1
2 , where each p±(zj) for 1 ≤ j ≤ 3 are

defined as in Theorem 2.1.

We may define as well

p+(0)⊕ 0 ≡ lim
z1→0

p+(z1)⊕ 0 = p1 = p+(0)
∼ ⊕∼ 0 ≡ lim

z2→0
p+(z2)

∼ ⊕∼ 0,

p−(0)⊕ 0 ≡ lim
z1→0

p−(z1)⊕ 0 = p2 = 0⊕ p+(0) ≡ 0⊕ lim
z3→0

p+(z3),

0⊕ p−(0) ≡ 0⊕ lim
z3→0

p−(z3) = p3 = p−(0)
∼ ⊕∼ 0 ≡ lim

z2→0
p−(z2)

∼ ⊕∼ 0,

and

p+(0)⊕ 1 ≡ lim
z1→0

p+(z1)⊕ 1 = p1 + p3 = 1⊕ p−(0) ≡ 1⊕ lim
z3→0

p−(z3),

p+(0)
∼ ⊕∼ 1 ≡ lim

z2→0
p+(z2)

∼ ⊕∼ 1 = p1 + p2 = 1⊕ p+(0) ≡ 1⊕ lim
z3→0

p+(z3),

p−(0)⊕ 1 ≡ lim
z1→0

p−(z1)⊕ 1 = p2 + p3 = p−(0)
∼ ⊕∼ 1 ≡ lim

z2→0
p−(z2)

∼ ⊕∼ 1.

Corollary 3.5. The space PB(M3(R)) consists of p1, p2, p3, p1 + p2, p2 + p3,
p1 + p3, and p±(t1) ⊕ {0, 1} for t1 ∈ R with 0 < |t1| ≤ 1

2 , {0, 1} ⊕ p±(t3) for
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t3 ∈ R with 0 < |t3| ≤ 1
2 , and p±(t2)

∼ ⊕∼ {0, 1} for t2 ∈ R with 0 < |t2| ≤ 1
2 ,

where

p1 = lim
t1→0

p+(t1)⊕ 0 ≡ p+(0)⊕ 0 = lim
t2→0

p+(t2)
∼ ⊕∼ 0 ≡ p+(0)

∼ ⊕∼ 0,

p2 = lim
t1→0

p−(t1)⊕ 0 ≡ p−(0)⊕ 0 = 0⊕ lim
t3→0

p+(t3) ≡ 0⊕ p+(0),

p3 = lim
t2→0

p−(t2)
∼ ⊕∼ 0 ≡ p−(0)

∼ ⊕∼ 0 = 0⊕ lim
t3→0

p−(t3) ≡ 0⊕ p−(0),

and

p1 + p3 = lim
t1→0

p+(t1)⊕ 1 ≡ p+(0)⊕ 1 = 1⊕ lim
t3→0

p−(t3) ≡ 1⊕ p−(0),

p1 + p2 = lim
t2→0

p+(t2)
∼ ⊕∼ 1 ≡ p+(0)

∼ ⊕∼ 1 = 1⊕ lim
t3→0

p+(t3) ≡ 1⊕ p+(0),

p2 + p3 = lim
t1→0

p−(t1)⊕ 1 ≡ p−(0)⊕ 1 = lim
t2→0

p−(t2)
∼ ⊕∼ 1 ≡ p−(0)

∼ ⊕∼ 1.

Now let X,Y , and Z be topological spaces, K a space viewed as a subspace
of X and Y , L a space viewed as a subspace of Y and Z, and M a space viewed
as a subspace of Z and X . Then we denote by X tK Y tL ZtM 	 a cyclic

K,L,M-jointed sum of X , Y , and Z (we call so), which is defined to be the
space obtained from attaching X and Y on K and attaching Y and Z on L and
attaching Z and X on M .

Theorem 3.6. There is a homeomorphism between the subspace PB(M3(C))
∼ of

M3(C) and the following disjoint union:

(rank 0, 3) {03} t {13}t

(rank 1) [(B(0,
1

2
) t 1

2
S1 B(0,

1

2
)) tp2

((B(0,
1

2
) t 1

2
S1 B(0,

1

2
))

tp3
((B(0,

1

2
) t 1

2
S1 B(0,

1

2
))tp1

	]t

(rank 2) [((B(0,
1

2
) t 1

2
S1 B(0,

1

2
)) tp2+p3

(B(0,
1

2
) t 1

2
S1 B(0,

1

2
))

tp1+p2
(B(0,

1

2
) t 1

2
S1 B(0,

1

2
))tp1+p3

	],

with complex variables as

[({z1} t 1

2
S1 {w1}) tw1=0=z3 ({z3} t 1

2
S1 {w3})

tw3=0=w2
({z2} t 1

2
S1 {w2})tz2=0=z1 	],

and

[({z1} t 1

2
S1 {w1}) tw1=0=w2

({z2} t 1

2
S1 {w2})

tz2=0=z3 ({z3} t 1

2
S1 {w3})tw3=0=z1 	],
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respectively, where the first cyclic points-jointed sum [· · · 	] is obtained from

attaching cyclically 3 copies of B(0, 2−1) t2−1S1 B(0, 2−1) at the zero point of

B(0, 2−1) as its right component with the zero point of B(0, 2−1) as its left com-

ponent, and the space corresponds to the space of all rank 1 generalized Bott

projections of M3(C), and the common zero points correspond to the projections

p1, p2, p3 respectively, and the variable zj for j = 1, 3 corresponds to p+(zj), and
wj for j = 1, 3 corresponds to p−(wj), and z2 corresponds to p+(z2)

∼, and w2

corresponds to p−(w2)
∼, and the second cyclic points-jointed sum [· · · 	] is ob-

tained similarly, with slightly different identifications of variables as above, and

it corresponds to the space of all rank 2 generalized Bott projections of M3(C),
and the common zero points correspond to the projections p2+p3, p1+p2, p1+p3
respectively.

Corollary 3.7. There is a homeomorphism between the subspace PB(M3(R))
∼ of

M3(R) and the following disjoint union:

(rank 0, 3) {03} t {13}t

(rank 1) {([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
]) tp2

([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
])tp3

([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
])tp1

	}t

(rank 2) {([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
]) tp2+p3

([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
])

tp1+p2
([−1

2
,
1

2
] t 1

2
S0 [−1

2
,
1

2
])tp1+p3

	},

with real variables as the same as given above.

Theorem 3.8. There is a homeomorphism between PB(M3(C)) and the disjoint

union

[S2 tp2
S2 tp3

S2tp1
	] t [S2 tp2+p3

S2 tp1+p2
S2tp1+p3

	],

which is homeomorphic to the disjoint union of the cyclic points-jointed sums of

3 copies of S2 at the north and south poles n ∈ S2 (one) and s ∈ S2 (the next)
identified respectively as

[S2 tn=s S
2 tn=s S

2tn=s 	] t [S2 tn=s S
2 tn=s S

2tn=s 	],

both path-connected components of which are homeomorphic.

Corollary 3.9. There is a homeomorphism between PB(M3(R)) and the disjoint

union

[S1 tp2
S1 tp3

S1tp1
	] t [S1 tp2+p3

S1 tp1+p2
S1tp1+p3

	],
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which is homeomorphic to the disjoint union of two cyclic points-jointed sums

of 3 copies of S1 at +1 ∈ S1 (one) and −1 ∈ S1 (the next) identified respectively

as

[S1 t+1=−1 S
1 t+1=−1 S

1t+1=−1 	] t [S1 t+1=−1 S
1 t+1=−1 S

2t+1=−1 	],

both path-connected components of which are homeomorphic.

Corollary 3.10. The homotopy classes of PB(M3(C))
∼ are given by

PB(M3(C))
∼/ ∼= {[03], [13], [p1] = [p2] = [p3], [p1 + p2] = [p2 + p3] = [p1 + p3]}.

The same also holds for PB(M3(R))
∼.

Proof. The homotopies among p1, p2, and p3 and among p1+p2, p2+p3, and p1+
p3 within PB(M3(C)) and PB(M3(R)) are constructed explicitly and respectively
as in Theorems 2.1 and 3.3 above.

Corollary 3.11. There are bijections among the homotopy set PB(M3(C))
∼/ ∼,

the trace image tr(PB(M3(C))
∼) = {0, 1, 2, 3}, and the rank image

rk(PB(M3(C))
∼).

The same also holds for PB(M3(R))
∼.

It is then deduced that

Corollary 3.12. There is a continuous path from a generically non-degenerate

projection of M3(C) to some generalized Bott projection of M3(C) within

P (M3(C)).

Namely, there is a continuous deformation from P (M3(C)) to PB(M3(C)).

The same also holds for P (M3(R)).

Proof. Corollaries 3.9 and 3.10 hold for P (M3(C))
∼ and P (M3(R))

∼ as well, by
using Linear Algebra. Indeed, such a deformation may be obtained by letting
the variables zj (1 ≤ j ≤ 3) going to 0 separately, within P (M3(C))

∼.

4. The 4× 4 Matrix Case

Solving the equation for 4× 4 matrix projections we obtain

Lemma 4.1. If p = (pij) is a projection of M4(C), then

p =









a11 z21 z31 z41
z21 a22 z32 z42
z31 z32 a33 z43
z41 z42 z43 a44
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with ajj ∈ R for 1 ≤ j ≤ 4, zji ∈ C for 1 ≤ i < j ≤ 4, where

a211 + |z21|2 + |z31|2 + |z41|2 = a11,

|z21|2 + a222 + |z32|2 + |z42|2 = a22,

|z31|2 + |z32|2 + a233 + |z43|2 = a33,

|z41|2 + |z42|2 + |z43|2 + a44 = a44,

and

(a11 + a22)z21 + z31z32 + z41z42 = z21, (a11 + a33)z31 + z21z32 + z41z43 = z31,

(a11 + a44)z41 + z21z42 + z31z43 = z41, (a22 + a33)z32 + z21z31 + z42z43 = z32,

(a22 + a44)z42 + z21z41 + z32z43 = z42, (a33 + a44)z43 + z31z41 + z32z42 = z43,

so that

a11 = a11(z21, z31, z41) ≡
1

2
±
√

1

4
− |z21|2 − |z31|2 − |z41|2

if 0 ≤ |z21|2 + |z31|2 + |z41|2 ≤ 1
4 ,

a22 = a22(z21, z32, z42) ≡
1

2
±
√

1

4
− |z21|2 − |z32|2 − |z42|2

if 0 ≤ |z21|2 + |z32|2 + |z42|2 ≤ 1
4 ,

a33 = a33(z31, z32, z43) ≡
1

2
±
√

1

4
− |z31|2 − |z32|2 − |z43|2

if 0 ≤ |z31|2 + |z32|2 + |z43|2 ≤ 1
4 ,

a44 = a44(z41, z42, z43) ≡
1

2
±
√

1

4
− |z41|2 − |z42|2 − |z43|2

if 0 ≤ |z41|2 + |z42|2 + |z43|2 ≤ 1
4 .

Corollary 4.2. It follows from Lemma 4.1 the following:

(1) If all zji = 0 for j > i, then ajj = 0 or 1 for 1 ≤ j ≤ 4.

(2) If only one zji 6= 0 with j > i and the other all zkl zero for k > l, then
these correspond to the 2× 2 case or the split 2× 2 case.

(3) There are also the cases by choosing two split or not, blocks of the split or

not, 2× 2 cases.

(4) There is the rest of the other cases.

Remark 4.3. Further computation and determination in the case (4) above are
postponed, and would be given in the future. Note that the case (4) does happen,
as in the 3× 3 case.
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We may say that a projection p ∈ M4(C) is degenerate (on the off diagonal
part) if it is in the case (1), and a non-trivial projection of M4(C) is a (com-
binatorically) generalized Bott projection if in the cases (1), (2) or (3), and
otherwise, it is generically non-degenerate (on the off diagonal part) if in the
case (4). We denote by PB(M4(C)) the space of all generalized Bott projections
of M4(C). Set

PB(M4(C))
∼ = PB(M4(C)) ∪ {04, 14}.

Define PB(M4(R)) and PB(M4(R))
∼ similarly.

With suitable notations,

Theorem 4.4. If p = (pij) is a generalized Bott projection of M4(C), then p is

either (1) p1 = 1⊕03, p2 = 0⊕1⊕02, p3 = 02⊕1⊕0, p4 = 03⊕1, or pi+pj for

1 ≤ i < j ≤ 4 (4C2 = 6 many), or pi + pj + pk for 1 ≤ i < j < k ≤ 4 (4C3 = 4
many), or (2)

p±(z21)⊕ {0, 1} ⊕ {0, 1}, for z21 ∈ C \ {0} with 0 < |z21| ≤
1

2
, or

{0, 1} ⊕ p±(z32)⊕ {0, 1}, for 0 < |z32| ≤
1

2
, or

{0, 1} ⊕ {0, 1} ⊕ p±(z43), for 0 < |z43| ≤
1

2
, or

p±(z31)
∼ ⊕∼ (⊕2{0, 1}) ≡









1±
√

1−4|z31|2

2 0 z31

0 {0, 1} 0

z31 0
1∓

√
1−4|z31|2

2









⊕{0, 1} (split)

for any z31 ∈ C \ {0}, with 0 < |z31| ≤ 1
2 , or

p±(z42)
∼⊕∼ (⊕2{0, 1}) ≡ {0, 1}⊕









1±
√

1−4|z42|2

2 0 z42

0 {0, 1} 0

z42 0
1∓

√
1−4|z42|2

2









(split)

for any z42 ∈ C \ {0}, with 0 < |z42| ≤ 1
2 , or

p±(z41)
∼⊕∼(⊕2{0, 1}) ≡









1±
√

1−4|z41|2

2 (0, 0) z41

(0, 0)t {0, 1} ⊕ {0, 1} (0, 0)t

z41 (0, 0)
1∓

√
1−4|z41|2

2









(split)
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for any z41 ∈ C \ {0}, with 0 < |z41| ≤ 1
2 , or (3)

p±(z21)⊕ p±(z43) for 0 < |z21| ≤
1

2
and 0 < |z43| ≤

1

2
, or

p±(z41)
∼ ⊕∼ p±(z32) for 0 < |z41| ≤

1

2
and 0 < |z32| ≤

1

2
, or

p±(z31)
∼ ⊕∼ p±(z42)

∼ for 0 < |z31| ≤
1

2
and 0 < |z42| ≤

1

2
,

and in total there are

(

4
∑

k=0

4Ck) + 224C2 +
1

2
4C2 = 24 + 24 + 3 = 43 cases,

where each p±(zj,i) for 1 ≤ i < j ≤ 4 are defined as in Theorem 2.1.

We may define as well the respective values at respective zeros with respect to

non-zero parameters such as zj,i, as the respective limits as the standard diagonal

projections such as pj, pi+pj, and pi+pj+pk with i < j < k, as in Theorem 3.3,
but omitted.

Theorem 4.5. There is a homeomorphism between the subspace PB(M4(C))
∼ of

M4(C) and the following disjoint union:

(rank 0, 4) {04} t {14}t
(rank 1) [tp1,··· ,p4

(t6
i<j(S

2, pi, pj))]t
(rank 2) tpi+pj ,i<j [(t6

i<j(S
2, pi, pj) + {pk, pl})t

{(S2, p1, p2)⊕ (S2, p3, p4)} t {(S2, p1, p4)⊕ (S2, p2, p3)}
t {(S2, p1, p3)⊕ (S2, p2, p4)}]t

(rank 3) tpi+pj+pk,i<j<k [(t6
i<j(S

2, pi, pj) + {pk + pl}],

where tp1,··· ,p4
(t6

i<j(S
2, pi, pj)) means the {p1, · · · , p4}-jointed sum of 6 copies

of S2, each of which is pointed with pi and pj for some and any 1 ≤ i < j ≤ 4 as

that pi and pj identified with the north and south poles of S2 respectively, such

that








p1
(S2, p1, p2) p2
(S2, p1, p3) (S2, p2, p3) p3
(S2, p1, p4) (S2, p2, p4) (S2, p3, p4) p4









(a matrix as a picture), where each pj in the picture is identified with the same

other pj, and the {p1, · · · , p4}-jointed sum corresponds to the space of all rank 1
generalized Bott projections.

And tpi+pj ,i<j(t6
i<j(S

2, pi, pj) + {pk, pl}) (shorten) means the {pi + pj | 1 ≤
i < j ≤ 4}-jointed sum of 2 × 6 copies of S2, each of which is pointed with pi
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and pj for some and any 1 ≤ i < j ≤ 4 as well as pi + pk and pj + pk with some

pk (or pl) for k 6= i and k 6= j such that









p1 + p2 p1 + p3 p1 + p4
(S2, p1, p2) + {p3, p4} p2 + p3 p2 + p4
(S2, p1, p3) + {p2, p4} (S2, p2, p3) + {p1, p4} p3 + p4
(S2, p1, p4) + {p2, p3} (S2, p2, p4) + {p1, p3} (S2, p3, p4) + {p1, p2}









where we define

(S2, pi, pj) + {pk, pl} ≡ {(S2, pi + pk, pj + pk), (S
2, pi + pl, pj + pl)},

and each pi + pj in the picture is identified with the same other pi + pj
In addition to the jointed sum above, each (S2, pi, pj) ⊕ (S2, pk, pl) means

the disjoint union of two copies of S2, each of which is pointed with distinct

{pi, pj} or {pk, pl} as well as pi + pk, pi + pl, pj + pk, and pj + pl, and in that

and this cases, each pi + pj is identified with the same other pi + pj, and the

{pi + pj | i < j}-jointed sum in total of this and that cases corresponds to the

space of all rank 2 generalized Bott projections.

And tpi+pj+pk,i<j<k[(t6
i<j(S

2, pi, pj)+{pk+pl}] means the {pi+pj+pk | 1 ≤
i < j < k ≤ 4}-jointed sum of 6 copies of S2, each of which is pointed with pi
and pj for some and any 1 ≤ i < j ≤ 4 as well as pi + pk + pl and pj + pk + pl
with {i, j} and {k, l} distinct in {1, · · · , 4} such that









p2 + p3 + p4
(S2, p1, p2) + p3 + p4 p1 + p3 + p4
(S2, p1, p3) + p2 + p4 (S2, p2, p3) + p1 + p4 p1 + p2 + p4
(S2, p1, p4) + p2 + p3 (S2, p2, p4) + p1 + p3 (S2, p3, p4) + p1 + p2

∑3
s=1 ps









where we define

(S2, pi, pj) + pk + pl ≡ (S2, pi + pk + pl, pj + pk + pl),

and each pi+pj +pk in the picture is identified with the same other pi+pj +pk,
and the {pi+pj+pk | i < j < k}-jointed sum corresponds to the space of all rank

3 generalized Bott projections.

Corollary 4.6. There is a homeomorphism between the subspace PB(M4(R))
∼ of

M4(R) and the following disjoint union:

(rank 0, 4) {04} t {14}t
(rank 1) [tp1,··· ,p4

(t6
i<j(S

1, pi, pj))]t
(rank 2) tpi+pj ,i<j [(t6

i<j(S
1, pi, pj) + {pk, pl})t

{(S1, p1, p2)⊕ (S1, p3, p4)} t {(S1, p1, p4)⊕ (S1, p2, p3)}
t {(S1, p1, p3)⊕ (S1, p2, p4)}]t

(rank 3) tpi+pj+pk,i<j<k [(t6
i<j(S

1, pi, pj) + {pk + pl}],
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where each (S1, pi, pj) means the S1 pointed with pi and pj at the points ±1 ∈ S1

respectively, and the other pointed (S1, pi, pj)+{pk, pl}, (S1, pi, pj)⊕(S1, pk, pl),
and (S1, pi, pj)+{pk+pl) as well as their points-jointed sums are defined similarly

as in the theorem above.

Corollary 4.7. The homotopy classes of PB(M4(C))
∼ are given by

PB(M4(C))
∼/ ∼ = {[04], [14], [p1] = [p2] = [p3] = [p4],

[p1 + p2] = [pi + pj ] (1 ≤ i < j ≤ 4),

[p1 + p2 + p3] = [pi + pj + pk] (1 ≤ i < j < k ≤ 4)}.

The same also holds for PB(M4(R))
∼.

Proof. The homotopies among p1, p2, p3, and p4 and among pi + pj for 1 ≤ i <
j ≤ 4 and among pi + pj + pk for 1 ≤ i < j < k ≤ 4 within PB(M4(C)) and
PB(M4(R)) are constructed explicitly and respectively as in Theorems 2.1, 3.3,
and 4.3 above.

Corollary 4.8. There are bijections among the homotopy set PB(M4(C))
∼/ ∼,

the trace image tr(PB(M4(C))
∼) = {0, 1, 2, 3, 4}, and the rank image

rk(PB(M4(C))
∼).

The same also holds for PB(M4(R))
∼.

It is then deduced that

Corollary 4.9. There is a continuous path from a generically non-degenerate pro-

jection of M4(C) to some generalized Bott projection of M4(C) within P (M4(C)).

Namely, there is a continuous deformation from P (M4(C)) to PB(M4(C)).

The same also holds for P (M4(R)).

Proof. Corollaries 4.6 and 4.7 hold for P (M4(C))
∼ and P (M4(R))

∼ as well, by
using Linear Algebra.

5. The General Matrix Case

Solving the equation for n× n matrix projections implies that

Lemma 5.1. If p = (pij) is a projection of Mn(C), then

p =











a11 z21 · · · zn1
z21 a22 · · · zn2
...

. . .
. . .

...

zn1 zn2 · · · ann
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with ajj ∈ R(1 ≤ j ≤ n), zji ∈ C(1 ≤ i < j ≤ n), where

a211 +
n
∑

k=2

|zk1|2 = a11, |z21|2 + a222 +
n
∑

k=3

|zk2|2 = a22, · · · ,

l−1
∑

k=1

|zlk|2 + a2ll +

n
∑

k=l+1

|zkl|2 = all, · · · ,
n−1
∑

k=1

|znk|2 + a2nn = ann,

and

(a11 + a22)z21 +
n
∑

k=3

zk1zk2 = z21, · · · , (a11 + ann)zn1 +
n−1
∑

k=2

zk1znk = zn1,

z21z31 + (a22 + a33)z32 +

n
∑

k=4

zk2zk3 = z32, · · · ,

· · · ,
n−2
∑

k=1

znkzn−1,k + (an−1,n−1 + ann)zn,n−1 = zn,n−1,

so that each of the diagonal components ajj is solved as (for instance),

a11 = a11(z21, · · · , zn1) ≡






1
2 ±

√

1
4 −∑n

k=2 |zk1|2 ∈ R if 0 ≤∑n

k=2 |zk1|2 ≤ 1
4 ,

1
2 ± i

√

∑n

k=2 |zk1|2 − 1
4 6∈ R if

∑n

k=2 |zk1|2 > 1
4 ,

, · · · ,

ann = ann(zn1, · · · , zn,n−1) ≡






1
2 ±

√

1
4 −∑n−1

k=1 |znk|2 ∈ R if 0 ≤∑n−1
k=1 |znk|2 ≤ 1

4 ,

1
2 ± i

√

∑n−1
k=1 |znk|2 − 1

4 6∈ R if
∑n−1

k=1 |znk|2 > 1
4 .

Corollary 5.2. It follows from Lemma 5.1 the following statements hold:

(1) If all zij = 0 with i > j, then ajj = 0 or 1 for 1 ≤ j ≤ n.

(2) If only one zij 6= 0 with i > j and the other all zkl = 0 for k > l, then
these correspond to the 2× 2 case or the split 2× 2 case.

(3) Moreover, there are certainly the cases where there are distinct block-wise

many of the 2 × 2 cases or the split 2 × 2 cases, as shown in the 3 × 3 or

4× 4 cases.

(4) There is the rest of the other cases.

Remark 5.3. Further computation and determination in the case (4) above are
postponed, unfortunately. Note that the case (4) does happen.

We may say that a projection p ∈ Mn(C) is degenerate (on the off diagonal
part) if it is in the case (1), and a non-trivial projection of Mn(C) is a (com-
binatorically) generalized Bott projection if in the cases (1), (2) or (3), and
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otherwise, is generically non-degenerate (on the off diagonal part) if in the
case (4). We denote by PB(Mn(C)) the space of all generalized Bott projections
of Mn(C). Set

PB(Mn(C))
∼ = PB(Mn(C)) ∪ {0n, 1n}.

Define PB(Mn(R)) and PB(Mn(R))
∼ similarly.

With suitable notations,

Theorem 5.4. If p = (pij) is a generalized Bott projection of Mn(C), then

p is either (1) the standard, rank k, diagonal projections pi1 + · · · + pik for

1 ≤ i1 < · · · < ik ≤ n (nCk = n!
k!(n−k)! cases) for 1 ≤ k ≤ n, or (2)

p±(zi2,i1)⊕∼ (⊕n−2{0, 1}) for zi2,i1 ∈ C \ {0} with 0 < |zi2,i1 | ≤
1

2
,

for 1 ≤ i1 < i2 ≤ n (nC2 × 2n−2 cases), or (3) for zi2,i1 , zi4,i3 ∈ C \ {0} with

0 < |zi2,i1 | ≤ 1
2 and 0 < |zi4,i3 | ≤ 1

2 ,

p±(zi2,i1)⊕∼ p±(zi4,i3)⊕∼ (⊕n−4{0, 1}),

for 1 ≤ i1 < i2 ≤ n chosen first and for 1 ≤ i3 < i4 ≤ n chosen next with

the sets {i1, i2} and {i3, i4} distinct (nC2 × n−2C2 × 2n−4 cases), or in general,

for zi2,i1 , zi4,i3 , · · · , zi2k,i2k−1
∈ C \ {0} with 0 < |zi2,i1 | ≤ 1

2 , · · · , and 0 <
|zi2k,i2k−1

| ≤ 1
2 ,

p±(zi2,i1)⊕∼ p±(zi4,i3)⊕∼ · · · ⊕∼ p±(zi2k,i2k−1
)⊕∼ (⊕n−2k{0, 1}),

for 1 ≤ i1 < i2 ≤ n chosen first and for 1 ≤ i3 < i4 ≤ n chosen next with the sets

{i1, i2} and {i3, i4} distinct, and · · · for 1 < i2k−1 < i2k ≤ n chosen similarly,

inductively, and distinctly (nC2 × n−2C2 × · · · × n−2k+2C2 × 2n−2k cases), for

2 ≤ 2k ≤ n − 1 when n is odd and for 2 ≤ 2k ≤ n when n is odd, where each

p±(zj,i) for 1 ≤ i < j ≤ n are defined as in Theorem 2.1, and ⊕∼ here by the

same symbol as before means both the usual diagonal sum ⊕ as well as the split

diagonal sum ⊕∼ as in Theorem 3.3 and its naturally extended split diagonal

sum such that for instance,

p±(zj,i)
∼ ⊕∼ (⊕n−2{0, 1}) ≡

(⊕l1{0, 1})⊕









1
2 ±

√

1
4 − |zj,i|2 0 · · · 0 zj,i

(0 · · · 0)t ⊕l2{0, 1} (0 · · · 0)t

zj,i 0 · · · 0 1
2 ∓

√

1
4 − |zj,i|2









⊕ (⊕l3{0, 1}),

with l1+ l2+ l3 = n−2 for some l1 ≥ 0, l2 ≥ 0, l3 ≥ 0, for any zj,i ∈ C\{0} with

0 < |zj,i| ≤ 1
2 . We may define as well the respective values at respective zeros

with respect to non-zero parameters such as zj,i, as the respective limits as the

standard diagonal projections such as pi1 + · · ·+ pik with 1 ≤ i1 < · · · < ik ≤ n,
as in Theorem 3.3, but omitted.
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Theorem 5.5. There is a homeomorphism between the subspace PB(Mn(C))
∼ of

Mn(C) and the following disjoint union:

(rank 0, n) {0n} t {1n}t
(rank 1) [tp1,··· ,pn

(tnC2

i<j (S
2, pi, pj))]t

(rank 2) [tpi+pj ,i<j [(tnC2·(n−2)
i<j (S2, pi, pj) + {pk1

, · · · , pkn−2
})t

(t(i<j)t(k<l){(S2, pi, pj)⊕ (S2, pk, pl)})]]t
(rank 3) [tpi+pj+pk,i<j<k

[(tnC2·n−2C2

i<j (S2, pi, pj) + {pk1
+ pk2

| (i < j) t (k1 < k2)})t
(t(i<j)t(k<l){(S2, pi, pj)⊕ (S2, pk, pl) + {pk1

, · · · , pkn−4
}})t

(t(i<j)t(k1<k2)t(k3<k4){(S2, pi, pj)⊕ (S2, pk1
, pk2

)

⊕ (S2, pk3
, pk4

)})]] t · · · t

(rank k ≤ n

2
) [tpi1

+···+pik
,i1<···<ik

[(tnC2·n−2Ck−1

i<j (S2, pi, pj)

+ {pl1 + · · ·+ plk−1
| (i < j) t (l1 < · · · < lk−1)})t

(t(i1<i2)t(i3<i4){(S2, pi1 , pi2)⊕ (S2, pi3 , pi4)

+ {pj1 , · · · , pjk−2
| {i1, i2, i3, i4} t (j1 < · · · < jk−2)}})

t · · · t
(t(i1<i2)t···t(i2k−1<i2k){(S2, pi1 , pi2)⊕ · · · ⊕ (S2, pi2k−1

, pi2k)})]]

(rank k >
n

2
) t · · · (omitted, see below) · · · t

(rank n− 1) [tpi1
+···+pin−1

,i1<···<in−1
(tnC2

i<j (S
2, pi, pj) + pj1 + · · ·+ pjn−2

)]

where tp1,··· ,pn
(tnC2

i<j (S
2, pi, pj)) means the {p1, · · · , pn}-jointed sum of nC2

many copies of S2, each of which is pointed with pi and pj for some and any

1 ≤ i < j ≤ n as that pi and pj identified with the north and south poles of S2

respectively, such that











p1
(S2, p1, p2) p2

...
. . .

. . .

(S2, p1, pn) · · · (S2, pn−1, pn) pn











(a matrix as a picture), where each pj in the picture is identified with the same

other pj, and the {p1, · · · , pn}-jointed sum corresponds to the space of all rank

1 generalized Bott projections.

And tpi+pj ,i<j(tnC2·(n−2)
i<j (S2, pi, pj)+{pk1

, . . . , pkn−2
}) (shorten) means the

{pi + pj | 1 ≤ i < j ≤ n}-jointed sum of nC2 · (n− 2) copies of S2, each of which
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is pointed with pi and pj for some and any 1 ≤ i < j ≤ n as well as pi+pks
and

pj + pks
with some pks

for ks 6= i and ks 6= j such that













p1 + p2 · · · p1 + pn

(S2, p1, p2) + {pk1
, · · · , pkn−2

} . . . p2 + pn
...

. . . pn−1 + pn
(S2, p1, pn) + {pk1

, · · · , pkn−2
} · · · (S2, pn−1, pn) + {pks

}n−2
s=1













where we define

(S2, pi, pj) + {pk1
, · · · , pkn−2

} ≡ {(S2, pi + pks
, pj + pks

) | 1 ≤ s ≤ n− 2}.

and each pi + pj in the picture is identified with the same other pi + pj.

In addition to the jointed sum above, each (S2, pi, pj)⊕ (S2, pk, pl) means the

disjoint union of two copies of S2, each of which is pointed with distinct {pi, pj}
or {pk, pl} as well as pi + pk, pi + pl, pj + pk, and pj + pl, so that

(S2, pi, pj)⊕ (S2, pk, pl)

≡(S2, pi + pk, pi + pl, pj + pk, pj + pl)⊕ (S2, pk + pi, pk + pj , pl + pi, pl + pj).

In that and this cases, each pi + pj in the picture is identified with the same

other pi + pj, and the {pi+ pj | i < j}-jointed sum in total of this and that cases

corresponds to the space of all rank 2 generalized Bott projections.

And

tpi+pj+pk,i<j<k[tnC2·n−2C2

i<j ((S2, pi, pj) + {pk1
+ pk2

| (i < j) t (k1 < k2)})]

(shorten) means the {pi+pj+pk | 1 ≤ i < j < k ≤ n}-jointed sum of nC2 ·n−2C2

copies of S2, each of which is pointed with pi and pj for some and any 1 ≤ i <
j ≤ n as well as pi+pk1

+pk2
and pj +pk1

+pk2
with {i, j} and {k1, k2} distinct

in {1, · · · , n}, without such a picture, where

(S2, pi, pj) + {pk1
+ pk2

| (i < j) t (k1 < k2)}
≡{(S2, pi + pk1

+ pk2
, pj + pk1

+ pk2
) | (i < j) t (k1 < k2)}

the set of n−2C2 many elements, and each pi+pj+pk in the picture is identified

with the same other pi + pj + pk.

This {pi+pj+pk | i < j < k}-jointed sum together with the other two disjoint

unions

(t(i<j)t(k<l){(S2, pi, pj)⊕ (S2, pk, pl) + {pk1
, · · · , pkn−4

}})t
(t(i<j)t(k1<k2)t(k3<k4){(S2, pi, pj)⊕ (S2, pk1

, pk2
)⊕ (S2, pk3

, pk4
)})

with such identifications of pi+pj+pk corresponds to the space of all rank 3 gen-

eralized Bott projections, where each (S2, pi, pj)⊕ (S2, pk, pl) + {pk1
, · · · , pkn−4

}
is pointed with

{

pi

pj
+

{

pk

pl
+ {pk1

, · · · , pkn−4
}
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as respective additions, and each (S2, pi, pj) ⊕ (S2, pk1
, pk2

) ⊕ (S2, pk3
, pk4

) is

pointed with

{

pi

pj
+

{

pk1

pk2

+

{

pk3

pk4
.

If 2k ≤ n, then the space of all rank k degenerate projections is written as

the {pi1 + · · ·+ pik | 1 ≤ i1 < · · · < ik ≤ n}-pointed disjoint union of the disjoint

unions of k types such as

(S2, pi, pj) + {pl1 + · · ·+ plk−1
, (i < j) t (l1 < · · · < lk−1),

(S2, pi1 , pi2)⊕ (S2, pi3 , pi4) + {pj1 , · · · , pjk−2
}, {i1, i2, i3, i4} t (j1 < · · · < jk−2),

· · · · · · ,
(S2, pi1 , pi2)⊕ · · · ⊕ (S2, pi2k−1

, pi2k), (i1 < i2) t · · · t (i2k−1 < i2k).

If 2k > n, then the space of all rank k generalized Bott projections is written

as the {pi1 + · · · + pik | 1 ≤ i1 < · · · < ik ≤ n}-pointed disjoint union of the

disjoint unions of less by less k − sk types one by one diminishing from the

bottom type among the maximum types k = n
2 if n is even and k = n−1

2 if n is

odd as above, with 1 ≤ k − sk ≤ k − 1 for some sk ≥ 1, where sk increases with

respect to k.

And tpi1
+···+pin−1

,i1<···<in−1
(tnC2

i<j (S
2, pi, pj) + pj1 + · · ·+ pjn−2

) means the

{pi1 + · · · + pin−1
| 1 ≤ i1 < · · · < in−1 < k ≤ n}-jointed sum of nC2 copies of

S2, each of which is pointed with pi and pj for some and any 1 ≤ i < j ≤ n as

well as pi + pj1 + · · ·+ pjn−2
and pj + pj1 + · · ·+ pjn−2

such that













p2 + · · ·+ pn

(S2, p1, p2) + p3 + · · ·+ pn
. . .

...
. . .

. . .

(S2, p1, pn) + p2 + · · ·+ pn−1 · · · (S2, pn−1, pn) +
∑n−2

s=1 ps
∑n−1

s=1 ps













where each pi1 + · · · + pin−1
in the picture is identified with the same other

pi1 + · · ·+ pin−1
. The {pi1 + · · · + pin−1

| 1 ≤ i1 < · · · < in−1 < k ≤ n}-jointed
sum corresponds to the space of all rank n− 1 generalized Bott projections.

Corollary 5.6. There is a homeomorphism between the subspace PB(Mn(R))
∼ of

Mn(R) and the same disjoint union of the points-disjoint unions of those types

as in the theorem above, where every S2 at many places in the statement of the

theorem such as (S2, pi, pj) is replaced with S1 respectively, such as (S1, pi, pj).
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Corollary 5.7. The homotopy classes of PB(Mn(C))
∼ are given by

PB(Mn(C))
∼/ ∼= {[04], [14], [p1] = [p2] = · · · = [pn],

[p1 + p2] = [pi + pj ] (1 ≤ i < j ≤ n),

[p1 + p2 + p3] = [pi + pj + pk] (1 ≤ i < j < k ≤ n),

· · · · · · ,

[

n−1
∑

s=1

ps] = [pi1 + pi2 + · · ·+ pin−1
] (1 ≤ i1 < i2 < · · · < in−1 ≤ n)}.

The same also holds for PB(Mn(R))
∼.

Proof. The homotopies among p1, p2, · · · , pn and among pi + pj for 1 ≤ i <
j ≤ n and among pi + pj + pk for 1 ≤ i < j < k ≤ n, and · · · , and among
pi1 + pi2 + · · · + pin−1

for 1 ≤ i1 < i2 < · · · < in−1 ≤ n within PB(Mn(C)) and
PB(Mn(R)) are constructed explicitly and respectively as in Theorems 2.1, 3.3,
4.3, and 5.3 above.

Corollary 5.8. There are bijections among the homotopy set PB(Mn(C))
∼/ ∼,

the trace image tr(PB(Mn(C))
∼) = {0, 1, 2, · · · , n}, and the rank image

rk(PB(Mn(C))
∼).

The same also holds for PB(Mn(R))
∼.

It is then deduced that

Corollary 5.9. There is a continuous path from a generically non-degenerate

projection of Mn(C) to some generalized Bott projection of Mn(C) within

P (Mn(C)).

Namely, there is a continuous deformation from P (Mn(C)) to PB(Mn(C)).

The same also holds for P (Mn(R)).

Proof. Corollaries 5.6 and 5.7 hold for P (Mn(C))
∼ and P (Mn(R))

∼ as well, by
using Linear Algebra.

Unitaries 5.10. Now let Un(C) denote the group of unitary matrices in Mn(C).
Let SUn(C) be the normal subgroup of Un(C) with determinant 1.

It is known as [5, I. 4. (4.8), Page 36] (cf. [11]) that

Lemma 5.11. There are homeomorphisms as in the following:

Un(C)/Un−1(C) ≈ S2n−1 and SUn(C)/SUn−1(C) ≈ S2n−1

for n ≥ 2.
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Proof. Define the complex (n− 1)-dimensional sphere in Cn as

Sn−1(C) = {(zj) ∈ C
n |

n
∑

j=1

|zj |2 = 1}.

Then there is a homeomorphism between Sn−1(C) and S2n−1 the real (2n− 1)-
dimensional sphere.

The groups Un(C) and SUn(C) act transitively on Sn−1(C) by matrix
multiplication from the left. Indeed, for any z = (zj) ∈ Sn−1(C), there
is an orthonormal basis {w1, · · · , wn} for Cn extending z, with wn = z.
Then W = (w1, . . . , wn) ∈ Un(C) with each wj as a column vector, so that
Wen = z, where en is the standard n-th basis vector for Cn. Note also that
W ′ = (detWw1, w2, · · · , wn) ∈ SUn(C) with detW ∈ T the 1-torus, so that
W ′en = z.

Then the isotropy subgroups Un(C)en and SUn(C)en of Un(C) and SUn(C)
at the standard n-th basis vector en in Cn are isomorphic to Un−1(C) and
SUn−1(C) respectively. Indeed, if U = (uij) ∈ Un(C) and Uen = en, then
uin = 0 for 1 ≤ i ≤ n − 1. It follows from the (n, n) component for UU∗ = 1n
that unj = 0 for 1 ≤ j ≤ n − 1. Hence U = U ′ ⊕ 1 with U ′ ∈ Un−1(C). The
same is applied for SUn(C).

There are surjective maps from Un(C) and SUn(C) to Sn−1(C), defined as
U 7→ Uen, both of which factors through to the quotient groups as

Un(C) and SUn(C) −−−−→ Sn−1(C)




y

∥

∥

∥

Un(C)/Un(C)en and SUn(C)/SUn(C)en −−−−→ Sn−1(C),

respectively, the arrow in the bottom line is a bijection at this moment. Note as
well that Sn−1(C) is a Hausdorff space and that Un(C) and SUn(C) are compact
groups, and so are the quotient groups. It then follows that the arrow in the
bottom line is a homeomorphism, and hence the statement in this lemma holds.

As just a comparison to the above case of projections,

Corollary 5.12. (see [5, I. 4. (4.8)], [11]) There are decomposition series of Un(C)
and SUn(C) by subquotient spaces as

Uk(C)/Uk−1(C) ≈ S2k−1 and SUk(C)/SUk−1(C) ≈ S2k−1

for 2 ≤ k ≤ n, with U1(C) ≈ S1 and SU1(C) = {1} trivial. Namely, inductively,

Un(C) ≈ S2n−1 ×∼ Un−1(C)

≈ S2n−1 ×∼ (S2n−3 ×∼ Un−2(C))
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≈ · · · · · ·
≈ S2n−1 ×∼ (S2n−3 ×∼ (· · · ×∼ [S3 ×∼ S1] · · · )), and

SUn(C) ≈ S2n−1 ×∼ (S2n−3 ×∼ (· · · ×∼ [S3 ×∼ {1}] · · · )),

where each space of the form B ×∼ F at the inductive steps means the fibered

space over B the base space with F the fiber space.

Acknowledgement. The author would like to thank the referees for some kind
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