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Abstract. In this paper, we introduce the semiring of quotients of a H− semimodule

semialgebra A with respect to the filter F of H−stable ideals I of A with right and

left annihilators of I are zero. We establish a connection between semiring of quotients

of a semialgebra A and the ring of quotients of the algebra of differences A
4
. We

also introduce the Hopf algebra action of the semiring of quotients and study the

connection between the smash product of semialgebra of quotients and the smash

product of algebra of quotients.
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1. Introduction

The theory of ring of quotients began with the work of Ore in 1930. In fact,
Ore established a criterion for a ring R to have a classical ring of quotients.
In [9], Martindale introduced the ring of quotients for a prime rings. In 1972,
S.A. Amitsur [1] generalised the constructions of Martindale ring of quotients to
semiprime rings. The study of ring of quotients has been found very useful in the
study of Galois theory for non-commutative rings. In [2], M. Cohen extended
the Hopf algebra actions to the ring of quotients of an Hopf module algebra.
In [8], C. Lomp has given a sufficient condition to extend Hopf actions to the
algebra of quotients of an H−module algebra.

In this paper, we consider the action of a Hopf algebra(H) on the semiring
of quotients QF(A) of an H−semimodule semialgbra A with respect to the filter
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F of H−stable ideals I of A with right and left annihilator of I in A are zero.
This paper organised as follows:

The second section contains some basic definitions and results on semirings
and Hopf algebra that are needed for latter sections. In the third section, we
introduced the action of Hopf algebra over semialgebra A and define the smash
product semialgbra A#H. Also, we have introduced that the semiring of quo-
tients of A with respect to the filter F of H−stable ideals I of A with right and
left annihilator of I in A are zero. In this section we have proved that there is
a one to one homomorphism between the semiring of quotients of the semialge-
bra A and the ring of quotients of the algebra of their differences A4. Also, we
have proved that there is a one to one homomorphism between (QF(A))

4 and
(QF4(A4)).

In the fourth section, we introduced the Hopf algebra action on the semir-
ing of quotients of an H−semimodule semialgebra A and proved that, there is
a one to one homomorphism between the smash products (QF(A))

4#H and
QF4(A4)#H.

2. Preliminaries

For basic definitions and results in semiring theory we refer to J.S. Golan [6]:

Definition 2.1. A semiring is a nonempty set R equipped with two binary opera-
tions ′+′ and ′·′ called addition and multiplication such that, for a, b, c ∈ R,

(i) (R,+) is a commutative monoid with identity element 0.

(ii) (R, ·) is a monoid with identity element 1.

(ii) Multiplication distributes over addition from either side.
(a) a · (b + c) = a · b+ a · c

(b) (a+ b) · c = a · c+ b · c
(iii) a · 0 = 0 · a = 0, for all a ∈ R.

(iv) 1 6= 0.

Definition 2.2. A semiring R is zerosumfree if and only if r+ r′ = 0 implies that
r = r′ = 0.

Definition 2.3. A semiring R is yoked if and only if for each a, b ∈ R there exists
r ∈ R such that either a+ r = b or b+ r = a.

Definition 2.4. An ideal I of a semiring R is a nonempty subset of R satisfying
the following conditions:

(i) If a, b ∈ I, then a+ b ∈ I;

(ii) If a ∈ I and r ∈ R, then ar and ra ∈ I;
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Definition 2.5. A nonempty subset(ideal) I of a semiring R is subtractive if and
only if a ∈ I and a+ b ∈ I implies that b ∈ I.

Definition 2.6. [6, 11] If R is an additively cancellative semiring, then the ring
of differences of R, denoted by R∆, is given by

R∆ = {a− b|a, b ∈ R}.

In R∆, we have a − b = c − d if and only if there exist elements r, r′ ∈ R such
that a+r = c+r′ and b+r = d+r′. Moreover R∆ becomes a ring under addition
and multiplication is given by

(a− b) + (c− d) = (a+ c)− (b+ d)

(a− b) · (c− d) = (ac+ bd)− (ad+ bc).

The zero element of R∆ is a − a and the multiplicative identity element of R∆

is 1 = 1− 0. Also the map a 7→ a− 0 is the natural embedding of R into R∆.

Lemma 2.7. [11] Let R be additively cancellative semiring and R4 is its ring of
differences. Let A,B be two ideals of R and I, J two ideals of R4. Then:

(i) A4B4 = (AB)4;

(ii) (I ∩R)(J ∩R) ⊆ (IJ) ∩R;

(iii) (I ∩R)4 ⊆ I. Equality holds if R is a yoked semiring;

(iv) For any two subsets A,B of R, (A∩B)4 ⊆ A4 ∩B4. Equality holds if A
and B are subtractive subsets of R and R is yoked;

(v) I ∩R is subtractive, for every ideal I of R4.

We denote the binary operation on an arbitrary monoid M as ′ +′ .

Definition 2.8. [7] (Tensor product of semimodules) Let K be a commutative
semiring, F ∈ Smod−K and G ∈ K−Smod. Then the tensor product F ⊗K G,
is defined by Sharma et al. in [10] as the factor monoid (F ⊗G)/σ, where σ is a
congruence on (F⊗G) generated by the pairs < (ak⊗b), (a⊗kb) >, ∀a ∈ F, b ∈ G
and k ∈ K, such that for any balanced product (C, f) of F and G, there exists
a unique morphism of monoids φ : F ⊗K G → C, satisfying f = φ ◦ g, where
g : F ×G→ F ⊗K G, is given by (m,n) 7→ m⊗ n.

If K is a commutative semiring, then every left K−semimodule is a right
K−semimodule and vice-versa. Also, if F,G ∈ K − Smod, then F ⊗K G is a
commutative monoid and it becomes a K−semimodules by defining α(a⊗ b) =
αa⊗ b = a⊗ αb, for a ∈ F, b ∈ G and α ∈ K.

Theorem 2.9. [10] Let K be commutative semiring. Then (Smod −K,⊗K ,K)
is a monoidal category.
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Definition 2.10. [10] The monoids in the monoidal category (Smod−K,⊗K,K)
are called K−semialgebras.

Therefore, a K−semialgebra can be defined as a triple (A,M, u) with A a
K−semimodule,M : A⊗A→ A, a map called multiplication, u : K → A, a map
called the unit map, and such that the following diagrams are commutative,

Note that u(1k) is the unital element of semialgebra A.

Now we recall the definitions of a Hopf algebra from Sweedler [12].

Definition 2.11. A system (H,M, u,4, ε), where H has algebra structure over
a commutative ring k with multiplication M and unit u and H has coalgebra
structure over k with co-multiplication 4 and co-unit ε satisfying:

(i) M,u are co-algebra maps.

(ii) 4, ε are algebra maps,

is called a bialgebra.

Definition 2.12. Let H be a bialgebra. The map S : H → H satisfying

∑

(h)

S(h1)h2 = ε(h)1H =
∑

(h)

h1S(h2)

where ∆(h) =
∑

(h) h1 ⊗ h2, is called an antipode for H.

Definition 2.13. A bialgebra with an antipode is a Hopf algebra.

3. Semiring of Quotients of H-Semimodule Semialgebra

Throughout this paper A denotes semialgebra over a commutative semiring K
and H denotes a Hopf algebra over the ring of differences K4 of K.

Definition 3.1. [5] Let A be a K−semialgebra with identity 1A. We say A is
called an H−semimodule semialgebra if:

(i) A is an H−semimodule, where we denote the action of H on A by h · a.

(ii) h ·(ab) =
∑

(h)(h1 ·a)(h2 ·b), where a, b ∈ A, h ∈ H, and ∆(h) =
∑

(h)(h1⊗

h2).
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(iii) h · 1A = ε(h)1A, for all h ∈ H.

Remark 3.2. Defining h · (a− b) = h · a− h · b, ∀h ∈ H, a, b ∈ A, it can be easily
seen that the algebra of differences A4 is an H−module algebra [4].

Definition 3.3. [5] Let A be a left H−semimodule semialgebra. Then the smash
product semialgebra A#H is defined as follows, for all a, b ∈ A, h, k ∈ H :

(i) As K−semimodule, A#H = A⊗KH. We write a#h for the element a⊗h.

(ii) Multiplication is given by

(a#h)(b#g) =
∑

(h)

a(h1 · b)#h2g.

It is clear that A and H are embedded in A#H via the maps a 7→ a#1H and
h 7→ 1A#h respectively. Also we write ah in place of a#h.

Definition 3.4. [5] An ideal I of a H−semimodule semialgebra A is said to be
H−stable if h · a ∈ I, ∀h ∈ H, a ∈ I.

Definition 3.5. An H−semimodule semialgebra A is called H−prime (respec-
tively H−semiprime) if for any H−stable ideals I, J of A, then IJ = 0(resp.
I2 = 0) implies I = 0 or J = 0 (resp. I=0).

Proposition 3.6. Let A be H−semimodule semialgebra and I be H−stable ideal
in A. Then the left annihilator of I in A is H−stable. Further if, S−1 exists,
then the right annihilator of I in A is also H−stable.

Proof. The proof is similar to the proof given in [3, Corollary 2].

Now we introduce the semiring of quotients of A with respect to a filter F of
ideals of A.

Definition 3.7. Let A be H−semimodule semialgebra and F be the family of all
H−stable ideals I of A whose right and left annihilators are zero. If f : I → A
and g : J → A are left A−semimodule homomorphisms, with I, J ∈ F, then
f is said to equivalent to g if they agree on their common domain. Let [f ]
denote the equivalence class of f , and let QF(A) be the set of all such equivalence
classes q = [f ]. Addition and multiplication in QF(A) are given as follows: If
q1 = [f ], q2 = [g] are in QF(A), then define q1+q2 as the class of f+g : I∩J → A
and define q1q2 as the class of composite map fg : JI → A. Under the above
operations QF(A) becomes a semiring and is called the semiring of quotients of
A with respect to F. If F1 is the family of all ideals I of A whose right and
left annihilators are zero then QF1

(A) is called right Martindale semiring of
quotients.
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Lemma 3.8. If A is H−prime, H−semimodule semialgebra and the algebra of
differences A4 of A is H−prime, H−module algebra.

Proof. Let I and J be two H−stable ideals in A, such that IJ = 0. Then
IJ ∩ A = 0, by Lemma 2.7(ii), (I ∩ A)(J ∩ A) = 0. Since A is H−prime, yoked
and by Lemma 2.7(iii), they give I = 0 or J = 0.

Let A be additively cancellative and yoked semiring. We denote

F = {I ⊆ A|I isH − stable ideal ofA and lA(I) = 0 = rA(I)},

F
′ = {I ⊆ A4|I isH − stable ideal ofA4 and lA4(I) = 0 = rA4(I)}

F4 = {I ⊆ A4|I isH − stable ideal ofA4 such that I = J4 for someJ ∈ F},

where lA(I), rA(I) are left and right annihilators of I in A respectively.

With the notation as above, we have the following:

Proposition 3.9. If A is H−prime semimodule semialgebra, then F′ = F4.

Proof. First we prove that F4 ⊆ F′. Let I ⊆ F4. Then 0 6= I is H− stable
ideal of A4 such that I = J4 for some J ∈ F. Since A is H−prime and by
Lemma 3.8, A4 is H−prime. Now, by H−primeness of A4 it follows that
lA4(J4) = 0 = rA4(J4). Hence I ⊆ F′. Thus we have proved that F4 ⊆ F′.
To prove the reverse side inclusion F′ ⊆ F4, let J ∈ F′. Then J is a nonzero
H−stable ideal of A4, with left and right annihilators of J in A4 are 0. It
is required to prove that J = I4 for some I ∈ F. Since A is yoked and by
Lemma 2.7(iii), J = (J ∩ A)4. So, it is remains to prove (J ∩ A) ∈ F. Since
J 6= 0, it follows from Lemma 2.7(iii) that (J ∩ A) 6= 0. Also, it is clear that
J ∩A is H−stable ideal in A. Next, we proceed to show that left annihilator of
J ∩A in A is zero. For, suppose there exists r ∈ A such that r(J ∩A) = 0. Then

rj = 0, ∀j ∈ J ∩A

⇒ rj1 − rj2 = 0, ∀j1, j2 ∈ J ∩A

⇒ r(j1 − j2) = 0, ∀j1 − j2 ∈ (J ∩ A)4 = J (by Lemma 2.7(iii))

⇒ r ∈ lA4(J) = 0

Hence, lA(J ∩ A) = 0. Similarly we can show right annihilator of J ∩ A in A is
zero. This proves J ∩ A ∈ F. Hence F′ = F4.

The following Proposition establishes an injective homomorphism from the
semiring of quotients of A to the ring of quotients of A4 of A.

Proposition 3.10. Let A be H−semimodule semialgebra and ψ : QF(A) →
QF4(A4) be the map defined by ψ(q) = q̃, where q = [f ], f : I → A and

q̃ = [f̃ ], f̃ : I4 → A4, given by (a − b)f̃ = af − bf, ∀a − b ∈ I4. Then ψ is
injective homomorphism.
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Proof. Let ψ : QF(A) → QF4(A4) defined by ψ(q) = q̃, where q = [f ], where

f : I → A and q̃ = [f̃ ], f̃ : I4 → A4 given by (a−b)f̃ = af−bf, ∀a−b ∈ I4. Let
q1, q2 ∈ QF(A). Then q1 = [f1] and q2 = [f2] where f1 : I1 → A and f2 : I2 → A
are left A−homomorphism.

First we prove that to preserve addition, we prove that ψ(q1 + q2) = ψ(q1) +

ψ(q2) i.e., ˜(q1 + q2) = q̃1+ q̃2. Let q1+q2 = [f1]+[f2], where f1+f2 : I1∩I2 → A

defined by (a)(f1+f2) = af1+af2, ∀a ∈ I1∩I2. Then ˜(q1 + q2) = [f̃1 + f2] where

f̃1 + f2 : (I1 ∩ I2)
4 → A4 defined by (a − b) ˜(f1 + f2) = a(f1 + f2) − b(f1 +

f2), ∀a, b ∈ I1 ∩ I2. But q̃1 + q̃2 = [f̃1] + [f̃2] where f̃1 + f̃2 : (I41 ∩ I42 ) → A4,

is defined by (a− b)(f̃1 + f̃2) = (a− b)f̃1 + (a− b)f̃2, ∀a− b ∈ (I41 ∩ I42 ). Now

since (I1 ∩ I2)
4 ⊆ (I41 ∩ I42 ), it follows that (I1 ∩ I2)

4 ∩ (I41 ∩ I42 ) = (I1 ∩ I2)
4.

Hence, for any a−b ∈ (I1∩I2)
4, we have (a−b)(f̃1+ f̃2) = (a−b)f̃1+(a−b)f̃2.

Then

(a− b)(f̃1 + f̃2) = (a− b)f̃1 + (a− b)f̃2

= (af1 − bf1) + (af2 − bf2)

= a(f1 + f2)− b(f1 + f2)

= (a− b) ˜(f1 + f2), ∀a− b ∈ (I1 ∩ I2)
4.

Thus, ˜(f1 + f2) = f̃1 + f̃2 on (I1 ∩ I2)
4 and hence ˜(q1 + q2) = q̃1 + q̃2.

Next we prove that ψ(q1q2) = ψ(q1)ψ(q2). We have q1q2 = [f1][f2], where
f1f2 : I2I1 → A defined by (

∑
i
aibi)(f1f2) = (

∑
i
ai(bif1))f2. Also, q̃1q2 =

[f̃1f2], where f̃1f2 : (I2I1)
4 → A4 defined by (

∑
i
aibi −

∑
i
cidi)(̃f1f2) =

(
∑

i
aibi)(f1f2) − (

∑
i
cidi)(f1f2) = (

∑
i
ai(bif1))f2 − (

∑
i
ci(dif1))f2. On the

other hand, we have q̃1q̃2 = [f̃1f̃2], where f̃1f̃2 : (I2I1)
4 → A4 defined by

(
∑

i
aibi −

∑
i
cidi)(f̃1f̃2) = (

∑
i
ai(bif1) −

∑
i
ci(dif1))f̃2 = (

∑
i
ai(bif1))f2 −

(
∑

i
ci(dif1))f2. Hence, ψ(q1q2) = ψ(q1)ψ(q2).

Finally we shall prove that ψ is one-to-one. For, let ψ(q1) = ψ(q2), i.e., q̃1 =

q̃2, on I
4
1 ∩ I42 where q̃1 = [f̃1], f̃1 : (I1)

4 → A4, q̃2 = [f̃2], f̃2 : (I2)
4 → A4. So,

in particular q̃1 = q̃2, on (I1 ∩ I2)
4 ⊆ I41 ∩ I42 , that is,

[f̃1] = [f̃2]

⇔ (a− b)f̃1 = (a− b)f̃2, ∀a− b ∈ (I1 ∩ I2)
4

⇒ af1 − bf1 = af2 − bf2, ∀a− b ∈ (I1 ∩ I2)
4

In particular,

af1 − 0f1 = af2 − 0f2, take b = 0

⇒ af1 = af2, ∀a ∈ I1 ∩ I2

⇒ q1 = q2.

Thus ψ is one to one.
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Proposition 3.11. The H−semimodule semialgebra A is embedded in QF(A) via
a 7→ φa, where φa denote right multiplication on A by a.

Proof. Follows from the fact that A is a semialgebra with identity 1A

Proposition 3.12. Let A be zerosumfree semiring. Then QF(A) is a semiring but
not a ring.

Proof. By assumption, there exists 0 6= a ∈ A such that a + a′ 6= 0, ∀a′ ∈ A.
Let φa : A → A defined by rφa = ra. Let q = [φa] ∈ QF(A). Suppose that
q′ = [f ] ∈ QF(A), f : I → A where I ∈ F, is additive inverse of q. Then
q+q′ = 0, where q+q′ = [φa]+ [f ] = 0. That is, 0 = b(φa+f) = ba+bf, ∀b ∈ I.
Since A is zerosumfree, ba = 0, ∀b ∈ I and f ≡ 0. This implies that φa ≡ 0. But,
since A is a semialgebra with 1A, it follows that a = 0. This contradicts to our
assumption that a 6= 0. Hence QF(A) is semiring but not a ring.

Note 3.13. The map ψ : QF(A) → QF4(A4) is not onto: Suppose ψ is onto.
Then ∀q̃ ∈ QF4(A4), there exists q ∈ QF(A) such that ψ(q) = q̃. SinceQF4(A4)

is ring, there exists t̃ ∈ QF4(A4) such that q̃+t̃ = 0̃ where t̃ = [t̃′], t̃′ : J4 → A4.

Then ψ(q + t) = q̃ + t = q̃ + t̃ = 0. Since ψ is one-to-one implies that q + t = 0.
This contradicts to QF(A) is a proper semiring. Hence ψ is not onto.

Proposition 3.14. (QF(A))
4 is embedded in QF4(A4).

Proof. Let φ : (QF(A))
4 → QF4(A4) defined by φ(q) = q̃1 − q̃2, where q =

q1 − q2, q1, q2 ∈ QF(A).

First we prove that to preserve addition, we prove that φ(q1 + q2) = φ(q1) +
φ(q2), where q1, q2 ∈ (QF(A))

4. Let q1 = q′1 − q′′1 , q2 = q′2 − q′′2 , where q
′
1 =

[f ′
1], f

′
1 : I1 → A, q′′2 = [f ′′

1 ], f
′′
1 : I2 → A, q′2 = [f ′

2], f
′
2 : I3 → A, q′′2 = [f ′′

2 ], f
′′
2 :

I4 → A are in QF(A). Since q1 + q2 = (q′1 + q′2) − (q′′1 + q′′2 ), φ(q1 + q2) =
˜(q′1 + q′2)−

˜(q′′1 + q′′2 ) where
˜(q′1 + q′2) = [f̃ ′

1 + f ′
2], f̃

′
1 + f ′

2 :

(I1 ∩ I3)
4 → A4 defined by (a − b) ˜(f ′

1 + f ′
2) = a(f ′

1 + f ′
2) − b(f ′

1 + f ′
2), ∀a, b ∈

I1 ∩ I3 and ˜(q′′1 + q′′2 ) = [ ˜f ′′
1 + f ′′

2 ],
˜(f ′′
1 + f ′′

2 ) : (I2 ∩ I4)
4 → A4 defined by

(a− b) ˜(f ′′
1 + f ′′

2 ) = a(f ′′
1 + f ′′

2 )− b(f ′′
1 + f ′′

2 ), ∀a, b ∈ I2 ∩ I4. On the other hand

φ(q1)+φ(q2) = (q̃′1− q̃
′′
1 )+(q̃′2− q̃

′′
2 ) = (q̃′1+ q̃

′
2)−(q̃′′1 + q̃

′′
2 ) =

˜(q′1 + q′2)−
˜(q′′1 + q′′2 ),

and hence φ is additive.

Next we prove that φ(q1q2) = φ(q1)φ(q2), where q1, q2 ∈ (QF(A))
4 i.e.,q̃1q2 =

q̃1q̃2. Let q1q2 = (q′1 − q′′1 )(q
′
2 − q′′2 ) = (q′1q

′
2 + q′′1 q

′′
2 )− (q′1q

′′
2 + q′′1 q

′
2). Then q̃1q2 =

˜(q′1q
′
2 + q′′1 q

′′
2 ) −

˜(q′1q
′′
2 + q′′1 q

′
2). On the other hand q̃1q̃2 = (q̃′1 − q̃′′1 )(q̃

′
2 − q̃′′2 ) =

(q̃′1q̃
′
2 + q̃′′1 q̃

′′
2 )− (q̃′1q̃

′′
2 + q̃′′1 q̃

′
2) =

˜(q′1q
′
2 + q′′1 q

′′
2 ) −

˜(q′1q
′′
2 + q′′1 q

′
2). This proves φ is

multiplicative.
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Finally we shall prove that φ is one to one:

Ker(φ) = {q1 − q2 ∈ (QF(A))
4|φ(q1 − q2) = 0}

= {q1 − q2 ∈ (QF(A))
4|q̃1 − q̃2 = 0}

= {q1 − q2 ∈ (QF(A))
4|q̃1 = q̃2}

= {q1 − q2 ∈ (QF(A))
4|q1 = q2} (∵ ψ is one to one)

= {0}

Hence, φ is one to one.

Remark 3.15. The map φ in the above Proposition is onto if for every q̃ : I4 →
A4, the restriction q of q̃ to I is a map from I to A. That is, the map φ is onto
if q̃(a) ∈ A, for every a ∈ I.

Corollary 3.16. The following diagram commutes.

4. Action of H on QF(A) :

Let H be Hopf algebra in which S−1 exists, and let A be an H−semimodule
semialgebra. Now let us define an action of H on QF(A). Let q ∈ QF(A) and
say q : I → A. Then, define h · q : I → A, by

(a)(h · q) =
∑

(h)

h2 · (S
−1(h1) · a)q, ∀a ∈ I.

Theorem 4.1. Let H be Hopf algebra with S−1 exists, and let A be an
H−semimodule semialgebra. Then the above action extends the action of H
on A to QF(A) and makes QF(A) into a H−semimodule semialgebra.

Proof. (i) First we prove h · q ∈ QF(A), that is, h · q is left A−semimodule
homomorphism. Let a ∈ I and x ∈ A. Then

(xa)(h · q)

=
∑

(h)

h2 ·
((
S−1(h1) · (xa)

)
q
)

=
∑

(h)

h3 ·

(((
S−1(h2) · x

)(
S−1(h1) · a

))
q

)
(byDef. 3.1 (ii))
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=
∑

(h)

h3 ·

((
S−1(h2) · x

)((
S−1(h1) · a

)
q
))

(∵ q is left homomorphism)

=
∑

(h)

(
h3 ·

(
S−1(h2) · x

))
·

(
h4 ·

(
S−1(h1) · a

)
q

)
(byDef. 3.1 (ii))

=
∑

(h)

(
h3S

−1(h2) · x
)
·
(
h4 ·

(
S−1(h1) · a

)
q
)

=
∑

(h)

(ε(h2)x) ·
(
h3 ·

(
S−1(h1) · a

)
q
)

= x
∑

(h)

h2 ·
((
S−1(h1) · a

)
q
)

= x
(
a(h · q)

)

(ii) Let h, h′ ∈ H. Then

(a)(hh′ · q) =
∑

(h)

h2h
′
2 ·

((
S−1(h1h

′
1) · a

)
q
)

=
∑

(h)

h2 ·

((
h′2 ·

(
S−1(h′1) · S

−1(h1)
)
· a

)
q

)

=
∑

(h)

h2 ·

(
h′2 ·

(
S−1(h′1) ·

(
S−1(h1) · a

))
q

)

=
∑

(h)

h2 ·
((
S−1(h1) · a

)
(h′ · q)

)

= (a)
(
h · (h′ · q)

)

Clearly, (a)(1 · q) = (a)q.

(iii) Let h ∈ H, q, q′ ∈ QF(A). Then ∀a ∈ I,

∑

(h)

(a)
(
(h1 · q)(h2 · q

′)
)
=

∑

(h)

(
a(h1 · q)

)
(h2 · q

′)

=
∑

(h)

(
h2 ·

(
S−1(h1) · a

)
q
)(
h3 · q

′
)

=
∑

(h)

h4 ·

(
S−1(h3) ·

(
h2 ·

(
S−1(h1) · a

)
q
))

q′

=
∑

(h)

h4 ·
(
S−1(h3)h2 ·

(
S−1(h1) · a

))
qq′

=
∑

(h)

h3 ·
(
ε(h2) ·

(
S−1(h1) · a

))
qq′
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=
∑

(h)

h3ε(h2) ·
((
S−1(h1) · a

)
qq′

)

=
∑

(h)

h2 ·
((
S−1(h1) · a

)
qq′

)

= a
(
h · (qq′)

)

Proposition 4.2. If A is a H−semimodule semialgebra then A#H is embedded
in QF(A)#H.

Proof. The proof follows from Proposition 3.11.

Proposition 4.3. Let ψ′ : QF(A)#H → QF4(A4)#H be the map defined by
ψ′(

∑
i
qi#hi) =

∑
i
q̃i#hi, where for each i, qi = [fi], fi : Ii → A and q̃ =

[f̃i], f̃i : I4
i

→ A4, given by (a − b)f̃i = afi − bfi, ∀a − b ∈ I4
i
. Then ψ′ is

injective homomorphism.

Proof. The proof follows from Proposition 3.10.

Proposition 4.4. (QF(A))
4#H is embedded in QF4(A4)#H.

Proof. The proof follows from Proposition 3.14.
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