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1. Introduction

The concept of almost lattice (AL) was introduced by G. Nanaji Rao and H.T.
Alemu [3] as a common abstraction of almost all lattice theoretic generalization
of Boolean algebra like distributive lattice, almost distributive lattice and lattices
and established necessary and sufficient condition for an AL to become a lattice.
The class of ALs with pseudo-complementation was introduced by G. Nanaji Rao
and R. Venkata Aravinda Raju [6] and it was observed that an AL with 0 can
have more than one pseudo-complementation unlike in the case of lattice. In fact,
if there is a pseudo-complementation on an AL L then each maximal element
of L corresponds to a pseudo-complementation on L and this correspondence
is one-to-one. Also, it was proved that if ∗ is a pseudo-complementation on L
then the set L∗ = {a∗ : a ∈ L} is a Boolean algebra which is independent (upto
isomorphism) of pseudo-complementation ∗. Later the concept of annihilator
of a nonempty subset of an AL L with 0 was introduced by G. Nanaji Rao
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and R. Venkata Aravinda Raju [7] and they proved some basic properties of
annihilators in L. Also, they introduced the concept of 0-distributive ALs and
obtained necessary and sufficient conditions for an AL with 0 to become 0-
distributive AL in terms of annihilators, ideals and pseudo-complementation.
The concept of annihilator ideal in an AL with 0 was introduced by G. Nanaji
Rao and R. Venkata Aravinda Raju [8] and they proved that the set AL of
all annihilator ideals in an AL L is a complete Boolean algebra. Also, they
introduced the concept of annihilator preserving homomorphism and established
a sufficient condition for an AL homomorphism to become annihilator preserving
homomorphism.

In this paper, we introduce the concept of ∗-0-distributive almost lattice.
First we establish a necessary and sufficient condition for a prime ideal in a 0-
distributive AL to become minimal prime ideal. We define a relation θ on an AL
by (x, y) ∈ θ if and only if [x]∗ = [y]∗ and prove that θ is a congruence relation
on L. Also, we prove that if L is a 0-distributive AL then L is a ∗-0-distributive
AL if and only if L/θ is a Boolean algebra. We also derive that L is a ∗-0-
distributive AL if and only if µ = {Mx : x ∈ L} is a Boolean algebra. In other
words, we characterise ∗-0-distributive almost lattice in algebraic terms. Also,
some necessary and sufficient conditions for a 0-distributive AL L to become ∗-
0-distributive AL in terms of the hull-kernel topology on the set of all (minimal)
prime ideals of L.

2. Preliminaries

In this section we collect few important definitions and results which are already
known and which will be used more frequently in the text.

Definition 2.1. A partial order ≤ on a set P is called a total order, if for any
a, b ∈ R, either a ≤ b or b ≤ a holds. In this case, the poset (P,≤) is called a
totally ordered set or a chain.

Definition 2.2. (Zorn’s Lemma) If every subchain of a nonempty partly ordered
set P has an upper bound, then P contains a maximal element.

Definition 2.3. Let (P,≤) be a poset. Then P is said to be lattice ordered set if
for every pair x, y ∈ P , l.u.b{x, y} and g.l.b{x, y} exists.

Definition 2.4. An algebra (L,∨,∧) of type (2, 2) is called a lattice if it satisfies
the following axioms. For any x, y, z ∈ L,
(1) x ∨ y = y ∨ x and x ∧ y = y ∧ x (Commutative Law).

(2) (x∨ y)∨ z = x∨ (y ∨ z) and (x∧ y)∧ z = x∧ (y ∧ z) (Associative Law).

(3) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x (Absorption Law).

It can be easily seen that in any lattice (L,∨,∧), x ∨ x = x and x ∧ x =
x (Idempotent Law).
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Theorem 2.5. Let (L,≤) be a lattice ordered set. If we define x ∧ y is the g.l.b
of {x , y} and x ∨ y is the l.u.b of {x , y} (x, y ∈ L), then (L,∨,∧) is a lattice.

Theorem 2.6. Let (L,∨,∧) be a lattice. If we define a relation ≤ on L, by x ≤ y
if and only if x = x ∧ y, or equivalently x ∨ y = y. Then (L,≤) is a lattice
ordered set.

Important Note. Theorems 2.5 and 2.6 together imply that the concepts of
lattice and lattice ordered set are the same. We refer to it as a lattice in future.

Definition 2.7. Let (L,∨,∧) be a lattice. Then L is said to be a bounded lattice
if L is bounded as a poset.

Definition 2.8. A bounded lattice L with bounds 0 and 1 is said to be comple-
mented if to each x ∈ L, there exists y ∈ L such that x ∧ y = 0 and x ∨ y = 1.

Theorem 2.9. In any lattice (L,∨,∧), for any x, y, z ∈ L, the following state-
ments are equivalent:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(2) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

(3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

(4) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Definition 2.10. A lattice (L,∨,∧) is called a distributive lattice if it satisfies
any one of the four conditions in Theorem 2.9.

Definition 2.11. A complemented distributive lattice is called a Boolean algebra.

Definition 2.12. An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an almost lattice
(AL) with 0 if, for any a, b, c ∈ L, it satisfies the following conditions:

(1) (a ∧ b) ∧ c = (b ∧ a) ∧ c,

(2) (a ∨ b) ∧ c = (b ∨ a) ∧ c,

(3) (a ∧ b) ∧ c = a ∧ (b ∧ c),

(4) (a ∨ b) ∨ c = a ∨ (b ∨ c),

(5) a ∧ (a ∨ b) = a,

(6) a ∨ (a ∧ b) = a,

(7) (a ∧ b) ∨ b = b,

(8) 0 ∧ a = 0.

It can be easily seen that a ∧ b = a if and only if, a ∨ b = b in an AL.
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Definition 2.13. Let L be an AL and a, b ∈ L. Then we define a is less than or
equal to b and write a ≤ b if and only if a ∧ b = a or equivalently a ∨ b = b.

Theorem 2.14. The relation ≤ is a partial ordering on an AL L and hence (L,≤)
is a poset.

Definition 2.15. Let L be any nonempty set. Define, for any x, y ∈ L , x ∨ y =
x = y ∧ x. Then, clearly L is an AL and is called descrete AL.

Theorem 2.16. Let L be an AL and m ∈ L. Then the following statements are
equivalent:

(1) m is maximal.

(2) m ∨ x = m for all x ∈ L.

(3) m ∧ x = x for all x ∈ L.

Theorem 2.17. Let L be an AL. Then for any m ∈ L, the following statements
are equivalent:

(1) m is minimal.

(2) x ∧m = m for all x ∈ L.

(3) x ∨m = x for all x ∈ L.

Definition 2.18. Let L be an AL. Then a nonempty subset I of L is said to be
an ideal of L if it satisfies the following conditions:

(1) If x, y ∈ I, then there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

(2) If x ∈ I and a ∈ L, then x ∧ a ∈ I.

Lemma 2.19. Let L be an AL and I an ideal of L. Then the following statements
are equivalent:

(1) x, y ∈ I implies x ∨ y ∈ I.

(2) x, y ∈ I implies there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

Theorem 2.20. Let S be a nonempty subset of an AL L. Then (S] = {(
∨n

i=1 si)∧
x | si ∈ S, for 1 ≤ i ≤ n, x ∈ L and n ∈ Z+} is the smallest ideal of L containing
S.

Corollary 2.21. Let L be an AL and a ∈ L. Then (a] = {a ∧ x| x ∈ L} is an
ideal of L and is called principal ideal generated by a.

Corollary 2.22. Let L be an AL and a, b ∈ L. Then a ∈ (b] if and only if
a = b ∧ a.

Corollary 2.23. Let L be an AL and a, b ∈ L. Then (a ∧ b] = (b ∧ a] and
(a ∨ b] = (b ∨ a].
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Theorem 2.24. Let L be an AL. Then the set I(L) of all ideals of L form a lattice
under set inclusion in which the glb and lub for any I, J ∈ I(L) are respectively
I ∧ J = I ∩ J and I ∨ J = {x ∈ L : (a ∨ b) ∧ x = x for some a ∈ I and b ∈ J}.

Theorem 2.25. Let L be an AL. Then the set PI(L) of all principal ideals of L
is a sublattice of the lattice I(L) of all ideals of L.

Definition 2.26. Let L be an AL. Then a proper ideal P of L is said to be prime
if for any x, y ∈ L, x ∧ y ∈ P , then either x ∈ P or y ∈ P .

Definition 2.27. Let L be an AL. Then a nonempty subset F of L is said to be
a filter if it satisfies the following conditions:

(1) x, y ∈ F , implies x ∧ y ∈ F .

(2) x ∈ F and a ∈ L, implies a ∨ x ∈ F .

Theorem 2.28. Let L be an AL with a minimal element (say) m. If F is a filter
in L such that m ∈ F , then F = L.

Theorem 2.29. Let L be an AL and S a nonempty subset of L. Then [S) =
{x ∨ (

∧n
i=1 si)| x ∈ L, si ∈ S for 1 ≤ i ≤ n and n ∈ Z+} is the smallest filter of

L containing S.

Corollary 2.30. Let L be an AL and a ∈ L. Then [a) = {x ∨ a|x ∈ L} is the
smallest filter of L containing a and is called a principal filter generated by a.

Corollary 2.31. Let L be an AL. Then for any a, b ∈ L, a ∈ [b) if and only if
a = a ∨ b.

Corollary 2.32. Let L be an AL and a, b ∈ L. Then a ∈ [b) if and only if
[a) ⊆ [b).

Corollary 2.33. Let L be an AL. Then for any x, y ∈ L, [x ∨ y) = [y ∨ x).

Theorem 2.34. Let L be an AL. Then the set F(L) of all filters of L is a lattice
under set inclusion, in which the glb and lub of any F and G in F(L) are given
respectively by, F ∧G = F ∩G, F ∨ G = {x ∈ L|x ∨ (a ∧ b) = x for some a ∈
F and b ∈ G}

Theorem 2.35. Let L be a an AL. Then a subset P of L is a prime ideal of L if
and only if L− P is a prime filter.

Definition 2.36. Let L be an AL with 0. Then a unary operation a 7→ a∗ on
L is called a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the
following conditions:

(P1) a ∧ b = 0 ⇒ a∗ ∧ b = b.
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(P2) a ∧ a∗ = 0.

(P3) (a ∨ b)∗ = a∗ ∧ b∗.

Definition 2.37. Let L be an AL with 0. Then for any nonempty subset A of L,
define A∗ = {x ∈ L : x∧ a = 0 for all a ∈ A}. Here A∗ is called the annihilator
of A in L.

Note that if A = {a} then we write [a]∗ instead of A∗. In the following we
prove some basic properties of annihilators.

Definition 2.38. Let L be an AL with 0. Then,

(1) An element a of an AL L is called dense element if [a]∗ = {0}.

(2) L is said to be dense AL if every nonzero element in L is dense.

Note that the set of all dense elements in an AL with 0 is denoted by D.

Theorem 2.39. Let L be an AL with 0. Then for any x, y ∈ L, the following
statements hold:

(1) (x] ∩ [x]∗ = (0],

(2) [x]∗ ∩ [x]∗∗ = (0],

(3) (x]∗ = [x]∗,

(4) (x]∗ ∩ [x]∗∗ = (0],

(5) x ≤ y ⇒ [y]∗ ⊆ [x]∗,

(6) [x ∧ y]∗ = [y ∧ x]∗,

(7) [x ∨ y]∗ = [y ∨ x]∗,

(8) (x] ⊆ [x]∗∗,

(9) [x]∗∗∗ = [x]∗,

(10) [x]∗ ⊆ [y]∗ ⇔ [y]∗∗ ⊆ [x]∗∗,

(11) [x ∧ y]∗∗ = [x]∗∗ ∩ [y]∗∗.

Definition 2.40. Let L be an AL with 0. Then L is said to be 0-distributive if
for any a, b, c ∈ L, a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0.

Theorem 2.41. Let L be an AL with 0. Then L is 0−distributive if and only if
for any nonempty subset A of L, A∗ is an ideal of L.

Theorem 2.42. Every pseudo-complemented AL is a 0−distributive AL.

Corollary 2.43. Let L be 0-distributive AL. Then for any x, y ∈ L, [x ∨ y]∗ =
[x]∗ ∩ [y]∗.

Lemma 2.44. Let L be a 0-distributive AL. For any subset A of L, A∩A∗ = {0}
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3. Notations and Theorems on 0-Distributive ALs

Let L be a 0-distributive AL and Y (M) the set of all prime(minimal) ideals in L.
Let =Y

h be the hull-kernel topology on Y . That is, the topology on Y for which
{Yx : x ∈ L} is a basis, where Yx = {P ∈ Y : x /∈ P} for any x ∈ L. We write
=M

h for the topology on M induced from =Y
h . In this topology, for any x ∈ L

the corresponding basic open setM ∩Yx is denoted by Mx. The dual hull-kernel
topology on Y (M) is denoted by =Y

d (=
M
d ). That is, the topology, for which

{hY (x) : x ∈ L} ({hM (x) : x ∈ L}) is a basis, where hY (x) = {P ∈ Y : x ∈ P}
(hM (x) = {P ∈M : x ∈ P}) for any x ∈ L, .

In the hull-kernel topology on Y , open (closed) sets are of the form YI(hY (I))
where YI = {P ∈ Y : I 6⊂ P} and hY (I) = Y − YI . Similarly, in the hull-kernel
topology on M , the open (closed) sets are of the form MI(hM (I)) where MI =
{P ∈M : I 6⊂ P} and hM (I) =M−MI . Also, for any subset F of Y , the closure
F̄ of F in the hull-kernel topology on Y is given by F̄ = {Q ∈ Y :

⋂
P∈F P ⊆ Q}.

We first prove some important results on prime ideals, prime filters, minimal
prime ideals and maximal filters in 0-distributive ALs. We begin this section
with the following theorem.

Theorem 3.1. Let L be 0-distributive AL. Then every maximal filter in L is a
prime filter.

Proof. Suppose F is a maximal filter in L. Now, we shall prove F is a prime
filter. Let x, y ∈ L such that x /∈ F and y /∈ F . Then [x) ∨ F and [y) ∨ F
are filters of L which is properly contains F . Since F is maximal, [x) ∨ F = L
and [y) ∨ F = L. Now, since 0 ∈ L = [x) ∨ F , 0 ∨ (a1 ∧ b1) = 0 where
a1 ∈ [x) and b1 ∈ F . It follows that a1 ∧ b1 = 0 and hence (a1 ∨ x) ∧ b1 = 0.
Similarly, we get (a2 ∨ y) ∧ b2 = 0 where a2 ∈ [y) and b2 ∈ F . It follows that
x ∧ b1 = 0 and y ∧ b2 = 0. This implies (b1 ∧ b2) ∧ x = 0 and (b1 ∧ b2) ∧ y = 0.
Since L is 0-distributive, (b1 ∧ b2) ∧ (x ∨ y) = 0. Now, if x ∨ y ∈ F , then
0 = (b1 ∧ b2)∧ (x∨ y) ∈ F . It follows that 0 ∈ F . Hence F = L, a contradiction
to F is proper. Thus x ∨ y /∈ F . Therefore F is a prime filter.

In the following we prove that every proper filter is contained in a maximal
filter.

Theorem 3.2. Let L be an AL with 0. Then every proper filter is contained in a
maximal filter.

Proof. Suppose F is a proper filter in L. Now, put S = {H : H is a proper filter
in L and F ⊆ H}. Then clearly, S is nonempty, since F ∈ S and also, clearly
S is a poset w.r.to set inclusion and satisfies the hypothesis of Zorn’s lemma.
Therefore by Zorn’s lemma, S has a maximal element (say) M . Then M is a
proper filter in L and F ⊆M . Clearly M is a maximal filter containing F .
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It can be easily seen that if a filter F in an AL L contains the zero element
then F = L. Now, we have the following corollary.

Corollary 3.3. Let L be an AL with 0. Then every non-zero element in L is
contained in a maximal filter.

Proof. Suppose a is a non-zero element in L. Then clearly [a) is a proper filter.
Hence by Theorem 3.2, there exists a maximal filter (say) F in L such that
[a) ⊆ F . It follows that a ∈ F .

Next, we prove that maximal filters and maximal prime filters are equivalent.

Theorem 3.4. Let L be a 0-distributive AL. Then a filter F of L is maximal if
and only if F is a maximal prime filter.

Proof. Suppose F is a maximal filter in L. Then, by Theorem 3.1, F is a prime
filter. Suppose H is a prime filter in L such that F ⊆ H . Now, if F 6= H then
F $ H , a contradiction to F is maximal, since H 6= L. Therefore F = H . Thus
F is a maximal prime filter. The converse follows by Theorems 3.1 and 3.2.

In the following we prove that the complement of a minimal prime ideal is a
maximal filter and vice versa.

Theorem 3.5. Let L be an AL and P a prime ideal of L. Then P is a minimal
prime ideal if and only if L− P is a maximal prime filter.

Proof. Suppose P is a minimal prime ideal. Then P is nonempty proper subset
of L and hence L− P is nonempty proper subset of L. Also, by Theorem 2.35,
L − P is a prime filter. Suppose G is a prime filter of L such that L − P ⊆ G.
Then L − G ⊆ P and L − G is a prime ideal. Therefore L − G = P . Hence
G = L − P . Therefore L − P is a maximal prime filter. Conversely, suppose
L−P is a maximal prime filter. Then we have P is a prime ideal. Suppose Q is
a prime ideal of L such that Q ⊆ P . Then L−P ⊆ L−Q and L−Q is a prime
filter. It follows that L− P = L −Q. Hence P = Q. Therefore P is a minimal
prime ideal.

Corollary 3.6. Let L be a 0-distributive AL. Then P is a minimal prime ideal if
and only if L− P is a maximal filter.

Corollary 3.7. Let L be a 0-distributive AL. If a(6= 0) ∈ L, then there exists a
minimal prime ideal of L not containing a.

In the following, we derive a necessary and sufficient condition for a prime
ideal of a 0-distributive AL to become a minimal prime ideal.



∗-0-Distributive Almost Lattices 249

Theorem 3.8. Let L be a 0-distributive AL and P a prime ideal of L. Then P
is a minimal prime ideal if and only if [x]∗ − P 6= ∅ for every x ∈ P .

Proof. Suppose P is a minimal prime ideal of L. Then we have L−P is a maximal
filter of L. Let x ∈ P . Then x /∈ L−P . It follows that [x)∨ (L−P ) = L. Now,
since 0 ∈ L = [x)∨(L−P ), 0 = 0∨(a∧b) where a ∈ [x) and b ∈ L−P . It follows
that (a ∨ x) ∧ b = 0, b ∈ L − P . Hence we get x ∧ b = 0 and b ∈ L − P . Thus
b ∈ [x]∗ and b /∈ P . Therefore [x]∗ − P 6= ∅. Conversely, assume the condition.
Now, we shall prove P is a minimal prime ideal. Suppose Q is a prime ideal of
L such that Q $ P . Then there exists x ∈ P such that x /∈ Q. Therefore by
assumption, [x]∗ − P 6= ∅. Hence choose t ∈ [x]∗ such that t /∈ P . This implies
t ∧ x = 0 ∈ Q and x /∈ Q. Hence t ∈ Q and t /∈ P , a contradiction to Q $ P .
Therefore Q = P and hence P is a minimal prime ideal.

Corollary 3.9. Let P be a minimal prime ideal in a 0-distributive AL L and let
x ∈ L. Then x /∈ P if and only if [x]∗ ⊆ P .

Corollary 3.10. Let P be a minimal prime ideal in a 0-distributive AL L and let
x ∈ L. Then [x]∗∗ * P if and only if [x]∗ ⊆ P .

Lemma 3.11. Let L be a 0-distributive AL. Then for any x ∈ L,
⋂

P∈Yx
P = [x]∗.

Proof. Suppose a /∈ [x]∗. Then a ∧ x 6= 0. Hence there exists P ∈ Y such that
a ∧ x /∈ P . It follows that a /∈ P and x /∈ P . This implies a /∈ P and P ∈ Yx.
Thus a /∈

⋂
P∈Yx

P . Therefore
⋂

P∈Yx
P ⊆ [x]∗. Conversely, suppose a ∈ [x]∗

and P ∈ Yx. Then a ∧ x = 0 ∈ P . Hence a ∈ P . Therefore a ∈
⋂

P∈Yx
P . Thus

[x]∗ ⊆
⋂

P∈Yx
P . Therefore

⋂
P∈Yx

P = [x]∗.

Lemma 3.12. Let L be a 0-distributive AL. Then
⋂

P∈Y P = {0}.

Proof. The proof follows immediately from Corollary 3.7.

Lemma 3.13. Let L be a 0-distributive AL and I an ideal of L. Then hY (I) = Y
if and only if I = {0}.

Proof. Suppose hY (I) = Y . Then I ⊆ P for all P ∈ Y . Hence I ⊆
⋂

P∈Y P =
{0}, we get I = {0}. Conversely, suppose I = {0}. Since 0 ∈ P for all P ∈ Y ,
I = {0} ⊆ P for all P ∈ Y . Therefore I ⊆ P for all P ∈ Y . Hence P ∈ hY (I)
for all P ∈ Y . Therefore hY (I) = Y .

Now we improve some important relations between the ideals of 0-distributive
AL and the corresponding open sets in hull-kernel topology on M which we will
use in section 4 to characterize ∗-0-distributive ALs topologically.

Lemma 3.14. Let L be a 0-distributive AL. Then for any I, J ∈ I(L), we have
the following statements:
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(1) I ⊆ J ⇒MI ⊆MJ .

(2) I ⊆ J ⇒ hM (J) ⊆ hM (I).

(3) MI ∪MJ =MI∨J .

(4) MI ∩MJ =MI∩J .

(5) hM (I) ∪ hM (J) = hM (I ∩ J).

(6) hM (I) ∩ hM (J) = hM (I ∨ J).

Proof. (1) Suppose I ⊆ J and suppose P ∈ MI . Then I 6⊂ P . So that J 6⊂ P .
Hence P ∈MJ . Therefore MI ⊆MJ .

(2) Suppose I ⊆ J and suppose P ∈ hM (J). Then J ⊆ P and hence I ⊆ P .
Thus P ∈ hM (I). Therefore hM (J) ⊆ hM (I).

(3) We have I, J ⊆ I∨J . Hence by condition (1)MI ,MJ ⊆MI∨J . Therefore
MI ∪MJ ⊆ MI∨J . Conversely, suppose P /∈ MI ∪MJ . Then P /∈ MI and
P /∈ MJ . This implies I ⊆ P and J ⊆ P . It follows that I ∨ J ⊆ P . Hence
P /∈MI∨J . Thus MI∨J ⊆MI ∪MJ . Therefore MI ∪MJ =MI∨J .

(4) We have I∩J ⊆ I, J . Hence by condition (1)MI∩J ⊆MI ,MJ . Therefore
MI∩J ⊆ MI ∩MJ . Conversely, suppose P ∈ MI ∩MJ . Then P ∈ MI and
P ∈ MJ . Then I 6⊂ P and J 6⊂ P . This implies I ∩ J 6⊂ P , since P is a prime
ideal. Hence P ∈MI∩J . Thus MI ∩MJ ⊆MI∩J . Therefore MI ∩MJ =MI∩J

(5) hM (I) ∪ hM (J) =MC
I ∪MC

J = (MI ∩MJ)
C = (MI∩J)

C = hM (I ∩ J).

(6) hM (I) ∩ hM (J) =MC
I ∩MC

J = (MI ∪MJ)
C = (MI∨J)

C = hM (I ∨ J)

Corollary 3.15. Let L be a 0-distributive AL. Then for any x, y ∈ L, we have
the following statements:

(1) x ≤ y ⇒Mx ⊆My.

(2) x ≤ y ⇒ hM (y) ⊆ hM (x).

(3) Mx ∪My =Mx∨y.

(4) Mx ∩My =Mx∧y.

(5) hM (x) ∪ hM (y) = hM (x ∧ y).

(6) hM (x) ∩ hM (y) = hM (x ∨ y).

The following lemma exhibits the relation between the annihilator ideals of
L, the basic open sets and the basic closed sets ofM in the hull-kernel topology.

Lemma 3.16. Let L be a 0-distributive AL. Then for any x, y, z ∈ L, we have
the following statements:

(1) Mx = hM ([x]∗).

(2) hM (x) = hM ([x]∗∗).

(3) [x]∗ ⊆ [y]∗ ⇔ hM (x) ⊆ hM (y).

(4) [x]∗ ⊆ [y]∗ ⇔My ⊆Mx.

(5) [z]∗ = [x]∗ ∩ [y]∗ ⇔ hM (z) = hM (x) ∩ hM (y).

(6) [x]∗∗ = [y]∗ ⇔ hM (x) = hM ([y]∗).
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Proof. (1) We have P ∈ Mx ⇔ x /∈ P ⇔ [x]∗ ⊆ P (by Corollary 3.9) ⇔ P ∈
hM ([x]∗).

(2) Suppose P ∈ hM (x). Then x ∈ P . This implies [x]∗ * P . Hence
[x]∗∗ ⊆ P , since [x]∗ ∩ [x]∗∗ = {0} ⊆ P . It follows that P ∈ hM ([x]∗∗). Thus
hM (x) ⊆ hM ([x]∗∗). Conversely, suppose P ∈ hM ([x]∗∗). Then [x]∗∗ ⊆ P .
This implies x ∈ P . Hence P ∈ hM (x). Thus hM ([x]∗∗) ⊆ hM (x). Therefore
hM (x) = hM ([x]∗∗).

(3) Suppose [x]∗ ⊆ [y]∗ and suppose P ∈ hM (x). Then x ∈ P . Hence by
Corollary 3.9, we get [x]∗ 6⊆ P . Therefore [y]∗ 6⊆ P . Hence y ∈ P , we get
P ∈ hM (y). Thus hM (x) ⊆ hM (y). Conversely, suppose hM (x) ⊆ hM (y). Let
a /∈ [y]∗. Then a ∧ y 6= 0. Therefore by Corollary 3.7, there exists a minimal
prime ideal (say) P of L such that a∧y /∈ P . Therefore a /∈ P and y /∈ P . Hence
we get a /∈ P and P /∈ hM (y). Thus a /∈ P and P /∈ hM (x), we get a /∈ P and
x /∈ P . Therefore a ∧ x /∈ P , since P is a prime ideal. Hence a ∧ x 6= 0, we get
a /∈ [x]∗. Thus [x]∗ ⊆ [y]∗.

(4) We have [x]∗ ⊆ [y]∗ ⇔ hM (x) ⊆ hM (y) ⇔ M − hM (y) ⊆ M − hM (x) ⇔
My ⊆Mx. Therefore [x]∗ ⊆ [y]∗ ⇔My ⊆Mx.

(5) Suppose [z]∗ = [x]∗ ∩ [y]∗. Hence [z]∗ = [x ∨ y]∗. Therefore by condition
(3), we get hM (z) = hM (x∨y) = hM (x)∩hM (y). Thus hM (z) = hM (x)∩hM (y).
Conversely, suppose hM (z) = hM (x)∩hM (y). Then hM (z) = hM (x∨ y). Hence
by condition (3), we get [z]∗ = [x∨ y]∗ = [x]∗ ∩ [y]∗. Therefore [z]∗ = [x]∗ ∩ [y]∗.

(6) Suppose [x]∗∗ = [y]∗. Then hM ([x]∗∗) = hM ([y]∗). Hence by condition
(2), we get hM (x) = hM ([y]∗). Conversely, suppose a /∈ [x]∗∗. Then there exists
t ∈ [x]∗ such that a ∧ t 6= 0. Therefore there exists a minimal prime ideal (say)
P of L such that a ∧ t /∈ P and hence a /∈ P and t /∈ P . Since t ∧ x = 0 ∈ P , we
have x ∈ P . Therefore P ∈ hM (x) = hM ([y]∗). Hence [y]∗ ⊆ P , we get a /∈ [y]∗.
Thus [y]∗ ⊆ [x]∗∗. Similarly, we get [x]∗∗ ⊆ [y]∗. Hence [x]∗∗ = [y]∗.

4. ∗-0-Distributive Almost Lattices

It can be easily seen that, if L is a pseudo-complemented AL then for any
x ∈ L, [x]∗ = (x]∗ = (x∗] and hence [x]∗∗ = (x∗]∗ = [x∗]∗. This motivate us to
introduce a new class of 0-distributive ALs which are called ∗-0-distributive ALs
in this section and observe that this class contains pseudo-complemented ALs.
We derive a set of identities for a 0-distributive AL L to become ∗-0-distributive
ALs in topological terms. Next, we define a congruence relation on an AL L, and
prove that if ψ is a congruence relation on L then the congruence of class 0 is an
ideal of L. Later, we prove that a relation θ on an AL L defined by (x, y) ∈ θ if
and only if [x]∗ = [y]∗ is a congruence relation if L is 0-distributive. We derive
a necessary and sufficient condition for an AL to become 0-distributive AL and
establish necessary and sufficient conditions for a 0-distributive AL to become
∗-0-distributive AL. Finally, we derive a set of identities for a 0-distributive AL
to become ∗-0-distributive AL in topological and algebraic terms.
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Definition 4.1. Let L be a 0-distributive AL. Then L is said to be a ∗-0-
distributive AL if, to each x ∈ L, there exists x′ ∈ L such that [x]∗∗ = [x′]∗.

Note that, here onwards, we denote ∗-0-distributive AL by ∗-0-DAL.

Example 4.2. Let A = {0, a} and B = {0, b1, b2} be two discrete ALs. Now, put
L = A × B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)} and define
operations ∨ and ∧ on L as follows.

∨ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, b1) (0, b1) (0, b1) (0, b1) (a, b1) (a, b1) (a, b1)
(0, b2) (0, b2) (0, b2) (0, b2) (a, b2) (a, b2) (a, b2)
(a, 0) (a, 0) (a, b1) (a, b2) (a, 0) (a, b1) (a, b2)
(a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1)
(a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2)

∧ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, b1) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(0, b2) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (a, 0) (a, 0)
(a, b1) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(a, b2) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)

Then clearly, L is a 0−distributive AL with (0, 0) as its zero element. Now, it can
be observed that [(0, 0)]∗∗ = [(a, b1)]

∗, [(0, b1)]
∗∗ = [(a, 0)]∗,[(0, b2)]

∗∗ = [(a, 0)]∗,
[(a, 0)]∗∗ = [(0, b1)]

∗,[(a, b1)]
∗∗ = [(0, 0)]∗ and [(a, b2)]

∗∗ = [(0, 0)]∗. Hence L is a
∗-0-DAL.

Theorem 4.3. Every pseudo-complemented AL is a ∗-0-DAL.

Proof. Suppose L is a pseudo-complemented AL. Then by Theorem 2.42, L is a
0-distributive AL. Clearly, L is a ∗-0-DAL, since for any x ∈ L, [x]∗∗ = [x∗]∗.

In the following we derive a set of identities for a 0-distributive AL to become
∗-0-DAL in topological terms. For this, first we need the following lemma.

Lemma 4.4. Let L be a ∗-0-DAL and let x ∈ L such that [x]∗∗ = [x′]∗ for some
x′ ∈ L. Then we have the following statements:

(1) [x]∗ ∩ [x′]∗ = {0}.

(2) M −Mx =Mx′ .

Proof. (1) Suppose x ∈ L. Then [x]∗ ∩ [x′]∗ = [x]∗ ∩ [x]∗∗ = {0}. Therefore
[x]∗ ∩ [x′]∗ = {0}.
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(2) We have M − Mx = hM (x) = hM ([x]∗∗) = hM ([x′]∗) = Mx′ (by
Lemma 3.16).

Lemma 4.5. Let L be a 0-distributive AL and let x ∈ L. Then Mx = ∅ if and
only if x = 0.

Proof. Suppose Mx 6= ∅. Then we can choose a minimal prime ideal P ∈ M
such that P ∈ Mx. Hence x /∈ P , we get x 6= 0. Conversely, suppose x 6= 0.
Then, by Corollary 3.7, there exists P ∈ M such that x /∈ P . Hence P ∈ Mx,
we get Mx 6= ∅. Therefore if Mx = ∅, then x = 0.

Lemma 4.6. Let L be a 0-distributive AL and A a subset of L. Then hM (A) =⋂
a∈A hM (a).

Proof. Suppose A is a subset of L. Then P ∈ hM (A) ⇔ A ⊆ P ⇔ a ∈ P
for all a ∈ A ⇔ P ∈ hM (a) for all a ∈ A ⇔ P ∈

⋂
a∈A hM (a). Therefore

hM (A) =
⋂

a∈A hM (a).

Theorem 4.7. Let L be a 0-distributive AL. Then the following statements are
equivalent:

(1) L is a ∗-0-DAL.

(2) =M
h = =M

d .

(3) M is compact in the hull-kernel topology.

Proof. (1)⇒(2). Suppose L is a ∗-0-DAL. Let Mx ∈ =M
h . Since L is a ∗-0-DAL,

there exists x′ ∈ L such that [x]∗∗ = [x′]∗. Now Mx = hM ([x]∗) = hM ([x′]∗∗) =
hM (x′) ∈ =M

d . Hence =M
h ⊆ =M

d . Similarly, we get =M
d ⊆ =M

h . Therefore
=M

h = =M
d .

(2)⇒(3). Suppose =M
h = =M

d . Let {Mx : x ∈ ∆} be a family of closed sets
in M with finite intersection property. Now, put F = [∆). Suppose F = L.
Then we have 0 ∈ L = [∆). Therefore 0 = x ∨ (

∧n

i=1 yi), where yi ∈ ∆
for all i and x ∈ L. It follows that x = 0 and

∧n
i=1 yi = 0. Now, consider⋂n

i=1Myi
= M∧

n

i=1
yi

= M0 = ∅, a contradiction. Thus F 6= L. Hence F is
a proper filter. Therefore there exists a maximal filter (say) G of L such that
F ⊆ G. Therefore L − G is a minimal prime ideal. Clearly, ∆ ⊆ G. Now, let
x ∈ ∆. Then x ∈ G. This implies x /∈ L − G. Hence L − G ∈ Mx. It follows
that L−G ∈

⋂
x∈∆Mx. Therefore

⋂
x∈∆Mx is nonempty. Hence M is compact

in the hull-kernel topology.

(3)⇒ (1). Suppose M is compact in the hull-kernel topology. We shall prove
L is a ∗-0-DAL. Let x ∈ L. ThenMx ∈ =M

h and hence hM (x) =M−Mx is closed.
Hence hM (x) is a closed subset of a compact space M . Thus hM (x)is compact.
Now, we have hM (x) ∩ hM ([x]∗) = ∅. This implies hM (x) ∩

⋂
t∈[x]∗ hM (t) = ∅

and {hM (x) ∩ hM (t) : t ∈ [x]∗} is class of closed sets in the compact space
hM (x). Hence there exists t1, t2, . . . , tn ∈ [x]∗ such that hM (x)∩ (hM (t1)∩ ....∩
hM (tn)) = ∅. That is, hM (x) ∩ hM (

∨n
i=i ti) = ∅. Now, put x′ =

∨n
i=i ti. Then
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hM (x) ∩ hM (x′) = ∅. It follows that Mx ∪Mx′ = M and Mx ∩Mx′ = Mx∧x′ =
Mx∧(

∨
n

i=i
ti) = M0 = ∅, since L is 0-distributive AL. Thus Mx′ = hM (x) and

Mx = hM (x′). Hence, we get hM ([x]∗∗) = hM (x) =Mx′ = hM ([x′]∗). Therefore
hM ([x]∗∗) = hM ([x′]∗). Thus, we get [x]∗∗ = [x′]∗. Therefore L is a ∗-0-DAL.

Next, we define a congruence relation on an AL and prove that the congruence
class of 0 is an ideal.

Definition 4.8. Let L be an AL. Then an equivalence relation ψ on L is said to be
a congruence relation on L if for any (a, b), (c, d) ∈ ψ, (a∧c, b∧d), (a∨c, b∨d) ∈ ψ.

It can be easily seen that if ψ is an equivalence relation on an AL L then ψ
is a congruence relation if and only if for any (a, b) ∈ ψ and x ∈ L, (a ∨ x, b ∨
x), (a ∧ x, b ∧ x) ∈ ψ. Note that if x ∈ L, then the congruence class of x with
respect to congruence relation ψ is denoted by x/ψ. Also, note that the set of
all congruence classes with respect to congruence relation ψ is denoted by L/ψ.
Therefore L/ψ = {x/ψ : x ∈ L}.

Lemma 4.9. Let L be a 0-distributive AL. Then 0/ψ is an ideal of L.

Proof. We have 0/ψ = {x ∈ L : (0, x) ∈ ψ}. Then clearly, 0 ∈ 0/ψ and hence
0/ψ is nonempty subset of L. Now, let x, y ∈ 0/ψ. Then (0, x), (0, y) ∈ ψ. This
implies (0 ∨ 0, x ∨ y) ∈ ψ. Hence (0, x ∨ y) ∈ ψ. Therefore x ∨ y ∈ 0/ψ. Again,
let x ∈ 0/ψ and a ∈ L. Then (0, x) ∈ ψ and a ∈ L. Hence (0 ∧ a, x ∧ a) ∈ ψ.
Thus (0, x ∧ a) ∈ ψ. Therefore x ∧ a ∈ 0/ψ. Hence 0/ψ is an ideal.

In the following we define a relation θ on an AL L and prove that if L is a
0-distributive AL then θ is a congruence relation on L.

Theorem 4.10. Let L be a 0-distributive AL. Define a relation θ on L by (x, y) ∈ θ
if and only if [x]∗ = [y]∗. Then θ is a congruence relation on L.

Proof. Clearly, θ is an equivalence relation on L. Let (a, b), (c, d) ∈ θ. Then
[a]∗ = [b]∗ and [c]∗ = [d]∗. Now, we shall prove (a ∨ c, b ∨ d), (a ∧ c, b ∧ d) ∈ θ.
Now, consider, [a∨c]∗ = [a]∗∩[c]∗ = [b]∗∩[d]∗ = [b∨d]∗. Therefore (a∨c, b∨d) ∈ θ.
Again, consider [a ∧ c]∗∗ = [a]∗∗ ∩ [c]∗∗ = [b]∗∗ ∩ [d]∗∗ = [b ∧ d]∗∗. It follows that
[a∧ c]∗ = [b∧d]∗. Therefore (a∧ c, b∧d) ∈ θ. Thus θ is a congruence relation.

If θ is a congruence relation on L and x ∈ L then x/θ = {y ∈ L : (x, y) ∈ θ}
is called the congruence class of x with respect to θ.

Corollary 4.11. Let L be a 0-distributive AL and let m1 and m2 be two maximal
elements in L. Then m1/θ = m2/θ.

Proof. Since m1 and m2 are maximal, [m1]
∗ = {0} = [m2]

∗. Therefore [m1]
∗ =

[m2]
∗. Hence (m1,m2) ∈ θ. Therefore m1/θ = m2/θ.
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Corollary 4.12. Let L be a 0-distributive AL. Then for any maximal element m
in L, m/θ is a filter.

Proof. We have m/θ = {x ∈ L : (m,x) ∈ θ}. Clearly m/θ is nonempty, since
m ∈ θ. Let x, y ∈ m/θ. Then (m,x), (m, y) ∈ θ. This implies (m∧m,x∧y) ∈ θ.
It follows that (m,x ∧ y) ∈ θ. Thus x ∧ y ∈ m/θ. Again, let x ∈ m/θ and
t ∈ L. Then (m,x) ∈ θ and t ∈ L. This implies (t ∨ m, t ∨ x) ∈ θ. Thus
t∨x ∈ (t ∨m)/θ = m/θ, since both t∨m andm are maximal. Hence t∨x ∈ m/θ.
Therefore m/θ is a filter.

Next, we give a necessary and sufficient condition for an AL with 0 to become
0-distributive AL. For this, first we need the following lemma.

Lemma 4.13. Let L be a 0−distributive AL. Then L/θ = {x/θ : x ∈ L} is a
lattice under the operations ∨ and ∧ defined on L/θ by x/θ ∨ y/θ = (x ∨ y)/θ,
x/θ ∧ y/θ = (x ∧ y)/θ.

Proof. Suppose L is 0-distributive AL. First we shall prove that operations ∨
and ∧ on L are well defined. Suppose x/θ = a/θ and y/θ = b/θ. Then (x, a) ∈ θ
and (y, b) ∈ θ. It follows that [x]∗ = [a]∗ and [y]∗ = [b]∗. Now, consider
[x ∨ y]∗ = [x]∗ ∩ [y]∗ = [a]∗ ∩ [b]∗ = [a ∨ b]∗. Therefore (x ∨ y, a ∨ b) ∈ θ. Thus
(x ∨ y)/θ = (a ∨ b)/θ. Therefore x/θ ∨ y/θ = a/θ ∨ b/θ. Again, let t ∈ [x ∧ y]∗.
Then t ∧ (x ∧ y) = 0. This implies (t ∧ x) ∧ y = 0. Thus t ∧ x ∈ [y]∗ = [b]∗. It
follows that (t∧ x)∧ b = 0. This implies (t∧ b)∧x = 0. Thus t∧ b ∈ [x]∗ = [a]∗.
This implies (t ∧ b) ∧ a = 0. Hence t ∧ (a ∧ b) = 0. Therefore t ∈ [a ∧ b]∗.
Thus [x ∧ y]∗ ⊆ [a ∧ b]∗. Similarly, we can prove that [a ∧ b]∗ ⊆ [x ∧ y]∗. Thus
[x∧ y]∗ = [a∧ b]∗. Hence (x∧ y, a∧ b) ∈ θ. It follows that (x ∧ y)/θ = (a ∧ b)/θ.
Thus x/θ∧y/θ = a/θ∧b/θ. Now, we shall prove that (L/θ,∧,∨) is a lattice. We
have [x ∨ y]∗ = [y ∨ x]∗ and [x∧ y]∗ = [y ∧ x]∗. Therefore x/θ ∨ y/θ = y/θ ∨ x/θ
and x/θ ∧ y/θ = y/θ ∧ x/θ. It follows that L/θ is a lattice.

Theorem 4.14. Let L be an AL with 0. Then L is a 0-distributive if and only if
L/θ is a distributive lattice.

Proof. Suppose L is 0-distributive AL. Then by Lemma 4.13, we get L/θ is a
lattice. First we shall prove that for any x, y, z ∈ L, [(x ∨ y) ∧ z]∗ = [(x ∧ z) ∨
(y ∧ z)]∗. Let t ∈ [(x ∨ y) ∧ z]∗. Then t ∧ ((x ∨ y) ∧ z) = 0. This implies
(t ∧ ((x ∨ y) ∧ z)) ∧ x = 0. It follows that t ∧ (x ∧ z) = 0. Similarly, we get
t ∧ (y ∧ z) = 0. Since L is 0-distributive AL, t ∧ ((x ∧ z) ∨ (y ∧ z)) = 0. Thus
t ∈ [(x∧ z)∨ (y ∧ z)]∗. Therefore [(x∨ y)∧ z]∗ ⊆ [(x∧ z)∨ (y ∧ z)]∗. Conversely,
suppose t ∈ [(x ∧ z) ∨ (y ∧ z)]∗. Then t ∧ ((x ∧ z) ∨ (y ∧ z)) = 0. This implies
(t∧((x∧z)∨(y∧z)))∧(x∧z) = 0. It follows that t∧(x∧z) = 0. Similarly, we get
t∧(y∧z) = 0. Hence (t∧x)∧z = 0 and (t∧y)∧z = 0. Since L is 0-distributive AL,
we get z∧((t∧x)∨(t∧y)) = 0. It follows that t∧(z∧((t∧x)∨(t∧y))) = 0. This
implies ((t∧z)∧((t∧x)∨(t∧y)))∧(t∧x) = 0. It follows that (t∧z)∧(t∧x) = 0.
Similarly, we get (t∧z)∧ (t∧y) = 0. Therefore (t∧z)∧x = 0 and (t∧z)∧y = 0.
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Hence (t∧z)∧(x∨y) = 0. Thus t∧(z∧(x∨y)) = 0. It follows that t∧((x∨y)∧z) =
0. Hence t ∈ [(x ∨ y) ∧ z]∗. Thus [(x ∧ z) ∨ (y ∧ z)]∗ ⊆ [(x ∨ y) ∧ z]∗. Therefore
[(x ∨ y) ∧ z]∗ = [(x ∧ z) ∨ (y ∧ z)]∗. Therefore ((x ∨ y) ∧ z, (x ∧ z) ∨ (y ∧ z)) ∈ θ.
Hence (x/θ∨y/θ)∧z/θ = ((x ∨ y) ∧ z)/θ = ((x ∧ z) ∨ (y ∧ z))/θ = (x/θ∧z/θ)∨
(y/θ ∧ z/θ). Thus L/θ is a distributive lattice.

Conversely, suppose L/θ is a distributive lattice. Now, we shall prove L is
0-distributive AL. Let a, b, c ∈ L such that a ∧ b = 0 and a ∧ c = 0. This
implies (a ∧ b) ∨ (a ∧ c) = 0. It follows that ((a ∧ b) ∨ (a ∧ c))/θ = 0/θ. Thus
(a/θ∧b/θ)∨(a/θ∧c/θ) = 0/θ. Since L/θ is distributive, a/θ∧(b/θ∨c/θ) = 0/θ.
It follows that (a ∧ (b ∨ c))/θ = 0/θ. Therefore [a∧(b∨c)]∗ = [0]∗ = L. It follows
that a ∧ (b ∨ c) = 0. Hence L is 0-distributive AL.

Next, we establish a set of identities for a 0-distributive AL to become a
∗-0-DAL in topological and algebraic terms. For this first we need the following
theorem.

Theorem 4.15. Let L be a 0-distributive AL. Then L is a ∗-0-DAL if and only
if µ = {Mx : x ∈ L} is a Boolean algebra under the operations ∪ and ∩.

Proof. Suppose L is a ∗-0-DAL. Now, we shall prove µ is a Boolean algebra.
Let Mx,My ∈ µ. Then by Corollary 3.15, we have Mx ∪ My = Mx∨y and
Mx ∩My =Mx∧y. Therefore µ is closed closed under ∪ and ∩. It can be easily
seen that (µ,∪,∩) is a lattice. Since 0 ∈ L, ∅ =M0 ∈ µ. Clearly, M0 is the least
element in µ. Also, since 0 ∈ L and L is a ∗-0-DAL, there exists 0′ ∈ L such
that [0]∗∗ = [0′]∗. Now, M = hM (0) = hM ([0]∗∗) = hM ([0′]∗) = M0′ . Therefore
M = M0′ ∈ µ and clearly, M0′ is the greatest element in the lattice µ. Thus µ
is a bounded lattice. Now, we shall prove that µ is complemented. Let Mx ∈ µ.
Then x ∈ L. Since L is ∗-0-DAL, there exists x′ ∈ L such that [x]∗∗ = [x′]∗.
Now, consider Mx ∩Mx′ = Mx∧x′ = M0 = ∅ and Mx ∪Mx′ = Mx∨x′ = M0′ ,
since [x∨x′]∗ = [x]∗∩ [x′]∗ = [x]∗∩ [x]∗∗ = {0} = [0]∗∗ = [0′]∗. Let x ∈ L. There
exists x′ ∈ L such that [0]∗∗ = [0′]∗. Hence by Lemma 4.4, M −Mx = Mx′ , we
get every element in µ is complemented. Therefore µ is complemented lattice.
Finally, we shall prove µ is a distributive lattice. Now, let Mx,My,Mz ∈ µ.
Then by Theorem 4.14, we get (Mx ∪My) ∩Mz = (Mx ∩Mz) ∪ (My ∩Mz).
Therefore (µ,∪,∩) is a distributive lattice. Thus (µ,∪,∩,M0,M0′) is a Boolean
algebra.

Conversely, suppose µ = {Mx : x ∈ L} is a Boolean algebra. Let x ∈ L.
Then Mx ∈ µ. Hence there exists Mx′ ∈ L such that Mx ∩Mx′ = ∅ = M0

and Mx ∪Mx′ = Ma, where M0 and Ma are least and greatest elements in µ
respectively. Then Mx∧x′ = M0 and Mx∨x′ = Ma. This implies x ∧ x′ = 0 and
[x∨ x′]∗ = [a]∗. Now, let t ∈ [a]∗. It follows that t ∈ [t∨ t′]∗ = [t]∗ ∩ [t′]∗. Hence
t ∈ [t]∗. Therefore t ∧ t = 0. Hence t = 0. Thus [x ∨ x′]∗ = {0}. Therefore
x ∧ x′ = 0 and x ∨ x′ ∈ D. This implies x ∈ [x′]∗. Hence (x] ⊆ [x′]∗. It
follows that [x]∗∗ ⊆ [x′]∗. Now, let t ∈ [x′]∗ and s ∈ [x]∗. Then t ∧ s ∈ [x]∗ and
t ∧ s ∈ [x′]∗. Therefore t ∧ s ∈ [x]∗ ∩ [x′]∗ = [x ∨ x′]∗ = {0}, since x ∨ x′ ∈ D.
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Hence t ∧ s = 0. Thus t ∈ [x]∗∗. Therefore [x′]∗ ⊆ [x]∗∗. Thus [x]∗∗ = [x′]∗.
Therefore L is a ∗-0-DAL.

Theorem 4.16. Let L be a 0-distributive AL. Then L is a ∗-0-DAL if and only
if L/θ is a Boolean algebra.

Proof. Suppose L is a ∗-0-DAL. Then By Theorem 4.14, we get L/θ is a
distributive lattice. Since 0 ∈ L, 0/θ ∈ L/θ. Now, for any x/θ ∈ L/θ,
0/θ ∧ x/θ = (0 ∧ x)/θ = 0/θ. Hence 0/θ ≤ x/θ. Therefore 0/θ is the least
element in L/θ. Again, since 0 ∈ L and L is ∗-0-DAL, there exists 0′ ∈ L such
that [0]∗∗ = [0′]∗. Let x/θ ∈ L/θ. Now, consider, [x ∨ 0′]∗ = [x]∗ ∩ [0′]∗ =
[x]∗ ∩ [0]∗∗ = [x]∗ ∩ {0} = {0} = [0]∗∗ = [0′]∗. Hence (x ∨ 0′)/θ = 0′/θ. This
implies x/θ ∨ 0′/θ = 0′/θ. Thus x/θ ≤ 0′/θ. Therefore 0′/θ is the great-
est element in L/θ. Thus L/θ is a bounded lattice. Let x/θ ∈ L/θ. Then
x ∈ L. Since L is ∗-0-DAL, there exists x′ ∈ L such that [x]∗∗ = [x′]∗. Now,
consider x/θ ∧ x′/θ = (x ∧ x′)/θ = 0/θ, since x ∈ [x]∗∗ = [x′]∗. Again, con-
sider [x ∨ x′]∗ = [x]∗ ∩ [x′]∗ = [x]∗ ∩ [x]∗∗ = {0} = [0]∗∗ = [0′]∗. Therefore
x/θ ∨ x′/θ = (x ∨ x′)/θ = 0′/θ. Thus L/θ is complemented and hence is a
Boolean algebra.

Conversely, suppose L/θ is a Boolean algebra. Now, we shall prove L is a
∗-0-DAL. Let x ∈ L. Then x/θ ∈ L/θ. Therefore there exists x′/θ ∈ L/θ such
that x/θ ∨ x′/θ = (x ∨ x′)/θ = a/θ and x/θ ∧ x′/θ = (x ∧ x′)/θ = 0/θ, where
0/θ and a/θ are least and greatest elements in L/θ respectively. Now, since
x/θ∨x′/θ = a/θ, (x ∨ x′)/θ = a/θ. Thus (x∨x′, a) ∈ θ. Therefore [x∨x′]∗ = [a]∗,
this is true for all x ∈ L. Now, let t ∈ [a]∗. Then t ∈ [t ∨ t′]∗ = [t]∗ ∩ [t′]∗. It
follows that t = 0. Therefore [a]∗ = {0}. Thus [x ∨ x′]∗ = {0}. Therefore
x ∨ x′ ∈ D. This implies [x]∗ ∩ [x′]∗ = {0}. Again, since x/θ ∧ x′/θ = 0/θ,
[x ∧ x′]∗ = [0]∗ = L. Now, we have x ∧ x′ ∈ L = [x ∧ x′]∗. Therefore x ∧ x′ = 0.
This implies x ∈ [x′]∗. Hence (x] ⊆ [x′]∗. It follows that [x]∗∗ ⊆ [x′]∗. Now,
let t ∈ [x′]∗ and a ∈ [x]∗. Then t ∧ a ∈ [x]∗ and t ∧ a ∈ [x′]∗. Therefore
t ∧ a ∈ [x]∗ ∩ [x′]∗ = [x ∨ x′]∗ = {0}, since x ∨ x′ ∈ D. Hence t ∧ a = 0. Thus
t ∈ [x]∗∗. Therefore [x′]∗ ⊆ [x]∗∗. Thus [x]∗∗ = [x′]∗. Therefore L is a ∗-0-DAL.

Theorem 4.17. Let L be a 0-distributive AL. Then L is a ∗-0-DAL if and only
if for any x ∈ L, there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ ∈ D.

Proof. Suppose L is a ∗-0-DAL and suppose x ∈ L. Then there exists x′ ∈ L
such that [x]∗∗ = [x′]∗. Since x ∈ [x]∗∗ = [x′]∗, x ∧ x′ = 0. Again, consider
[x ∨ x′]∗ = [x]∗ ∩ [x′]∗ = [x]∗ ∩ [x]∗∗ = {0}. Thus [x ∨ x′]∗ = {0}. Therefore
[x ∨ x′]∗ ∈ D. Conversely, assume the condition. Now, let x ∈ L. Then
by assumption, there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ ∈ D.
This implies x ∈ [x′]∗. Hence (x] ⊆ [x′]∗. It follows that [x]∗∗ ⊆ [x′]∗. Now,
let t ∈ [x′]∗ and a ∈ [x]∗. Then t ∧ a ∈ [x]∗ and t ∧ a ∈ [x′]∗. Therefore
t ∧ a ∈ [x]∗ ∩ [x′]∗ = [x ∨ x′]∗ = {0}, since x ∨ x′ ∈ D. Hence t ∧ a = 0. Thus
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t ∈ [x]∗∗. Hence, [x′]∗ ⊆ [x]∗∗ and so [x]∗∗ = [x′]∗. Therefore L is a ∗-0-DAL.

It can be easily seen that if L is a ∗-0-DAL then M0′ = M and hM (0′) = ∅
where [0]∗∗ = [0′]∗. Finally, we prove the following theorem.

Theorem 4.18. Let L be an 0-distributive AL. Then the following conditions are
equivalent:
(1) L is a ∗-0-DAL.

(2) µ = {Mx : x ∈ L} is a Boolean algebra.

(3) L/θ is a Boolean algebra.

(4) For any x ∈ L, there is x′ ∈ L such that x ∧ x′ = 0, x ∨ x′ ∈ D.

(5) =M
h = =M

d .

(6) M is compact in the hull-kernel topology.

(7) {h(x) : x ∈ L} is a subbasis for open sets of (M,=M
h ).

(8) {M(x) : x ∈ L} is a subbasis for open sets of (M,=M
d ).

Proof. The equivalence of (1), (2), (3) and (4) follows by Theorems 4.15, 4.16
and 4.17 and equivalence of (1), (5) and (6) follows by Theorem 4.7. Finally,
the equivalence of (5), (7) and (8) is trivial, since the topologies are completely
determined by any of their subbasis.
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