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Abstract. In this article left invariant measures and functionals on locally compact

nonassociative core quasigroups are investigated. For this purpose necessary properties

of topological core quasigroups, estimates and approximations of functions on such

quasigroups are studied. An existence of nontrivial left invariant measures on locally

compact core quasigroups is proved. Examples of not necessarily locally compact core

quasigroups are provided by taking different types of products of such quasigroups.
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1. Introduction

Left invariant measures or Haar measures on locally compact groups play a very
important role in measure theory, harmonic analysis, representation theory, ge-
ometry, mathematical physics, etc. (see, for example, [6, 11, 17] and references
therein). On the other hand, in nonassociative algebra, in noncommutative ge-
ometry, field theory, topological algebra there frequently appear binary systems
which are nonassociative generalizations of groups and related with quasigroups,
quasi-groups, Moufang quasigroups, IP-quasigroups, etc. (see [8, 29, 30, 31] and
references therein). An arbitrary IP-quasigroup Y is a quasigroup with a restric-
tion: for each x ∈ Y there exist elements x1 and x2 in Y such that for each y in
Y the identities are satisfied x1(xy) = y and (yx)x2 = y, where x1 and x2 are
also denoted by −1x and x−1 and called left and right inverses of x respectively.
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It was investigated and proved in the 20th century that a nontrivial geometry
exists if and only if there exists a corresponding quasigroup.

A very important role in mathematics and quantum field theory is played
by octonions and generalized Cayley-Dickson algebras [1, 2, 9]. A multiplicative
law of their canonical bases is nonassociative and leads to a more general no-
tion of a metagroup instead of a group [27]. They are used not only in algebra
and geometry, but also in noncommutative analysis and PDEs, particle physics,
mathematical physics (see [2, 9, 12]-[16, 18]-[26] and references therein). The
preposition ”meta” is used to emphasize that such an algebraic object has prop-
erties milder than a group. By their axiomatic metagroups are quasigroups with
weak relations. They were used in [27] for investigations of automorphisms and
derivations of nonassociative algebras.

In this article more general binary systems such as core quasigroups are
studied (see Definition 2.1). They are also more general than IP-quasigroups,
because in core quasigroups G left and right inverses −1x and x−1 of nonunit
elements x in G may not exist.

This article is devoted to left invariant measures (see Definition 3.18) on lo-
cally compact core quasigroups. Necessary preliminary results about core quasi-
groups are given in Section 2. Specific algebraic and topological features of core
quasigroups are studied in Formulas (1)-(35) and Formulas (42)-(44). A quotient
of a core quasigroup by its core is investigated in Formulas (36)-(41). A uniform
continuity of maps on topological core quasigroups is studied in Theorem 2.14
and Corollary 2.15.

Left invariant functionals and measures are investigated in Section 3. These
properties are more complicated than for groups and IP-quasigroups, because of
the nonassociativity of core quasigroups and absence of left and right inverses in
general. The main results can be found in Theorems 3.15, 3.16, 3.19, 3.20. For
their proofs estimates of nonnegative functions with compact supports in core
quasigroups are investigated in Lemmas 3.2, 3.4, 3.6. Functionals on a space of
nonnegative functions with compact supports in a core quasigroup are studied
in Lemmas 3.7, 3.8, 3.10, 3.13 (estimates (132)-(147)) and Theorem 3.9. In
Theorem 3.11 approximations of nonnegative functions with compact supports
in the core quasigroup are described.

In an appendix abundant families of core quasigroups are provided with the
help of a direct product and smashing products (see Remark 4.3 and Definition
4.5). For this purpose Theorems 4.1 and 4.4 are proved.

All main results of this paper are obtained for the first time. They can
be used in harmonic analysis on nonassociative algebras and metagroups and
quasigroups, representation theory, geometry, mathematical physics, quantum
field theory, particle physics, PDEs, etc.

2. Core Quasigroups

To avoid misunderstandings we give necessary definitions. For short it will be
written core quasigroup instead of nonassociative core quasigroup.
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Definition 2.1. Let G be a set with a multiplication (that is a single-valued binary
operation) G×G 3 (a, b) 7→ ab ∈ G defined on G satisfying the conditions:

(i) for each a and b in G there is a unique x ∈ G with ax = b and

(ii) a unique y ∈ G exists satisfying ya = b, which are denoted by x = a \ b =
Divl(a, b) and y = b/a = Divr(a, b) correspondingly,

(iii) there exists a neutral (i.e. unit) element eG = e ∈ G: eg = ge = g for
each g ∈ G.

We consider subsets in G:

(iv) Com(G) := {a ∈ G : ∀b ∈ G, ab = ba};

(v) Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)};

(vi) Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)};

(vii) Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)};

(viii) N(G) := Nl(G) ∩Nm(G) ∩Nr(G); Z(G) := Com(G) ∩N(G).

Then N(G) is called a nucleus of G and Z(G) is called the center of G.

We call G a core quasigroup if a set G possesses a multiplication and
satisfies Conditions (i)-(iii) above and

(ix) (ab)c = t(a, b, c)a(bc) and (ab)c = a(bc)p(a, b, c) for each a, b and c in G,
where t(a, b, c) = tG(a, b, c) ∈ N(G) and p(a, b, c) = pG(a, b, c) ∈ N(G).

Then G will be called a central core quasigroup if in addition to Condition
(ix) above it satisfies the condition:

(x) ab = t2(a, b)ba for each a and b in G, where t2(a, b) ∈ Z(G).

There, for given a, b, c in G, the elements tG(a, b, c), pG(a, b, c) and t2(a, b)
are unique such that tG : G × G × G → N(G), pG : G × G × G → N(G),
t2 : G×G→ Z(G) are mappings.

Let τ be a topology on G such that the multiplication G×G 3 (a, b) 7→ ab ∈ G
and the mappings Divl(a, b) and Divr(a, b) are jointly continuous relative to τ .
Then (G, τ) is called a topological core quasigroup. Henceforth, it will be assumed
that τ is a T1 ∩ T3.5 topology, unless something else is specified.

A minimal closed subgroup N0(G) in the topological core quasigroup G con-
taining t(a, b, c) and p(a, b, c) for each a, b and c in G will be called a core of
G.

Elements of the core quasigroup G will be denoted by small letters, subsets of
G will be denoted by capital letters. If A and B are subsets in G, then A − B
means the difference of them A−B = {a ∈ A : a /∈ B}. Henceforward, maps and
functions on core quasigroups are supposed to be single-valued, unless something
else is specified.

Lemma 2.2. If G is a core quasigroup, then for each a, b and c in G the following
identities are fulfilled:

b \ e = t(e/b, b, b \ e)(e/b); (1)

b \ e = (e/b)p(e/b, b, b \ e); (2)

(a \ e)b = t(e/a, a, a \ e)[t(e/a, a, a \ b)]−1(a \ b); (3)
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(a \ b) = (a \ e)bp(a, a \ e, b); (4)

(bc) \ a = (c \ (b \ a))[p(b, c, (bc) \ a)]−1; (5)

(a \ b)c = (a \ (bc))[p(a, a \ b, c)]−1; (6)

(ab) \ e = (b \ e)(a \ e)[t(a, b, b \ e)]−1t(ab, b \ e, a \ e); (7)

b(e/a) = (b/a)p(b/a, a, a \ e)[p(e/a, a, a \ e)]−1; (8)

(b/a) = [t(b, e/a, a)]−1b(e/a); (9)

a/(bc) = t(a/(bc), b, c)((a/c)/b); (10)

c(b/a) = t(c, b/a, a)(cb)/a; (11)

e/(ab) = [p(e/b, e/a, ab)]−1p(e/a, a, b)(e/b)(e/a). (12)

Proof. Note that N(G) is a subgroup in G due to Conditions (v)-(viii) in Defi-
nition 2.1 (see also [8]). Then Conditions (i)-(iii) in Definition 2.1 imply that

b(b \ a) = a, b \ (ba) = a; (13)

(a/b)b = a, (ab)/b = a (14)

for each a and b in any quasigroup G (see also [8, 31]). Using Condition (ix) in
Definition 2.1 and Identities (13) and (14) we deduce that e/b = (e/b)(b(b\e)) =
[t(e/b, b, b \ e)]−1(b \ e) which leads to (1).

Let c = a \ b. Then from Identities (1) and (13) it follows that (a \ e)b =
t(e/a, a, a \ e)(e/a)(ac) = t(e/a, a, a \ e)[t(e/a, a, a \ b)]−1((e/a)a)(a \ b) which
taking into account (14) provides (3).

On the other hand, b \ e = ((e/b)b)(b \ e) = (e/b)(b(b \ e))p(e/b, b, b \ e) that
gives (2).

Now let d = b/a. Then Identities (2) and (14) imply that b(e/a) = (da)(a \
e)[p(e/a, a, a \ e)]−1 = (b/a)p(b/a, a, a\ e)[p(e/a, a, a \ e)]−1 which demonstrates
(8).

Next we infer from (ix) in Definition 2.1 and (13) that b(c((bc) \ a)) =
(bc)((bc) \ a)[p(b, c, (bc) \ a)]−1 = a[p(b, c, (bc) \ a)]−1, hence c((bc) \ a) =
(b \ a)[p(b, c, (bc) \ a)]−1 that implies (5).

Symmetrically it is deduced that (a/(bc))b)c = t(a/(bc), b, c)a, consequently,
(a/(bc))b = t(a/(bc), b, c)(a/c). From the latter identity it follows (10).

Evidently, formulas a((a\b)c) = (a(a\b))c[p(a, a\b, c)]−1 = bc[p(a, a\b, c)]−1

and (c(b/a))a = t(c, b/a, a)cb imply (6) and (11) correspondingly.

From (ix) in Definition 2.1 we infer that (ab)((b \ e)(a \ e)) = [t(ab, b \ e, a \
e)]−1t(a, b, b\ e), since by (13) (a(b(b\ e)))(a\ e) = e. This together with (i) and
(ii) in Definition 2.1 implies (7).

Analogously from (ix) in Definition 2.1 we deduce that ((e/b)(e/a))(ab) =
[p(e/a, a, b)]−1p(e/b, e/a, ab), since by (14) (e/b)(((e/a)a)b) = e. Finally apply-
ing (i) and (ii) in Definition 2.1 we get Identity (12).

Lemma 2.3. Assume that G is a core quasigroup. Then for every a, a1, a2, a3
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in G and z1, z2, z3 in Z(G), b ∈ N(G):

t(z1a1, z2a2, z3a3) = t(a1, a2, a3); (15)

p(z1a1, z2a2, z3a3) = p(a1, a2, a3); (16)

t(a, a \ e, a)a = ap(a, a \ e, a); (17)

t(a, e/a, a)a = ap(a, e/a, a); (18)

p(a, a \ e, a)t(e/a, a, a \ e) = e; (19)

t(a1, a2, a3b) = t(a1, a2, a3); (20)

p(ba1, a2, a3) = p(a1, a2, a3); (21)

t(ba1, a2, a3) = bt(a1, a2, a3)b
−1; (22)

p(a1, a2, a3b) = b−1p(a1, a2, a3)b. (23)

Proof. Let the elements a, a1, a2, a3 belong to G, the elements z1, z2, z3 be in
Z(G). Since we have (a1a2)a3 = t(a1, a2, a3)a1(a2a3) with t(a1, a2, a3) ∈ N(G)
for every a1, a2, a3 in G, it follows that

t(a1, a2, a3) = ((a1a2)a3)/(a1(a2a3)). (24)

In addition, for each q ∈ Z(G), a and b in G, we have

b/(qa) = q−1b/a and b/q = q \ b = bq−1, (25)

because Z(G) is the commutative group satisfying Conditions (iv) and (viii) in
Definition 2.1. From (24) and (25) we infer that

t(z1a1, z2a2, z3a3) = (((z1a1)(z2a2))(z3a3))/((z1a1)((z2a2)(z3a3)))

= ((z1z2z3)((a1a2)a3))/((z1z2z3)(a1(a2a3)))

= ((a1a2)a3)/(a1(a2a3)).

Thus t(z1a1, z2a2, z3a3) = t(a1, a2, a3).

Symmetrically we get

p(a1, a2, a3) = (a1(a2a3)) \ ((a1a2)a3) (26)

and p(z1a1, z2a2, z3a3) = ((z1a1)((z2a2)(z3a3))) \ (((z1a1)(z2a2))(z3a3)) =
((z1z2z3)(a1(a2a3))) \ ((z1z2z3)((a1a2)a3)) = (a1(a2a3)) \ ((a1a2)a3) that pro-
vides (16).

From Formulas (24) and (1) it follows that t(a, a\e, a) = ((a(a\e))a)/(a((a\
e)a)) = a/[at(e/a, a, a \ e)] and consequently,

t(a, a \ e, a)at(e/a, a, a \ e) = a. (27)

Then from Formulas (26), (13) and Condition (ix) in Definition 2.1 we deduce
that p(a, a\e, a) = (a((a\e)a))\((a(a\e))a) = {[t(a, a\e, a)]−1a}\a, which im-
plies (17). Identities (17) and (27) lead to (19). Next using (26) and (ix) in Defi-
nition 2.1 we infer that p(a, e/a, a) = [a((e/a)a)]\ [(a(e/a))a] = a\ [t(a, e/a, a)a]
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that implies (18). From (ix) in Definition 2.1 we get that ((a1a2)a3)b =
(a1a2)(a3b) = (t(a1, a2, a3b)a1(a2a3))b, from which together with (14) and (24)
Identity (20) follows, because b ∈ N(G). Then b((a1a2)a3) = ((ba1)a2)a3 =
b(a1(a2a3)p(ba1, a2, a3)) and (13) and (26) imply Identity (21). Symmetri-
cally we deduce b((a1a2)a3) = t(ba1, a2, a3))b(a1(a2a3)) and ((a1a2)a3)b =
(a1(a2a3))bp(a1, a2, a3b) which together with (24) and (26) imply Identities (22)
and (23).

Lemma 2.4. If (G, τ) is a topological quasigroup, then the functions t(a1, a2, a3)
and p(a1, a2, a3) are jointly continuous in a1, a2, a3 in G.

Proof. This follows immediately from Formulas (24), (26) and Definition 2.1.

Lemma 2.5. Assume that (G, τ) is a topological quasigroup and U is an open
subsets in G. Then for each b ∈ G the sets Ub and bU are open in G.

Proof. Take any c ∈ Ub and consider the equation

xb = c. (28)

Then from Condition (ii) in Definition 2.1 it follows that

x = c/b. (29)

Thus x = ψb(c), where ψb(c) = c/b is a continuous bijective function in the
variable c due to Identity (9) and Lemma 2.4. On the other hand, the right shift
mapping

Rbu := ub (30)

from G into G is continuous and bijective in u (see Definition 1). Moreover,
ψb(Rbu) = u and Rb(ψb(c)) = c for each fixed b ∈ G and all u ∈ G and c ∈ G by
Identities (14). Thus Rb and ψb are open mappings, consequently, Ub is open in
G.

Similarly for the equation

by = c (31)

the unique solution is

y = b \ c (32)

by Condition (i) in Definition 2.1.

Therefore, y = θb(c), where θb(c) = b \ c is a continuous bijective function
in c according to Lemma 2.4 and Formula (4). Next we consider the left shift
mapping

Lbu = bu (33)
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for each fixed b ∈ G and any u ∈ G. This mapping Lb is continuous, since the
multiplication on G is continuous. Then Lb(θb(c)) = c and θb(Lbu) = u for every
fixed b ∈ G and all u ∈ G and c ∈ G by Identities (13). Therefore θb and Lb are
open mappings. Thus the subset bU is open in G.

Lemma 2.6. Let (G, τ) be a topological quasigroup.

(i) Let also U and V be subsets in G such that either U or V is open. Then
UV is open in G.

(ii) If A and B are compact subsets in G, then AB is compact.

(iii) For each open neighborhood U of e in G there exists an open neighborhood
V of e such that

(a) V̌ ⊆ U , where

(b) V̌ = V ∪ Invl(V ) ∪ Invr(V ), where Invl(a) = Divl(a, e), Invr(a) =
Divr(a, e) for each a ∈ G,

(c) DQ = {x = ab : a ∈ D, b ∈ Q},

(d) Invl(D) = {x = a \ e : a ∈ D},

(e) Invr(D) = {x = e/a : a ∈ D}

for any subsets D and Q in G.

Proof. (i). In view of Lemma 2.5 the subsets Ub and aV are open in G for
each a ∈ U and b ∈ V , consequently, UV = {x : x = uv, u ∈ U, v ∈ V } =
⋃

b∈V Ub =
⋃

a∈U aV is open in G.

(ii). Let A and B be compact subsets of G. Then the subset AB = {c : c =
ab, a ∈ A, b ∈ B} is a continuous image of a compact subset A× B in G×G,
whereG×G is supplied with the product (i.e. Tychonoff) topology, consequently,
AB is a compact subset in G (see Theorem 3.1.10 and the Tychonoff Theorem
3.2.4 in [10]).

(iii). The mappings Invl and Invr are homeomorphisms of G onto itself as
a topological space, since they are bijective, continuous and

Invl(Invr(b)) = b and Invr(Invl(b)) = b (34)

for each b in G by (a), (b). Therefore for each open neighborhood U of e there
exists an open neighborhood of e of the form

V := Û , (35)

where Û := U ∩ Invl(U) ∩ Invr(U).

From (c) we infer that Invr(Invl(U)) = U and Invl(Invr(U)) = U , hence
Invl(V ) ⊆ U ∩ Invl(U) ∩ Invl(Invl(U)) ⊆ U ∩ Invl(U) and Invr(V ) ⊂ U ∩
Invr(U), consequently, V ∪ Invl(V ) ∪ Invr(V ) ⊆ U .

Definition 2.7. A subquasigroup H of a quasigroup G is called normal if it
satisfies
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(i) xH = Hx and

(ii) (xy)H = x(yH) and (xH)y = x(Hy) and H(xy) = (Hx)y

for each x and y in G.

A family of cosets {bH : b ∈ G} will be denoted by G/ · /H.

Theorem 2.8. If G is a T1 topological core quasigroup, then its core N0 is a
normal subgroup and its quotient G/ · /N0 is a T1 ∩ T3.5 topological group.

Proof. Let τ be a T1 topology on G relative to which G is a topological quasi-
group. Then each point x in G is closed, since G is the T1 topological space
(see Section 1.5 in [10]). From the joint continuity of the multiplication and the
mappings Divl and Divr it follows that the nucleus N = N(G) is closed in G.
Therefore the subgroup N0 is the closure of a subgroup N0,0(G) in N generated
by elements t(a, b, c) and p(a, b, c) for all a, b and c in G (see Definition 2.1). Ac-
cording to Conditions (v)-(viii) in Definition 2.1 one gets that N and hence N0

are subgroups in G satisfying Condition (ii) in Definition 2.7, because N0 ⊆ N
(see also [8, 31]).

Let a and b belong to N and x ∈ G. Then x(x \ (ab)) = ab and x((x \ a)b) =
(x(x \ a))b = ab, consequently,

x \ (ab) = (x \ a)b (36)

for each a and b in N(G) and every x ∈ G.

Similarly it is deduced

(ab)/x = a(b/x) (37)

for each a and b in N(G), x ∈ G.

Therefore from (ix) in Definition 2.1, (13) and (36) it follows that ((x \
a)x)((x \ b)x) = (x \ a)(x((x \ b)x))p(x \ a, x, (x \ b)x) = (x \ (ab))x[p(x, x \
b, x)]−1p(x \ a, x, (x \ b)x), since (x \ a)(bx) = ((x \ a)b)x = (x \ (ab))x. Thus

(x \ (ab))x = ((x \ a)x)((x \ b)x)[p(x \ a, x, (x \ b)x)]−1p(x, x \ b, x) (38)

for each a and b in N(G), x ∈ G.

From Identities (5) and (6) it follows that

x \ ((u \ v)y) = ((ux) \ (vy))p(u, x, (ux) \ (vy))[p(u, u \ v, x)]−1 (39)

for each u, v, x and y in G, since x \ ((u \ v)y) = x \ (u \ (vy))[p(u, u \ v, y)]−1.

In particular for u = a(bc) and v = (ab)c with any a, b and c in G we
infer using (ix) in Definition 2.1 that ux = (a(b(cx)))p(b, c, x)p(a, bc, x) and
vx = (ab)(cx)p(ab, c, x). Hence from (39) and (26) it follows that

x \ (p(a, b, c)x) = [p(b, c, x)p(a, bc, x)]−1p(a, b, cx)p(u, x, (ux) \ (vx)), (40)
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since x \ (p(a, b, c)x) = [(a(b(cx)))p(b, c, x)p(a, bc, x)] \ [(ab)(cx)p(ab, c, x)]
p(u, x, (ux) \ (vx))[p(u, u \ v, x)]−1, because u \ v = p(a, b, c) ∈ N(G) and
p(u, u \ v, x) = e.

Notice that (i), (ii) and (ix) in Definition 2.1 imply u \ (tu) = p, where
t = t(a, b, c), p = p(a, b, c), u = a(bc) for any a, b and c in G. Let z ∈ G. Then
there exists x ∈ G such that z = ux, that is x = u \ z. Therefore we deduce that

z \ (tz) = [x \ (px)]p(u, u \ (tu), x)[p(u, x, (ux) \ (tux))]−1, (41)

since t ∈ N(G), p ∈ N(G), (u \ (tu))x = (u \ (tux))[p(u, u \ (tu), x)]−1 by (6).
From the equality (5) by taking c = x, b = u, a = tux we infer x\ (u\ (tux)) =
[(ux) \ (tux))]p(u, x, (ux) \ (tux)). Thus from Identities (38), (40) and (41) it
follows that the group N0,0 = N0,0(G) generated by {p(a, b, c), t(a, b, c) : a ∈
G, b ∈ G, c ∈ G} satisfies Condition (i) in Definition 2.7. From the joint
continuity of the multiplication and the mappings Divl and Divr it follows that
the closure N0 of N0,0 also satisfies (i) in Definition 2.7. Thus N0 is a closed
normal subgroup in G. In view of Theorem 1.1 in Ch. IV, Section 1 in [8] a
quotient quasigroup G/ · /N0 exists consisting of all cosets aN0, where a ∈ G.

Then from Conditions (ix) in Definition 2.1, (i) and (ii) in Definition 2.7 it
follows that for each a, b, c in G the following identities are valid:

(aN0)(bN0) = (ab)N0,

((aN0)(bN0))(cN0) = (aN0)((bN0)(cN0)),

eN0 = N0

because p(a, b, c) ∈ N0 and t(a, b, c) ∈ N0 for all a, b and c in G.

In view of Lemmas 2.2 and 2.3 (aN0) \ e = e/(aN0) and consequently, for
each aN0 ∈ G/ ·/N0 a unique inverse (aN0)

−1 exists. Thus the quotient G/ ·/N0

of G by N0 is a group. Since the topology τ on G is T1 and N0 is closed in G,
the quotient topology τq on G/ ·/N0 is also T1. By virtue of Theorem 8.4 in [17]
this implies that τq is a T1 ∩ T3.5 topology on G/ · /N0.

Proposition 2.9. Assume that G is a T1 topological core quasigroup and functions
t and p on G are defined by Formulas (ix) in Definition 2.1. Then for each
compact subset S in G and each open neighborhood V of e there exists an open
neighborhood U of e in G such that

(i) t((u1a)v1, (u2b)v2, (u3c)v3) ∈ (V t(a, b, c)) ∩ (t(a, b, c)V ) and

(ii) p((u1a)v1, (u2b)v2, (u3c)v3) ∈ (V p(a, b, c)) ∩ (p(a, b, c)V )

for every a, b, c in S and uj, vj in Ǔ for each j ∈ {1, 2, 3}.

Proof. Take arbitrary fixed elements f , g and h in S. From the joint continuity
of the maps t(a, b, c) and p(a, b, c) in the variables a, b and c in G it follows that
there exists an open neighborhood Uf,g,h of e in G and an open neighborhood
Wf,g,h of (f, g, h) ∈ S × S × S in G×G×G such that (i) and (ii) are valid for
each uj , vj in Ǔf,g,h, j ∈ {1, 2, 3}, and (a, b, c) ∈ Wf,g,h (see Lemmas 2.4 and
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2.6). Notice that S × S × S is compact in the Tychonoff product G×G×G of
G as the topological space (see Section 2.3 and Theorem 3.2.4 in [10]). Hence
an open covering {Wf,g,h : f ∈ S, g ∈ S, h ∈ S} of S × S × S has a finite
subcovering {Wfi,gi,hi

: i = 1, ..., n}, where n is a natural number, n ≥ 1. That
is S×S×S ⊆

⋃n
i=1Wfi,gi,hi

. Then
⋂n

i=1 Ufi,gi,hi
=: U is an open neighborhood

of e in G. Therefore, Properties (i) and (ii) are satisfied for every a, b, c in S
and uj, vj in Ǔ for each j ∈ {1, 2, 3}.

We remind the following definition.

Definition 2.10. Let G be a topological quasigroup. For a subset U in G it is put:

(i) LU,G := {(x, y) ∈ G×G : x \ y ∈ U} and

(ii) RU,G := {(x, y) ∈ G×G : y/x ∈ U}.

The family of all subsets LU,G (or RU,G) with U being an open neighborhood
of e will be denoted by LG (or RG correspondingly).

Proposition 2.11. Let G be a T1 topological locally compact core quasigroup.
Then the family LG (or RG) induces a uniform structure on G. A topology τ1
on G provided by LG (or RG respectively) is T1∩T3.5 and equivalent to the initial
topology τ on G.

Proof. Let (G, τ) be a topological quasigroup and let Be denote a base of its
open neighborhoods at e. In view of Lemma 2.5 Cl(U) := {xU : x ∈ G} is an
open covering of G for each U ∈ Be. We put C0

l = {Cl(U) : U ∈ Be} and Cl
to be a family of all coverings for each of which there exists a refinement of the
type C0

l .

Below it is verified, that the family Cl satisfies Conditions (UC1)-(UC4) of
Section 8.1 in [10]. If A ∈ Cl, E is a covering of G and A refines E , then there
exists U ∈ Be such that Cl(U) refines A and hence Cl(U) refines E . Thus (UC1)
is satisfied.

Let A1 and A2 belong to Cl. Then there are U1 and U2 in Be such that Cl(Uj)
refines Aj for each j ∈ {1, 2}. We put U = U1 ∩ U2, consequently, U ∈ Be and
hence Cl(U) refines both Cl(U1) and Cl(U2). Therefore Cl(U) refines A1 and A2.
Thus (UC2) also is satisfied.

Condition (UC3) means that for each A ∈ Cl there exists E ∈ Cl such that E
is a star refinement of A. In order to prove it, it evidently is sufficient to prove
that for each U ∈ Be there exists U1 ∈ Be such that

St(xU1, Cl(U1)) ⊂ xU for each x ∈ G, (42)

where St(M,A) denotes the star of a set M with respect to A (see its definition
in [10, Section 5.1]).

Note that a map f(x1, x2, x3) = (x1/x2)x3 is the composition of jointly
continuous maps G×G 3 (x1, x2) 7→ x1/x2 ∈ G and G×G 3 (y, x3) 7→ yx3 ∈ G,
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hence it is jointly continuous from G×G×G into G and f(e, e, e) = e, because
G is the topological quasigroup (see Definition 2.1). The quasigroup G is locally
compact. Notice that for each open neighborhood Q1 of e in G there exists
an open neighborhood Q2 of e such that its closure clG(Q2) is compact and
clG(Q2) ⊂ Q1 by the corresponding Theorem 3.3.2 in [10] for topological spaces.
Hence for each open neighborhoodW of e inG there exists an open neighborhood
U0 of e in G with the compact closure clGǓ0 such that clGǓ0 is contained in W
(see Lemma 2.6).

Therefore for each U ∈ Be there exists V1 ∈ Be such that f(V1, V1, V1) ⊂ U
and clG(V1) is compact. If for an arbitrary fixed element x ∈ G and some
x1 ∈ G the intersection xV1 ∩ x1V1 6= ∅ is non void, then there are h0 and
h1 in V1 such that x1 = (xh0)/h1. On the other hand, x1h ∈ x1V1 for each
h ∈ V1 and for each y ∈ x1V1 there exists h ∈ V1 with y = x1h, consequently,
x1h = ((xh0)/h1)h ∈ ((xV1)/V1)V1.

Using Identities (8), (9) and Condition (ix) in Definition 2.1 we get that

x1h = (x(h0(e/h1))p(x, h0, e/h1) (43)

p(e/h1, h1, h1 \ e)[p((xh0)/h1, h1, h1 \ e)]−1)h. We choose open neighborhoods
V and W of e in G such that V̌ 2 ⊂W and W̌ 2 ⊂ V1 by Lemma 2.6. In view of
the inclusion (ii) of Proposition 2.9 and Formula (43) there exists U1 ∈ Be such
that Ǔ1 ⊂ V and

p((u1a)v1, (u2b)v2, (u3c)v3) ∈ (V p(a, b, c)) ∩ (p(a, b, c)V ) (44)

for every a, b, c in clG(V1) and uj, vj in Ǔ1 for each j ∈ {1, 2, 3}. This implies
(42) and hence (UC3), since p(a, b, c) = e if either a = e or b = e or c = e.

It remains to prove that Cl also satisfies the condition (UC4). That is for
each x 6= y in G there exists A ∈ Cl such that {x, y} ∩ V 6= {x, y} for each
V ∈ A. It is sufficient to find an open neighborhood U of e in G such that
x/U ∩ y/U = ∅, because this implies x0U ∩{x, y} 6= {x, y} for each x0 ∈ G. The
quasigroup G is T1. By virtue of Lemmas 2.5 and 2.6 and the joint continuity of
the multiplication and Divr in G there is U1 ∈ Be such that y /∈ (xU1)/U1, that
is xU1 ∩ yU1 = ∅ by (14). In view of Proposition 2.9 there exists U ∈ Be such
that (e/U)p(e/U, U, U \ e)[p(a/U, U, U \ e)]−1 ⊂ U1 for each a ∈ {x, y}, since the
two-point set {x, y} is compact in G, for each W ∈ Be there exists W1 ∈ Be

such that e/W1 ⊂ W . From (8) it follows that x/U ∩ y/U = ∅. Therefore
{x, y} ∩ V 6= {x, y} for every V ∈ Cl(U).

By virtue of Theorem 8.1.1 in [10] the uniformity Cl induces a T1 topology
τ1 on G. Note that the family Cl consists of open coverings of G and that for
each x ∈ G and each open neighborhood V of x in the initial topology τ there
exists U ∈ Be such that xU ⊂ V . Therefore from the latter inclusion and (42)
it follows that the topology τ1 induced by Cl coincides with the initial topology
τ on G. In view of Corollary 8.1.13 in [10] (G, τ) is a Tychonoff space, that
is (G, τ) is a completely regular space, T1 ∩ T3.5. Finally note that C0

l = LG.
Symmetrically the case C0

r = RG is proved.
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Lemma 2.12. Suppose that (G, τ) is a T1 topological quasigroup, S is a compact
subset in G, q is a fixed element in G, V is an open neighborhood of the unit
element e. Then there are elements b1, ..., bm in G and an open neighborhood U
of e such that Ǔ ⊂ V and {b1 \ (qU), ..., bm \ (qU)} is an open covering of S.

Proof. The multiplication is continuous on G, hence the left shift mapping
Lb(x) = bx is continuous on G in the variable x. On the other hand, the
mapping Invl is continuous on G.

In view of (i), (ii) in Definition 2.1, Lemmas 2.5 and 2.6 and the compactness
of S for each open neighborhood U of e in G with Ǔ ⊂ V there are b1, ..., bm in
G such that {b1 \ (qU), ..., bm \ (qU)} is an open covering of S.

Corollary 2.13. Let G be a T1 topological quasigroup. Then for each open neigh-
borhood W of e in G there exists an open neighborhood U of e such that Ǔ ⊂W
and

(i) (∀x ∀y ((x ∈ G)&(y ∈ G)&(x \ y ∈ U))) ⇒ (y ∈ xW ) and

(ii) (∀x ∀y ((x ∈ G)&(y ∈ G)&(y/x ∈ U))) ⇒ (y ∈ Wx).

Proof. This follows from Lemmas 2.6 and 2.12, (i), (ii) in Definition 2.1.

Theorem 2.14. Let G and H be T1 topological core quasigroups (see Definition
2.1) and let f : G→ H be a continuous map so that for each open neighborhood
V of a unit element eH in H a compact subset KV in G exists such that f(G−
KV ) ⊂ V . Then f is uniformly (LG,LH) continuous and uniformly (RG,RH)
continuous (see also Definition 2.10).

Proof. Since the multiplication in H is continuous, for each open neighborhood
Y of eH there exists an open neighborhood X of eH such that X2 ⊂ Y . In
view of Lemma 2.6 there exists an open neighborhood V1 of eH in H such that
V̌ 2
1 ⊂ V , where A2 = AA for a subset A in H . By the conditions of this theorem

there exists a compact subset KV1
in G such that f(G−KV1

) ⊂ V1.

For a subset A of the quasigroup G, let

P (A) = (P0(A) ∪ {e})(P0(A) ∪ {e}), (45)

where P0(A) = A∪Invl(A)∪Invr(A), hence A ⊂ P0(A) and P0(A)∪{e} ⊂ P (A).
We have S1 = P (KV1

) is a compact subset in G, since the mappings Invl and
Invr are continuous on G and the multiplication is jointly continuous on G×G
(see Theorems 3.1.10, 8.3.13-8.3.15 in [10]), hence R1 = P (f(S1)) is compact in
H .

By virtue of Proposition 2.9 there exists an open neighborhood V2
′ of eH in

H such that

[tH((V2a)V2, (V2b)V2, (V2c)V2)V2] ∪ [V2tH((V2a)V2, (V2b)V2, (V2c)V2)]

⊂ (V3tH(a, b, c)) ∩ (tH(a, b, c)V3),
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[pH((V2a)V2, (V2b)V2, (V2c)V2)V2] ∪ [V2pH((V2a)V2, (V2b)V2, (V2c)V2)]

⊂ (V3pH(a, b, c)) ∩ (pH(a, b, c)V3) (46)

for every a, b, c in R1, where V̌
2
3 ⊂ V1, V2 = V̌2

′
, and V3 is an open neighborhood

of e in H . For V2 there exists a compact subset KV2
in G such that f(G−KV2

) ⊂
V2 by the conditions of this theorem. If A and B are compact subsets in G, then
their union A ∪ B is also compact. Therefore it is possible to choose KV2

such
that KV1

⊂ KV2
, since V2 ⊂ V1 and (G − A) − B = G − (A ∪ B) ⊂ G− A. We

take S2 = P (KV2
) by Formula (45), consequently, S1 ⊂ S2, since KV1

⊂ KV2
.

From the continuity of the map f and Lemmas 2.5, 2.6 it follows that for each
x ∈ G open neighborhoods Wx,l and Wx,r of e in G exist such that f(xW̌ 2

x,l) ⊂

(f(x)V2) and f(W̌
2
x,rx) ⊂ (V2f(x)), consequently,

f(xW̌ 2
x ) ⊂ (f(x)V2) and f(W̌

2
xx) ⊂ (V2f(x)) (47)

for an open neighborhood Wx = Wx,l ∩Wx,r of e in G. The compactness of S2

implies that the coverings {xWx : x ∈ S2} and {Wyy : y ∈ S2} of S2 have finite
subcoverings {xjWxj

: xj ∈ S2, j = 1, ..., n} and {Wyi
yi : yi ∈ S2, i = 1, ...,m}.

Hence

W =
n
⋂

j=1

Wxj
∩

m
⋂

i=1

Wyi
(48)

is an open neighborhood of e in G. Therefore according to Proposition 2.9 there
exists an open neighborhood U ′ of the unit element e in G such that

[tG((Ua)U, (Ub)U, (Uc)U)U ] ∪ [UtG((Ua)U, (Ub)U, (Uc)U)]

⊂ [W3tG(a, b, c)] ∩ [tG(a, b, c)W3],

[pG((Ua)U, (Ub)U, (Uc)U)U ] ∪ [UpG((Ua)U, (Ub)U, (Uc)U)]

⊂ [W3pG(a, b, c)] ∩ [pG(a, b, c)W3] (49)

for every a, b, c in S2, where U = Ǔ ′, and where W0 and W3 are open neigh-
borhoods of e in G such that W̌ 2

3 ⊂W0 and W̌ 2
0 ⊂W .

Now let x and y in G be such that x\y ∈ U . Then Formula (13) implies that

y ∈ xU. (50)

There are several options. Consider at first the case x ∈ KV2
. From Formulas

(48)-(50) and Corollary (2.13) it follows that there exists j ∈ {1, ..., n} such
that x ∈ xjWxj

and y ∈ xjW
2
xj
. Therefore, Formulas (46) and (47) imply that

f(x) \ f(y) ∈ V .

From x \ y ∈ U and Identities (13) it follows that y = xu for a unique u ∈ U .
Hence

x = [t(y, e/u, u)]−1y(e/u) (51)
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according to Identities (9), (14).

If y ∈ KV2
, then similarly from Formulas (48)- (51) and Corollary (2.13) it

follows that there exists k ∈ {1, ..., n} such that y ∈ xkWxk
and x ∈ xkW

2
xk
,

since t(a, b, e) = t(a, e, b) = t(e, a, b) = e for each a and b in G. Therefore,
f(x) \ f(y) ∈ V by Formulas (46) and (47), since S2 = P (KV2

) (see Formula
(45)).

It remains the case x ∈ G−KV2
and y ∈ G−KV2

. Therefore f(x) ∈ V2 and
f(y) ∈ V2. According to the choice of R1 we have eH ∈ R1. From Condition
(46), Identity (13) and the inclusion V̌ 2

1 ⊂ V , it follows that f(x) \ f(y) ∈ V .
Taking into account the inclusionKV1

⊂ KV2
we get that f is uniformly (LG,LH)

continuous.

The uniform (RG,RH) continuity is proved analogously using the finite sub-
covering {Wyi

yi : yi ∈ S2, i = 1, ...,m} and Corollary 2.13.

Corollary 2.15. Let G be a T1 topological locally compact core quasigroup and
let f ∈ C0(G) and let H = (C,+) be the complex field C considered as an addi-
tive group. Then f is uniformly (LG,LH) continuous and uniformly (RG,RH)
continuous.

3. Left Invariant Measures

Notation 3.1. For a completely regular topological space X by Cb(X) is denoted
the Banach space of all continuous bounded functions f fromX into the complex
field C supplied with the norm

‖f‖X = sup
x∈X

|f(x)| <∞. (52)

We put

C0(X) := {f ∈ Cb(X) : ∀ ε > 0, ∃ S ⊂ X, S is compact,

∀ x ∈ X − S, |f(x)| < ε}, (53)

C0,0(X) := {f ∈ Cb(X) : ∃S ⊂ X, S is compact,

∀x ∈ X − S, f(x) = 0}, (54)

C+
0,0(X) = {f ∈ C0,0(X) : ∀x ∈ X, f(x) ≥ 0}. (55)

Let G be a quasigroup. For a function f : G → C and an element b ∈ G let
Lbf(x) = bf(x) = f(bx) and Rbf(x) = fb(x) = f(xb) for each x ∈ G. Consider
a support Sf := clG{x ∈ G : f(x) 6= 0} of f ∈ Cb(G), where clG(A) denotes the
closure of a subset A in G.

Lemma 3.2. Let (G, τ) be a T1 topological locally compact core quasigroup. Let
also f and φ belong to C+

0,0(G) and φ be not identically zero (see Notation
3.1, Formulas (52)-(55)). Then there exist a natural number m > 0, elements
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b1, ..., bm in G and positive constants c1, ..., cm such that

∀x ∈ G, f(x) ≤
m
∑

j=1

cjLbjφ(x). (56)

Proof. Since f ∈ C+
0,0(G), the support Sf is compact. The function φ is not

null, hence there exists q ∈ G such that φ(q) > 0. From Lemma 2.5 and from
the continuity of the function φ it follows that there exists an open neighbor-
hood qV of q such that φ(x) > φ(q)/2 for reach x ∈ qV , where V is an open
neighborhood of the unit element e. By virtue of Lemma 2.12 there exists an
open neighborhood U of e and elements b1, ..., bm in G such that Ǔ ⊂ V and for
each x ∈ Sf there exists j ∈ {1, ...,m} such that x ∈ bj \ (qU).

Therefore,

f(x) ≤ ‖f‖G(2/φ(q))
m
∑

j=1

φ(bjx)

for each x ∈ G according to (13), so it is sufficient to take cj ≥ ‖f‖G(2/φ(q))
for each j = 1, ...,m. This implies Inequality (56).

Corollary 3.3. Let the conditions of Lemma 3.2 be satisfied and let

(f : φ) := inf
{

m
∑

j=1

cj : ∃ {b1, ..., bm} ⊂ G, ∃ {c1, ..., cm} ⊂ (0,∞),

∀ x ∈ G, f(x) ≤
m
∑

j=1

cjLbjφ(x)
}

.

(57)

Then (f : φ) ≤ 2m‖f‖G/φ(q) in the notation of Lemma 3.2.

Lemma 3.4. Assume that the conditions of Lemma 3.2 are fulfilled. Then for
each b ∈ G

(bf : φ) = (f : φb), (58)

(f : bφ) = (f b : φ), (59)

where f b(x) = f(b \ x) for each x ∈ G; particularly,

(γf : φ) = (f : φ), (60)

(f : γφ) = (f : φ) for each γ ∈ N(G), (61)

(αf : φ) = α(f : φ) for each α ≥ 0, (62)

((f1 + f2) : φ) ≤ (f1 : φ) + (f2 : φ) for every f1 and f2 in C+
0,0(G). (63)

If f(x) ≤ f1(x) for each x ∈ G, then

(f : φ) ≤ (f1 : φ). (64)
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Proof. Let c1, ..., cm in (0,∞) and b1, ..., bm in G be such that

bf(x) ≤
m
∑

j=1

cjLbjφ(x) (65)

for each x ∈ G. From Formulas (13) and (65) by changing of a variable y = bx
it follows that

f(y) ≤
m
∑

j=1

cjLbjφ(b \ y) (66)

for each y ∈ G. From (66) it follows (58). Similarly from the inequality

f(x) ≤
m
∑

j=1

cjLbj (Lbφ(x)) (67)

for each x ∈ G we infer that

f(b \ y) ≤
m
∑

j=1

cjLbjφ(y) (68)

for each y ∈ G. Thus (68) implies Equality (59).

In particular, if γ ∈ N(G), then bj(γ \ y) = (bjγ
−1)y and bj(γy) = (bjγ)y for

each y and bj in G by Condition (viii) and Formulas (3), (4) and (15). Hence
(66) transforms into to

f(y) ≤
m
∑

j=1

cjLbjγ−1φ(y)

and (67) into

f(x) ≤
m
∑

j=1

cjLbjγφ(x)

with γ ∈ N(G) instead of b. This implies Equalities (60), (61).

Properties (62) and (63) evidently follow from Formula (57).

For proving Property (64) note that if f(x) ≤ f1(x) for each x ∈ G, then from
f1(x) ≤

∑m
j=1 cjLbjφ(x) for each x ∈ G it follows that f(x) ≤

∑m
j=1 cjLbjφ(x)

for each x ∈ G, consequently, (f : φ) ≤ (f1 : φ).

Notation 3.5. Let φ, f0 and f belong to C+
0,0(G) and φ and f0 be not null, where

G is a T1 topological locally compact core quasigroup. We consider a functional

Jφ,f0(f) :=
(f : φ)

(f0 : φ)
. (69)
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Assume that there exists a compact subgroup N0 = N0(G) in N(G) such that

t(a, b, c) ∈ N0 and p(a, b, c) ∈ N0 (70)

for every a, b and c in G.

Then we denote by Υ(G,N0) the family of all non null functions h in C+
0,0(G)

such that

h(γa) = h(a) (71)

for each a ∈ G and γ ∈ N0.

Evidently, for h ∈ C+
0,0(G), Condition (71) is equivalent to

h(aγ) = h(a) (72)

for each a ∈ G and γ ∈ N0, since aN0 = N0a for each a ∈ G according to
Theorem 2.8.

Lemma 3.6. Let G be a T1 topological locally compact core quasigroup satisfying
Condition (70), f and φ be in C+

0,0(G) and ω ∈ Υ(G,N0) (see Condition (71)),
φ be non null. Then

(f : φ) ≤ (f : ω)(ω : φ). (73)

Proof. If b is a fixed element in G and there are elements b1, ..., bm in G and
positive constants c1, ..., cm such that

bω(x) ≤
m
∑

j=1

cjφ(bjx) (74)

for each x ∈ G, then

bω(x) ≤
m
∑

j=1

cjφ(bjxγ) (75)

for each x ∈ G and γ ∈ N0, since N0 ⊂ N(G) and bω(xγ) = bω(x) for each
x ∈ G and γ ∈ N0 by (72) equivalent to (71).

By the conditions of this lemma N0 is a compact group. Therefore there
exists a Haar measure λ on the Borel σ-algebra B(N0) of N0 and with values in
the unit segment [0, 1] such that λ(N0) = 1, λ(sA) = λ(A) and λ(As) = λ(A) for
each s ∈ N0 and A ∈ B(N0) (see Theorems 15.5, 15.9 and 15.13 and Subsection
15.8 in [17]). In view of this, Conditions (54) and (55) and Corollary 2.15 the
function

φ[λ](x) :=

∫

N0

φ(γx)λ(dγ) (76)
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on G is nonzero and belongs to C+
0,0(G), since N0Sφ is a compact subset in G by

Lemma 2.6, where Sφ is a compact support of φ. From Formula (76) it follows
that

φ[λ](βx) = φ[λ](x) (77)

for each β ∈ N0 and x ∈ G, since the measure λ is left and right invariant
λ(βA) = λ(A) = λ(Aβ) for each β ∈ N0 and each Borel subset A in N0. Hence
φ[λ] ∈ Υ(G,N0), since SφN0 is compact, and since Conditions (71) and (72) are
equivalent, where Sφ is the support of φ (see Subsection 3.2). From (76), (77),
(71), (72) and the Fubini theorem it follows that

φ[λ](x) =

∫

N0

φ(xβ)λ(dβ), (78)

since

φ[λ](x) =

∫

N0

(

∫

N0

φ(γxβ)λ(dγ))λ(dβ)

=

∫

N0

(

∫

N0

φ(γxβ)λ(dβ))λ(dγ) =

∫

N0

φ(xβ)λ(dβ)),

because
∫

N0

φ(xγβ)λ(dβ) =
∫

N0

φ(xβ)λ(dβ) for each γ ∈ N0(G).

Integrating both sides of Inequality (75) and utilizing Formulas (76), (78) we
infer that

bω(x) ≤
m
∑

j=1

cjφ
[λ](bjx) (79)

for each x ∈ G. On the other hand,

∫

N0

(

m
∑

j=1

cj bjφ)(xγ)λ(dγ) = (

m
∑

j=1

cj bjφ)
[λ](x) =

m
∑

j=1

cj bjφ
[λ](x),

hence for each x ∈ G there exists γ ∈ N0 such that

(

m
∑

j=1

cj bjφ)(xγ) ≥
m
∑

j=1

cj bjφ
[λ](x).

Thus vice versa from ω ∈ Υ(G,N0) and (79) it follows (75) and hence (74),
consequently,

(bω : φ[λ]) = (bω : φ). (80)

Let a1, ..., an in G and positive constants q1, ..., qn be such that

bω(x) ≤
n
∑

j=1

qjφ
[λ](ajx) (81)
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for each x ∈ G (see Lemma 3.2). From Formulas (77), (81) and Conditions (70),
(71), (72) we deduce that

ω(y) ≤
n
∑

j=1

qjφ
[λ]((aj(b \ e))y[p(aj , b \ e, y)]

−1p(b, b \ e, y))

=

n
∑

j=1

qjφ
[λ](djy) (82)

for each y ∈ G, where dj = aj(b \ e) for each j. Therefore (bω : φ[λ]) ≤ (ω : φ[λ])
for each b ∈ G. Notice that

LcLc\eω(x) = ω(x) (83)

for each c and x in G by Lemmas 2.2, 2.3 and Condition (71). Therefore we
analogously get (ω : φ[λ]) ≤ (cω : φ[λ]) for each c ∈ G. Thus

(bω : φ[λ]) = (ω : φ[λ]) (84)

for each b ∈ G.

From (80)-(84), it follows that

(bω : φ) = (ω : φ) (85)

for each b ∈ G.

If c1, ..., cn, h1, ..., hk in (0,∞) and a1, .., ak, g1, ..., gn in G are such that

f(x) ≤
k

∑

j=1

hjLaj
ω(x), (86)

ω(x) ≤
n
∑

i=1

ciLgiφ(x) (87)

for each x ∈ G (see Lemma 3.2). Then from (71), (80), (85)-(87) and Lemma 2.2
we infer that

f(x) ≤
k

∑

j=1

hj

n
∑

i=1

ciLgiLaj
φ(x) =

k
∑

j=1

hj

n
∑

i=1

ciφ((giaj)x). (88)

Apparently (88) implies (73).

Lemma 3.7. Let G be a T1 topological locally compact core quasigroup, and let
φ, f0 be nonzero functions belonging to C+

0,0(G). Then for all functions f , f1 in

C+
0,0(G) and α ≥ 0

Jφ,f0(αf) = αJφ,f0(f), (89)
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Jφ,f0(f + f1) ≤ Jφ,f0(f) + Jφ,f0(f1). (90)

If f(x) ≤ f1(x) for each x ∈ G, then

Jφ,f0(f) ≤ Jφ,f0(f1). (91)

Moreover, if G satisfies Condition (70) and f0 ∈ Υ(G,N0) (see Condition
(71)), then

Jφ,f0(f) ≤ (f : f0). (92)

Proof. Properties (89) and (90) follow immediately from (62) and (63). Property
(91) follows from Property (64).

Applying Inequality (73) and Formula (69) we infer Inequality (92), since
Jφ,f0(f0) = 1.

Lemma 3.8. Assume that G is a T1 topological locally compact core quasigroup,
and suppose that functions φ, f0 and f belong to C+

0,0(G) and that φ and f0 are
not null. Then mappings Jφ,f0(bf) and Jφ,f0(fb) are continuous in the variable
b in G.

Proof. For each x, b1 and b2 in G we have b1f(x) − b2f(x) = f(b1x) − f(b2x).
In view of Corollary 2.15 for each ε > 0 there exists an open of the form (a) in
Lemma 2.6 neighborhood U of e in G with a compact closure clG(U) for which

|f(b1x)− f(b2x)| < ε (93)

for each x, b1 and b2 in G such that (b2x) \ (b1x) ∈ U .

On the other hand, the support Sf of f is compact, consequently, bSf = LbSf

is compact for each b ∈ G. Let b1 be fixed. For each x ∈ G with b1x ∈ Sf

there exists an open neighborhood Wx of e in G of the form (a) in Lemma 2.6
such that (b2x) \ (b1x) ∈ U for each b2x ∈ (b1Wx)x ∩ b1(xWx) according to
Lemmas 2.2, 2.4, 2.5, Proposition 2.9 and Formula (47). For an open covering
{(b1Wx)x ∩ b1(xWx) : b1x ∈ Sf , x ∈ G} of Sf there exists a finite subcovering
{(b1Wxj

)xj∩b1(xjWxj
) : b1xj ∈ Sf , xj ∈ G, j = 1, ...,m} (see also Lemma 2.5),

since the subset Sf is compact.

We take W0 = U ∩
⋂m

j=1Wxj
and choose an open neighborhood W of e in

G of the form (a) in Lemma 2.6 with compact closure clG(W ) contained in W0

(see Theorem 3.3.2 in [10] and Formula (47)), because G is locally compact.

In view of Proposition 2.9 and Lemma 2.6 there exists an open neighborhood
V ′ of e in G with V = V̌ ′ and compact closure clG(V ) such that

[t((V a)V, (V b)V, (V c)V )V ] ∪ [V t((V a)V, (V b)V, (V c)V )]

⊂ [t(a, b, c)W1] ∩ [W1t(a, b, c)],

[p((V a)V, (V b)V, (V c)V )V ] ∪ [V p((V a)V, (V b)V, (V c)V )]
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⊂ [p(a, b, c)W1] ∩ [W1p(a, b, c)] (94)

for each a, b and c in S, where W̌ 2
1 ⊂ W , W1 is an open neighborhood of e in

G, S = P (S1), S1 = S2 ∪ clG(U), where b1 ∈ G is as above, S2 = {y ∈ G : y =
(b1u)x, u ∈ clG(U), x ∈ G, b1x ∈ Sf} (see Formula (45)), since S is compact,
t(a, b, c) = e and p(a, b, c) = e if e ∈ {a, b, c}. For b1x /∈ Sf and b2x /∈ Sf

certainly f(b1x)− f(b2x) = 0. So remain two cases either b1x ∈ Sf or b2x ∈ Sf

which are similar to each other up to a notation. From Formulas (14) it follows
that b2x ∈ (b1V )x is equivalent to b2 ∈ b1V . Hence Lemma 2.2 and Inclusion
(94) provide that (b2x) \ (b1x) ∈ U for each b2 ∈ b1V and b1x ∈ Sf .

Let w ∈ C+
0,0(G) be a function such that w(y) = 1 for each y ∈

(clG(U)Sf )clG(U). Using (93), we deduce that |f(b1x) − f(b2x)| < εw(x) for
each x, b1 and b2 in G such that b2 ∈ b1V and with b1x ∈ Sf .

Therefore for each ε > 0 there exists an open neighborhood V of e in G such
that |(b1f : φ)− (b2f : φ)| < ε(w : φ) for each b2 ∈ b1V , consequently,

|Jφ,f0(b1f)− Jφ,f0(b2f)| < εJφ,f0(w) (95)

according to Formula (69), since (f0 : φ) > 0. Thus the mapping Jφ,f0(bf) is
continuous in the parameter b ∈ G, since 0 < Jφ,f0(w) < ∞ (see Lemmas 3.2,
3.7 and Corollary 3.3).

The case Jφ,f0(fb) is proved symmetrically.

Theorem 3.9. Assume that G is a T1 topological locally compact core quasigroup
satisfying Condition (70), φ, f and f1 are nonzero functions belonging to C+

0,0(G)
and f0 ∈ Υ(G,N0) (see (71)). Then the following inequalities are true:

(f0 : f)−1 ≤ Jφ,f0(f) ≤ (f : f0), (96)

(f1 : f0)
−1(f0 : f)−1 ≤ Jφ,f1(f) ≤ (f : f0)(f0 : f1). (97)

Proof. The right inequality in (96) follows from the inequality (92).

Formulas (80) and (85) imply that

(bf0 : f) = (f0 : f [λ]) and (bf
[λ] : φ) = (f [λ] : φ[λ]) (98)

for each b ∈ G.

Let c1, ..., ck, h1, ..., hn in (0,∞) and a1, .., ak, g1, ..., gn in G be such that

f0(x) ≤
k

∑

j=1

cjf
[λ](ajx) and (99)

f [λ](x) ≤
n
∑

i=1

hiφ
[λ](gix) (100)
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for each x ∈ G (see Lemma 3.2). Then from Identity (ix) in Definition 2.1,
Inequalities (99), (100) and Conditions (71), (72) we deduce that

f0(x) ≤
k
∑

j=1

cj

n
∑

i=1

hiφ
[λ]((giaj)x[p(gi, aj, x)]

−1)

=

k
∑

j=1

cj

n
∑

i=1

hiφ
[λ]((giaj)x). (101)

Suppose that there are y1, ..., yk ∈ G and q1, ..., qk ∈ (0,∞) such that

f(x) ≤
k

∑

i=1

qiφ(yix) (102)

for each x ∈ G. Taking the integral
∫

N0

f(xγ)λ(dγ) and similarly for the right

side (see Formulas (76) and (78)), we get from Inequality (102) that

f [λ](x) ≤
k

∑

i=1

qiφ
[λ](yix)

for each x ∈ G (see Lemma 3.2). Hence

(f [λ] : φ[λ]) ≤ (f : φ). (103)

Utilizing Formulas (73), (98), (101) and (103) we infer that

(f0 : φ) ≤ (f0 : f)(f [λ] : φ[λ]) ≤ (f0 : f)(f : φ) (104)

for each f0 ∈ Υ(G,N0) and nonzero functions f and φ in C+
0,0(G).

Using (69) and (104) we infer that

(f0 : f)Jφ,f0(f) =
(f0 : f)(f : φ)

(f0 : φ)
≥

(f0 : φ)

(f0 : φ)
= 1,

consequently, Jφ,f0(f) ≥ (f0 : f)−1. Thus the left inequality in (96) is also
proved.

From Inequalities (96) for Jφ,f0(f) and Jφ,f0(f1) and Formula (69) it follows
(97).

Lemma 3.10. Let G be a T1 topological locally compact core quasigroup satisfying
Condition (70), let f0 ∈ Υ(G,N0) (see Condition (71)) and let f1,...,fm be
nonzero functions belonging to C+

0,0(G), let also 0 < δ < ∞, 0 < δ1 < ∞.
Then there exists an open neighborhood V of e in G such that for each nonzero
function φ in C+

0,0(G) with a support Sφ contained in V and 0 ≤ qj ≤ δ1 for
each j = 1, ...,m the following inequality is satisfied:

m
∑

j=1

qjJφ,f0(fj) ≤ Jφ,f0(
m
∑

j=1

qjfj) + δ. (105)
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Proof. The quasigroup G is locally compact. Let Sf0,...,fm =
⋃m

j=0 Sfj be a
common compact support of these functions, where Sfj denotes a closed support

of fj (see also Subsection 3.1). We choose any function g1 in C+
0,0(G) such

that g1 : G → [0, 1] and g1(Sf0,...,fmclG(Y1)) = {1}, where Y ′
1 is an open

neighborhood of e in G with Y1 = Y̌ ′
1 and a compact closure clG(Y1) (see

Lemma 2.6). Consider arbitrary fixed positive numbers 0 < δ <∞, 0 < δ1 <∞
and 0 < ε < M such that εδ1

∑m
j=1(fj : f0) + ε(1 + ε)(g1 : f0) ≤ δ, where

M = δ1mmaxj=1,...m ‖fj‖G. By virtue of Corollary 2.15 the functions f0, ..., fm
are uniformly (LG,LH) continuous, where H = (C,+). Therefore there exists
an open neighborhood W ′ of e with W = W̌ ′ and with compact closure clG(W )
in G and W ⊂ Y1, since G is locally compact, such that

|fj(s)− fj(x)| < ε3[4Mmδ1]
−1 (106)

for each s \x ∈W . Next we take a function g ∈ C+
0,0(G) such that g : G→ [0, 1]

and g(Sf0,...,fmclG(W )) = {1} and g(x) ≤ g1(x) for each x ∈ G, becauseW ⊂ Y1.
Hence (g : f0) ≤ (g1 : f0) by Inequality (64).

Let S = P ((Sf0,...,fm∪Sg)clG(W )) (see Formula (45)). Since clG(V ), Sf0,...,fm

and Sg are compact, S is a compact subset in G. For each open neighborhood
Y of e in G there exists an open neighborhood X of e in G such that X2 ⊂ Y ,
since the multiplication in G is continuous. In view of Proposition 2.9 and
Corollary 2.15 there exist open neighborhoods U ′

k of e in G such that Uk = Ǔ ′
k

and such that

[t((Uka)Uk, (Ukb)Uk, (Ukc)Uk)Uk] ∪ [Ukt((Uka)Uk, (Ukb)Uk, (Ukc)Uk)]

⊂ [t(a, b, c)Wk−1] ∩ [Wk−1t(a, b, c)],

[p((Uka)Uk, (Ukb)Uk, (Ukc)Uk)Uk] ∪ [Ukp((Uka)Uk, (Ukb)Uk, (Ukc)Uk)]

⊂ [p(a, b, c)Wk−1] ∩ [Wk−1p(a, b, c)] (107)

for every a, b, c in S and k ∈ {1, 2} with U0 = W and an open neighborhood
Wk−1 of e in G of the form (a) in Lemma 2.6 such that W̌ 2

k−1 ⊂ Uk−1 and

|g(s)− g(x)| < ε2[4M ]−1 (108)

for each s and x in G such that s \ x ∈ U1, where t = tG.

Take any 0 ≤ qj ≤ δ1 for each j = 1, ...,m and put

Ψ = εg +

m
∑

j=1

qjfj, (109)

hj(x) = qjfj(x)[Ψ(x)]−1 (110)

for each x ∈ Sf1,...,fm and hj(x) = 0 for each x ∈ G−Sf1,...,fm , where Sf1,...,fm =
⋃m

j=1 Sfj . Therefore the function Ψ belongs to C+
0,0(G) and

∑m
j=1 hj(x) ≤ 1 for

each x ∈ G.

From Inequalities (106) and (108) it follows that

|Ψ(s)−Ψ(x)| ≤ ε3[2M ]−1 (111)
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for each s and x in G such that s \ x ∈ U1. Moreover, ‖Ψ‖G ≤M + ε < 2M .

Let s and x belong to Sf1,...,fmclG(W ) and s \x ∈ U1. The latter inclusion is
equivalent to x ∈ sU1 and also to s ∈ x/U1. Then from (106), (110) and (111)
we deduce that

|hj(s)− hj(x)| ≤ ε/m. (112)

Next we consider the following case: s \ x ∈ U1 and x /∈ Sf1,...,fmclG(W ).
Suppose that s ∈ Sf1,...,fm . Then Condition (107), Lemmas 2.2, 2.3 imply that
x ∈ Sf1,...,fmclG(W ) contradicting the assumption x /∈ Sf1,...,fmclG(W ). Hence
s /∈ Sf1,...,fm and consequently, hj(s) = 0 and hj(x) = 0. Thus Inequality (112)
is true in this case as well.

In the case s\x ∈ U1 and s /∈ Sf1,...,fmclG(W ) Condition (107), Lemmas 2.2,
2.3 imply that x /∈ Sf1,...,fm . Therefore the inequality (112) is fulfilled in this
case too. Thus the estimate (112) is satisfied for each s and x in G such that
s \ x ∈ U1.

Next we choose any fixed function φ ∈ C+
0,0(G) such that φ is not identically

zero on G and φ(y) = 0 for each y ∈ G−U ′
2. By virtue of Lemma 3.2 there are

m ∈ N, cj > 0 and bj ∈ G for each j ∈ {1, ...,m} such that

Ψ(x) ≤
m
∑

j=1

cjφ(bjx) (113)

for every x ∈ G and

−ε+
m
∑

j=1

cj ≤ (Ψ : φ) ≤
m
∑

j=1

cj . (114)

Then Formulas (107), (112), (113) and Lemma 2.2 imply that for each x ∈ G

Ψ(x)hl(x) ≤
m
∑

j=1

cjφ(bjx)[hl(bj \ e) + ε/m]

for each l. Hence for each x ∈ G we get

qlfl(x) = Ψ(x)hl(x) ≤
m
∑

j=1

cj [hl(bj \ e) + ε/m]φ(bjx)

and consequently, (qlfl : φ) ≤
∑m

j=1 cj [hl(bj \ e) + ε/m]. From
∑m

l=1 hl ≤ 1 we

deduce that
∑m

l=1(qlfl : φ) ≤ (1 + ε)
∑m

j=1 cj . Together with Inequalities (114)
this leads to the following estimate:

m
∑

j=1

(qifj : φ) ≤ (1 + ε)(Ψ : φ).
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Dividing both of sides by (f0 : φ) we get the inequality

m
∑

j=1

qjJφ,f0(fj) ≤ (1 + ε)Jφ,f0(Ψ). (115)

Then from (89), (90), (109) and (115) we infer that

m
∑

j=1

qjJφ,f0(fj) ≤ Jφ,f0(
m
∑

j=1

qjfj) + ε
m
∑

j=1

qjJφ,f0(fj) + ε(1 + ε)Jφ,f0(g). (116)

Therefore from Inequalities (96), (116), (64) and for ε as above it follows that

m
∑

j=1

qjJφ,f0(fj) ≤ Jφ,f0(

m
∑

j=1

qjfj) + εδ1

m
∑

j=1

(fj : f0) + ε(1 + ε)(g : f0)

≤ Jφ,f0(

m
∑

j=1

qjfj) + δ.

This implies the estimate (105) with V = U2
′.

Theorem 3.11. Let G be a T1 topological locally compact core quasigroup, 0 < ε
and f in C+

0,0(G) be a nonzero function, Sf = clG{x ∈ G : f(x) 6= 0}. Let also
V ′ be an open neighborhood of e in G and let

|f(x)− f(y)| < ε (117)

for each x and y in G with x \ y ∈ V , where V = V̌ ′. Let g ∈ C+
0,0(G) be a

nonzero function such that g(x) = 0 for each x ∈ G − V ′. Then for each δ > ε

and each open neighborhood We
′ of e in G with We = W̌e

′
and a compact closure

clG(We) contained in V there is an open neighborhood U ′ of e in G such that
U = Ǔ ′ and for each nonzero function φ in C+

0,0(G) with a support Sφ contained
in U ′ there are positive constants c1, ..., cn and elements b1, ..., bn in SfclG(We)
such that for each x ∈ G and γ ∈ N(G):

|f(γx)−
n
∑

j=1

cj
Jv
φ,f0

(g(v \ x))
g(bj \ γx)| ≤ δ, (118)

where an expression Jv
φ,f0

(g(v \ x)) means that a functional Jφ,f0 is taken in the
v variable.

Proof. The continuous functions f and g are with compact supports, hence they
are uniformly (LG,LH) continuous and uniformly (RG,RH) continuous on G
by Corollary 2.15, where H = (C,+). For each y ∈ G the right translation
operator Ry is the homeomorphism of G as the topological space onto itself (see
also Section 2). Therefore the function ν(y) := (f(x) : g(x\y)) is continuous on
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the quasigroup G and consequently, uniformly continuous on the compact subset
Sf , hence supy∈Sf

ν(y) < ∞, where (f(x) : g(x \ y)) = (f : z) is calculated in
the x variable with z(x) = g(x \ y) for a fixed parameter y. We take any fixed δ
such that ε < δ <∞. Evidently there exists 0 < η such that

η sup
y∈Sf

ν(y) < δ − ε. (119)

Therefore take any fixed open neighborhood We
′ of e in G such that We = W̌e

′

and clG(We) is compact and clG(We) ⊂ V (see Lemma 2.6). By virtue of
Corollary 2.15 the functions g and h are uniformly (LG,LH) continuous and
uniformly (RG,RH) continuous. Hence there exists an open neighborhood W1

′

of e in G such that W1 = W̌1
′
and clG(W1) is compact and clG(W1) ⊂We

′ and
for each x and y in G with x \ y ∈W1:

|g(x) − g(y)| < η. (120)

Therefore, a subset SfclG(W1) is compact in G (see Theorems 3.1.10, 8.3.13-
8.3.15 in [10], Lemma 2.6). Then we take compact subsets S1 = SfclG(W1) and
S = P (SfclG(W1)) in G (see Formula (45)). In view of Lemma 2.6 they contain
open subsets SfW1 and P (SfW1) respectively, since W1 is open in G. Recall
that the topological spaces S1 and S are normal, since they are compact and
T1 ∩ T3.5 (see Theorem 3.1.9 in [10]). Using Proposition 2.9 we take an open

neighborhood W2
′ of e in G with W2 = W̌2

′
such that

[t((W2a)W2, (W2b)W2, (W2c)W2)W2] ∪ [W2t((W2a)W2, (W2b)W2, (W2c)W2)]

⊂ [t(a, b, c)W3] ∩ [W3t(a, b, c)],

[p((W2a)W2, (W2b)W2, (W2c)W2)W2] ∪ [W2p((W2a)W2, (W2b)W2, (W2c)W2)]

⊂ [p(a, b, c)W3] ∩ [W3p(a, b, c)] (121)

for every a, b, c in S, where W3 is an open neighborhood of e in G such that
W̌ 2

3 ⊂W1.

In view of the Dieudonné theorem 3.1 in [17] there exists a partition of unity
on S1. Together with Theorem 3.3.2 in [10] and Lemma 2.5 this implies that
there are functions q1, ..., qn in C+

0,0(G) and elements w1, ..., wn in S1 such that

S1 ⊂
⋃n

j=1 wjW2 and

n
∑

j=1

qj(x) = 1 for each x ∈ S1, (122)

qj(y) = 0 for each y ∈ G− (wjW2). (123)

The conditions of this theorem imply that for each x and y in G with y\x ∈ V
the following inequalities are satisfied:

[f(x)− ε]g(y \ x) ≤ f(y)g(y \ x) ≤ [f(x) + ε]g(y \ x), (124)
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since for y \ x ∈ V Inequality (117) is fulfilled; for u = y \ x /∈ V the function g
is nil, g(u) = 0.

Certainly y ∈ wjW2 if and only if there exists b ∈ W2 such that y = wjb.
Then (y \ x) \ (wj \ x) ∈ W1 if and only if there exists c ∈ W1 such that
wj \x = ((wjb)\x)c. For wj \x = v ∈ V this gives c = ((wjb)\(wjv))\v. In view
of (5), (13), (viii) and (ix) in Definition 2.1 ((wjb) \ (wjv)) \ v = p(wj , b, (wjb) \
(wjv))((b \ v) \ v).

Therefore, from Conditions (120)-(123) it follows that for each x and y in G
and j = 1, ..., n:

qj(y)f(y)[g(y \ x)− η] ≤ qj(y)f(y)g(wj \ x)

≤ qj(y)f(y)[g(y \ x) + η]. (125)

Summing by j in (125), using (124) we infer that for each x and y in G:

[f(x)− ε]g(y \ x) − ηf(y)

≤
n
∑

j=1

qj(y)f(y)g(wj \ x) ≤ [f(x) + ε]g(y \ x) + ηf(y). (126)

Next we take any φ and f0 in C+
0,0(G) such that φ and f0 are not identi-

cally zero. From Inequalities (126) after dividing by Jy
φ,f0

(g(y \ x)) and using
Lemma 3.7 it follows that for each x in G:

[f(x)− ε]− η
Jφ,f0(f)

Jy
φ,f0

(g(y \ x))
≤ Jy

φ,f0
(

∑n
j=1 g(wj \ x)qj(y)f(y)

Jv
φ,f0

(g(v \ x))
)

≤ [f(x) + ε] + η
Jφ,f0(f)

Jy
φ,f0

(g(y \ x))
, (127)

where Jy
φ,f0

(g(y \ u)) = Jφ,f0(z) means that the functional Jy
φ,f0

is taken in the
y variable in G, where z(y) = g(y \ u) for each y ∈ G and a fixed parameter u
in G.

Notice that the function g(y \ x) is jointly continuous in (x, y) ∈ G×G. On
the other hand, in view of Lemmas 2.2, 2.4, 2.6 {u = y \ x : x ∈ Sf , u ∈ Sg} is
a compact subset in G, since Invl(Sf ), Sg, SfSg and t(Sf , Invl(Sf ), SfSg) are
compact subsets in G. By virtue of Lemma 3.8 a mapping ψ(x) := Jy

φ,f0
(g(y\x))

is continuous in the variable x ∈ Sf , ψ : Sf → (0,∞). Hence

0 < K0 = inf
x∈Sf

ψ(x) ≤ sup
x∈Sf

ψ(x) = K1 <∞. (128)

Apparently in Formula (119) the parameter η > 0 can be taken sufficiently
small, because Inequalities (119) and (128) are independent. Then from (127)
and (128) we deduce that for each β > ε there exist qj and wj (see above) such
that ηJφ,f0(f) < (β − ε)min(1,K0), consequently,

f(x)− β ≤ Jy
φ,f0

(

∑n
j=1 g(wj \ x)qj(y)f(y)

Jv
φ,f0

(g(v \ x))

)

≤ f(x) + β (129)
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for each x ∈ G.

In view of Lemmas 3.7 and 3.10 for each δ > δ1 > β > ε there exists an open
neighborhood U of e in G of the form (a) in Lemma 2.6 such that U ⊂W2 and

|Jy
φ,f0

(

∑n
j=1 g(wj \ x)qj(y)f(y)

Jv
φ,f0

(g(v \ x))

)

−
n
∑

j=1

Jφ,f0(qjf)

Jv
φ,f0

(g(v \ x))
g(wj \ x)|

< δ1 − β (130)

for each x ∈ Sf . We put cj = Jφ,f0(qjf) and bj = wj for each j = 1, ..., n. Thus
the estimates (129) and (130) and Formula (60) imply the assertion (118) of this
theorem.

Definition 3.12. Let W be an open neighborhood of e in a locally compact quasi-
group G and a nonzero function φW ∈ C+

0,0(G) be such that φW (x) = 0 for each
x ∈ G−W . A family {φW } of these functions will be directed by:

(i) φW1
� φW2

if and only if W2 ⊆W1 and φW2
(x) = 0 implies φW1

(x) = 0.

(ii) If φW1
� φW2

and φW1
and φW2

are different functions, then it will be
written φW1

≺ φW2
.

Lemma 3.13. Let G be a T1 topological locally compact core quasigroup satisfying
Condition (70) and let a family of nonzero functions {φU} in C+

0,0(G) be directed
by Condition (i) in Definition 3.12. In addition choose f0 ∈ Υ(G,N0) (see (71))
and f ∈ C+

0,0(G). Then the limit exists:

lim
{φU}

JφU ,f0(f) =: Jf0(f). (131)

Proof. Let the net of functions {φU} in C+
0,0(G) be directed as in Condition

(i) in Definition 3.12. It suffices to prove that the net {JφU ,f0(f) : φU} is
fundamental (i.e. Cauchy) in R. We take any fixed open neighborhood U0

′ of

e in G with U0 = Ǔ0
′
and a compact closure clG(U0). Let A = Sf+f0clG(U0),

where Sf+f0 = clG{x ∈ G : f(x) + f0(x) 6= 0}. Therefore, a subset S = P (A) is
compact (see Formula (45) and Lemma 2.6), since Sf+f0 is compact.

We choose any function z ∈ C+
0,0(G) such that z|A = 1. Let 0 < ε < 1 and

ξ1 = ε(16[1 + (z : f0)][1 + (f : f0)])
−1. From Corollary 2.15 it follows that there

exists an open neighborhood W ′ of e in G such that with W = W̌ ′:

|f(x)− f(y)| < ξ1/2, (132)

|f0(x) − f0(y)| < ξ1/2 (133)

for each x and y in G with x \ y ∈W .

In view of Proposition 2.9 there exists an open neighborhood U2
′ of e in G

with U2 = Ǔ2
′
such that

[t((U2a)U2, (U2b)U2, (U2c)U2)U2] ∪ [U2t((U2a)U2, (U2b)U2, (U2c)U2)]
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⊂ [t(a, b, c)B1] ∩ [B1t(a, b, c)],

[p((U2a)U2, (U2b)U2, (U2c)U2)U2] ∪ [U2p((U2a)U2, (U2b)U2, (U2c)U2)]

⊂ [p(a, b, c)B1] ∩ [B1p(a, b, c)] (134)

for every a, b, c in S, where B1 is an open neighborhood of e in G such that
B̌2

1 ⊂ U1, U1 = U0
′ ∩W ′ (see Lemma 2.6). Next we take a nonzero function

g ∈ C+
0,0(G) such that g(x) = 0 for each x ∈ G− U2

′.

By virtue of Theorem 3.11 for any fixed 0 < δ < ξ1 and each open neighbor-

hood We
′ of e in G with We = W̌e

′
and a compact closure clG(We) contained in

U2
′ there is an open neighborhood U ′

3,f of e in G with U3,f = Ǔ ′
3,f such that

for each nonzero function φ in C+
0,0(G) with a support Sφ contained in U ′

3,f

there are positive constants c1, ..., cn and elements b1, ..., bn in SfclG(We) such
that for each x ∈ G and γ ∈ N(G):

|f(γx)−
n
∑

j=1

cj
Jv
φ,f0

(g(v \ x))
g(bj \ γx)| ≤ δ. (135)

Taking U3,f ⊂ U2
′ we get f(x) = 0 and g(bj \x) = 0 for each x ∈ G−A according

to the choice of bj in the proof of Theorem 3.11, consequently,

|f(γx)−
n
∑

j=1

cj
Jv
φ,f0

(g(v \ x))
g(bj \ γx)| ≤ δz(γx) (136)

for each x ∈ G and γ ∈ N(G). From the latter estimate and Lemma 3.7 we infer
that

|Jφ,f0(f)−Kφ,f0(f ; g)| ≤ δJφ,f0(z) ≤ δ(z : f0), (137)

where Kφ,f0(f ; g) = Jx
φ,f0

(
∑n

j=1
cj

Jv
φ,f0

(g(v\x))g(bj \ x)).

From Estimate (137) and the right Inequality (96) it follows that

sup
{φU}

KφU ,f0(f ; g) ≤ (1 + δ)(f : f0) + δ(z : f0) <∞. (138)

Applying the proof above to f0 instead of f we get an open neighborhood U ′
3,f0

of e with U3,f0 = Ǔ ′
3,f0 and U3,f0 ⊂ U2

′ such that for each nonzero function
φ in C+

0,0(G) with support Sφ contained in U ′
3,f0 there are positive constants

d1, ..., dm and elements v1, ..., vm in Sf0clG(We) such that

|f0(γx)−
m
∑

j=1

dj
Jv
φ,f0

(g(v \ x))
g(vj \ γx)| ≤ δz(γx) (139)

for each x ∈ G and γ ∈ N(G). Consequently, we see:

|1−Kφ,f0(f0; g)| ≤ δ(z : f0), (140)
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where Kφ,f0(f0; g) = Jx
φ,f0

(
∑m

j=1
dj

Jv
φ,f0

(g(v\x))g(vj \ x)), since Jφ,f0(f0) = 1.

Moreover,

sup
{φU}

KφU ,f0(f0; g) ≤ (1 + δ) + δ(z : f0) <∞. (141)

Then U ′
3 = U ′

3,f ∩U ′
3,f0 is an open neighborhood of e in G. From (137), (140)

and (141) we deduce that

|Jφ,f0(f)−
Kφ,f0(f ; g)

Kφ,f0(f0; g)
| ≤ δ2 + [1 + δ + δ2]δ2(1 − δ2)

−1, (142)

where δ2 = δ(z : f0) < ξ1(z : f0) < 1/16. In view of Lemmas 3.7 and 3.10,
Formulas (135) and (136) there exists an open neighborhood U ′

4 of e with U4 =
Ǔ ′

4 and U4 contained in U ′
3 such that for each nonzero φ in C+

0,0(G) with
Sφ ⊂ U ′

4 there are the following inequalities:

|Kφ,f0(f ; g)−
n
∑

j=1

cjJ
x
φ,f0(

g(bj \ x)

Jv
φ,f0

(g(v \ γx))
)| ≤ δ, (143)

|Kφ,f0(f0; g)−
m
∑

j=1

djJ
x
φ,f0(

g(vj \ x)

Jv
φ,f0

(g(v \ γx))
)| ≤ δ (144)

holding for every γ ∈ N(G). On the other hand, Formulas (69), (76), (78), (85)
and (62) imply that

Jx
φ,f0(

g(bj \ x)

Jv
φ,f0

(g(v \ γx))
) =

∫

N0

(
g(bj \ x)

(g(v \ γx) : φ(v))
: φ(x))λ(dγ)

=
(g(bj \ x) : φ(x))

(g[λ](v \ e) : φ(v))
. (145)

Then from Proposition 2.9 and Formulas (59), (61) it follows that for each b ∈ G
and each 0 < δ3 ≤ δ there exists an open neighborhood U ′

5,b of e in G with
U5,b = Ǔ ′

5,b such that for each nonzero φU ∈ C+
0,0(G) with SφU

⊂ U ⊂ U ′
5,b

∣

∣

∣

∣

(g(b \ x) : φU (x))

(g[λ](v \ e) : φU (v))
−

(g(x) : φU (x))

(g[λ](v \ e) : φU (v))

∣

∣

∣

∣

< δ3, (146)

since SφU
⊂ U and t(a, b, e) = t(a, e, b) = t(e, a, b) = e and p(a, b, e) = p(a, e, b) =

p(e, a, b) = e for each a and b in G. Therefore we take U ′
5 =

⋂n
j=1 U

′
5,bj ∩

⋂m
k=1 U

′
5,vk ∩ U ′

4 and φ = φY with Y = U ′
5. We put c =

∑n
j=1 cj and d =

∑m
k=1 dk. From (142)-(146) and (96) it follows that

c

d
< K1, where K1 = 3[1 + (f : f0)](1 + δ)(1− δ)−1 < 4[1 + (f : f0)].

Then we deduce from Formulas (142)-(146) for each φU with an open neighbor-
hood U of e in G such that U ⊂ U ′

5:

|JφU ,f0(f)−
c

d
| < δ(1− δ)−14[1 + (f : f0)] + δ2 + [1 + δ + δ2]δ2(1 − δ2)

−1,
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consequently,

|JφV1
,f0(f)− JφV2

,f0(f)|

< 8δ(1− δ)−1[1 + (f : f0)] + 2δ2 + 2[1 + δ + δ2]δ2(1− δ2)
−1 < ε (147)

for each open neighborhoods V1 and V2 of e in G such that V1 ⊂ U ′
5 and

V2 ⊂ U ′
5. Thus the net {JφU ,f0(f) : φU} is fundamental, whenever the net

{φU} is directed as described in Condition (i) in Definition 3.12.

Remark 3.14. Suppose that G is a T1 topological locally compact core quasi-
group such that Condition (70) is fulfilled and choose f0 ∈ Υ(G,N0) (see (71)),
functions f and g belong to C+

0,0(G) and let g be nonzero. Then in view of
Lemma 3.13 the following functional exists

Jg(f) = Jf0(f)/Jf0(g). (148)

As a consequence of Lemma 3.13 and Formulas (69) and (148) we get that

the functional Jg(f) is independent of f0. (149)

Then Formula (97) and Lemma 3.13, Property (149) imply that

(g : f0)
−1(f0 : f)−1 ≤ Jg(f) ≤ (f : f0)(f0 : g) (150)

for each f0 ∈ Υ(G,N0) and every nonzero function f ∈ C+
0,0(G).

Theorem 3.15. Let G be a T1 topological locally compact core quasigroup fulfilling
Condition (70) and the functional J = Jg be defined by Formula (148). Then J
possesses the following properties:

J(f) ≥ 0 for each f ∈ C+
0,0(G); (151)

and if a function f ∈ C+
0,0(G) is nonzero, then J(f) > 0;

J(α1f1 + ...+ αnfn) = α1J(f1) + ...+ αnJ(fn) (152)

for each f1, ..., fn in C+
0,0(G) and α1 ≥ 0,...,αn ≥ 0;

J(bf) = J(f) (153)

for each b ∈ G and f ∈ C+
0,0(G).

Proof. Property (151) follows from Formula (150). On the other hand, Lem-
mas 3.7, 3.10, 3.13 imply Equality (152).

Then Formulas (76), (78), (85), (148) and Lemma 3.13 imply

J(bf
[λ]) = J(f [λ]) (154)
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for each b ∈ G and f in C+
0,0(G).

As a topological space G is locally compact. According to the measure theory
on locally compact spaces (see Chapter 3, Section 11 in [17]) a functional J
on C+

0,0(G) satisfying Conditions (151) and (152) induces a regular σ-additive
measure µ on the Borel σ-algebra B(G) of G such that

µ(U) = sup{µ(X) : X is compact, X ⊂ U} (155)

for each open subset U in G and

µ(A) = inf{µ(V ) : V is open, A ⊂ V ⊂ G} (156)

for each A ∈ B(G) and

J(f) =

∫

G

f(x)µ(dx) (157)

for each f ∈ C+
0,0(G) and the functional J has an extension ¯̄J such that

¯̄J(f) =

∫

G

f(x)µ(dx) (158)

for each nonnegative µ-measurable function f on G, where ¯̄J(f) =
inf{J̄(h) : h ≥ f, h is lower semicontinuous }, J̄(h) = sup{J(p) : p ∈
C+

0,0(G), p ≤ h} (see Theorems 11.22, 11.23, 11.36 and Corollary 11.37 in [17]).

On the other hand, for each γ ∈ N(G) Formulas (60) and (61) give

(γf : φU ) = (f : γφU ) = (f : φU ). (159)

From Lemma 3.13, Formulas (148) and (159) we deduce that

J(γf) = J(f) (160)

for each γ ∈ N0(G).

By virtue of the Fubini theorem 13.8 in [17], (71), (72), and Formulas (154)-
(157) and (160) above we infer that

J(bf) =

∫

N0

J(bγf)λ(dγ) =

∫

G

∫

N0

bf(γx)λ(dγ)µ(dx)

= J(bf
[λ]) = J(f [λ]) =

∫

N0

J(γf)λ(dγ) = J(f),

since λ(N0) = 1 and N0 ⊂ N(G). Thus the last assertion of this theorem is also
proved.

Theorem 3.16. If G is a T1 topological locally compact core quasigroup fulfilling
Condition (70), then there exists a regular σ-additive measure µ on a Borel
σ-algebra B(G) of G, µ : B(G) → [0,∞] such that
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(i) µ(U) > 0 for each open subset in G;

(ii) µ(A) <∞ for each compact subset A in G;

(iii) µ(bB) = µ(B) for each B ∈ B(G) and b ∈ G.

Such µ can be chosen corresponding to a functional J satisfying Conditions
(151)-(153).

Proof. This is an immediate consequence of (151)-(153), (155)-(158). In partic-

ular µ(A) = ¯̄J(χA) for the characteristic function χA of a Borel subset A in G,
where χA(x) = 1 for each x ∈ A, χA(y) = 0 for each y ∈ G−A.

Remark 3.17. Each function f in C0,0(G) can be represented as f = f+ −
f−, where f+(x) = max(0, f(x)), f+ and f− belong to C+

0,0(G). Therefore, a
functional J satisfying Conditions (151) and (152) can be extended to a linear
functional on C0,0(G) such that J(f) = J(f+) − J(f−). Hence Property (153)
extends onto C0,0(G).

Definition 3.18. A linear functional J on C0,0(G) possessing Property (153) is
called left invariant.

A measure µ on the Borel σ-algebra B(G) of a topological core quasigroup G
such that µ satisfies Condition (iii) in Theorem 3.16 is called left invariant.

Theorem 3.19. Let G be a T1 topological locally compact core quasigroup ful-
filling Condition (70) and let µ be a measure possessing Properties (i)-(iii) in
Theorem 3.16. Then µ(G) <∞ if and only if G is compact.

Proof. If G is compact, then by (ii) in Theorem 3.16 µ(G) <∞.

Vice versa suppose that µ(G) < ∞ and consider the variant that G is not
compact and take an open neighborhood U ′ of e in G with U = Ǔ ′ such that
U = N0U and its closure clG(U) is compact, hence 0 < µ(U) < ∞ (see also
Condition (70)). By virtue of Theorem 2.8 there exists an open neighborhood
V ′ of e in G with V = V̌ ′ such that V = N0V and [clG(V )]2 ⊂ U ′. In view of
Lemma 2.5 a subset xU is open in G for each x ∈ G.

At first we take some fixed x1 ∈ G. Then we construct a sequence
{xj : j ∈ N} by induction. Let x1, ..., xn be constructed such that if
n ≥ 2, then xjV ∩ xkV = ∅ for each 1 ≤ j < k ≤ n. By Theo-
rem 3.1.10 in [10] and Lemmas 2.4, 2.6 there exists y ∈ G −

⋃n
j=1 Uj , where

Uj := xjUp(xjU, V, V )p(V, V, V )[p(xjU, V, V )]−1, since G is not compact and
Uj is open by Lemma 2.6 and clG(Uj) is compact. Put xn+1 = y with this
y. Suppose that there is z ∈ xjV ∩ xn+1V for some 1 ≤ j ≤ n. There-
fore there would be v and u in V for which z = xjv = xn+1u, consequently,
(xjv)/u = (xn+1u)/u = xn+1 by Condition (ii) in Definition 2.1 and Formula
(14). Therefore by Formulas (8), (21) and Condition (ix) in Definition 2.1
xn+1 = xj(v(e/u))p(xj , v, e/u)p(e/u, u, u \ e)[p(xj(v(e/u)), u, u \ e)]−1 contra-
dicting the choice of xn+1, since [clG(V )]2 ⊂ U ′. Thus xjV ∩ xkV = ∅ for
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each 1 ≤ j < k ≤ n + 1. This would mean by (iii) in Theorem 3.16 that
µ(G) ≥

∑n
j=1 µ(xjV ) = nµ(V ) for each n, contradicting 0 < µ(G) <∞.

Theorem 3.20. Assume that G is a T1 topological locally compact core quasigroup
satisfying Condition (70) and let the functionals J and H on C+

0,0(G) satisfy
Conditions (151)-(153).

Then a positive constant κ exists such that

H(f) = κJ(f) for each f ∈ C+
0,0(G). (161)

Proof. By virtue of Theorem 3.16 there exist two measures µ1 and µ2 corre-
sponding to J and H . We consider a subalgebra C(G) := θ−1(B(G/ · /N0)) in
B(G), where θ : G→ G/ · /N0 is the quotient homomorphism, B(G) denotes the
Borel σ-algebra on G. Put νj(A) = µj(θ

−1(A)) for each j and A ∈ B(G/ · /N0).

From Theorems 2.8 and 3.16 it follows that the measure νj on the group
G/ · /N0 is such that νj(V ) > 0 for each nonempty open subset V in G/ · /N0,
νj(A) < ∞ for each compact subset A in G/ · /N0, νj(cB) = νj(B) for each
c ∈ G/ · /N0 and B ∈ B(G/ · /N0), j ∈ {1, 2}. By virtue of Theorem 15.6 in [17]
there are positive constants pj such that νj = pjη, where η is a left invariant
Haar measure on G/ · /N0. Thus J(f

[λ]) = p1H(f [λ])/p2 for each f ∈ C+
0,0(G).

We consider η1(b, f) = J(bf)/J(f
[λ]) and η2(b, f) = H(bf)/H(f [λ]) for each

b ∈ G and a nonzero function f in C+
0,0(G). According to Property (153) we get

the identities ηj(b, f) = ηj(e, f
[λ]) = 1 for each j ∈ {1, 2}. This implies that for

each nonzero function f ∈ C+
0,0(G) and b ∈ G:

J(bf)/H(bf) = p1/p2. (162)

The measures µ1 and µ2 possess Properties (i)-(iii) in Theorem 3.16. In view of
the Lebesgue-Radon-Nikodym theorem (see [17, Theorem (12.17)] or [5]) there
exists a µ1 measurable nonnegative function h(x) such that

∫

G g(x)µ2(dx) =
∫

G g(x)h(x)µ1(dx) for each g ∈ C+
0,0(G). Therefore from Formulas (158) and

(162) it follows that h(x) is a positive constant. Thus (161) is proved.

4. Appendix. Products of Core Quasigroups

The main subject of this paper are measures on core quasigroups. Nevertheless,
in this section it is shortly demonstrated that there are abundant families of core
quasigroups besides those which appear in areas described in the introduction.

Theorem 4.1. Let (Gj , τj) be a family of topological T1 core quasigroups (see
Definition 2.1), where j ∈ J , J is a set. Then their direct product G =

∏

j∈J Gj

relative to the Tychonoff product topology τ is a topological T1 core quasigroup



Locally Compact Nonassociative Core Quasigroups 399

and

Z(G) =
∏

j∈J

Z(Gj) and N(G) =
∏

j∈J

N(Gj). (163)

Proof. The direct product of topological quasigroups is a topological quasigroup
(see [8, 10]). Thus conditions (i)-(iii) in Definition 2.1 are satisfied.

Each element a ∈ G is written as a = {aj : ∀j ∈ J, aj ∈ Gj}. From (iv)-(vii)
in Definition 2.1 we infer that

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba}

= {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj}; ∀b ∈ G,

b = {bj : ∀j ∈ J, bj ∈ Gj}; ∀j ∈ J, ajbj = bjaj}

=
∏

j∈J

Com(Gj), (164)

Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)}

= {a ∈ G : a = {aj : ∀j ∈ J, aj ∈ Gj};

∀b ∈ G, b = {bj : ∀j ∈ J, bj ∈ Gj};

∀c ∈ G, c = {cj : ∀j ∈ J, cj ∈ Gj};

∀j ∈ J, (ajbj)cj = aj(bjcj)}

=
∏

j∈J

Nl(Gj) (165)

and similarly

Nm(G) =
∏

j∈J

Nm(Gj), (166)

Nr(G) =
∏

j∈J

Nr(Gj). (167)

Therefore (165)-(167) and (viii) in Definition 2.1 imply that

N(G) =
∏

j∈J

N(Gj). (168)

Thus

Z(G) := Com(G) ∩N(G) =
∏

j∈J

Z(Gj). (169)

Let a, b and c be in G. Then (ab)c = {(ajbj)cj : ∀j ∈ J, aj ∈ Gj , bj ∈
Gj , cj ∈ Gj} = {tGj

(aj , bj , cj)aj(bjcj) : ∀j ∈ J, aj ∈ Gj , bj ∈ Gj , cj ∈ Gj}
= tG(a, b, c)a(bc) and analogously (ab)c = a(bc)pG(a, b, c), where

tG(a, b, c) = {tGj
(aj , bj , cj) : ∀j ∈ J, aj ∈ Gj , bj ∈ Gj , cj ∈ Gj}, (170)
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pG(a, b, c) = {pGj
(aj , bj, cj) : ∀j ∈ J, aj ∈ Gj , bj ∈ Gj , cj ∈ Gj}. (171)

Therefore, Formulas (169)-(171) imply that Conditions (ix) in Definition 2.1
also are satisfied. Thus G is a topological core quasigroup. By virtue of The-
orem 2.3.11 in [10] a product of T1 spaces is a T1 space, hence G is the T1
topological core quasigroup.

Corollary 4.2.

(i) Let conditions of Theorem 4.1 be satisfied and for each j ∈ J a core quasi-
group Gj satisfies Condition (70). Then the product core quasigroup G
satisfies Condition (70).

(ii) Moreover, if Gj is compact for all j ∈ J0 and locally compact for each
j ∈ J \ J0, where J0 ⊂ J and J \ J0 is a finite set, then G is locally
compact.

Proof. Using Formulas (170) and (171) it is sufficient to take N0(G) =
∏

j∈J N0(Gj), since the direct product of compact groups N0(Gj) is a com-
pact group N0(G) (see the Tychonoff theorem 3.2.4 in [10] or [17]). The last
assertion (2) follows from the known fact that G as a topological space is locally
compact under the imposed above conditions (see Theorem 3.3.13 in [10]).

Remark 4.3. Let A and B be two core quasigroups and let N be a group such
that N0(A) ↪→ N , N0(B) ↪→ N , N ↪→ N(A) and N ↪→ N(B) and let N be
normal in A and in B (see also Sections 2.1, 2.7 and 3.5).

Using direct products it is always possible to extend either A or B to get such
a case. In particular, either A or B may be a group. On A × B an equivalence
relation Ξ is considered such that (vγ, b)Ξ(v, γb) for every v in A, b in B and γ
in N .

Let φ : A→ A(B) be a single-valued mapping, where A(B) denotes a family
of all bijective surjective single-valued mappings of B onto B subjected to the
conditions given below. If a ∈ A and b ∈ B, then it will be written shortly
ba instead of φ(a)b, where φ(a) : B → B. Let also ηφ : A × A × B → N ,
κφ : A×B×B → N and ξφ : ((A×B)/Ξ)× ((A×B)/Ξ) → N be single-valued
mappings written shortly as η, κ and ξ correspondingly such that

(i) (bu)v = bvuη(v, u, b), γu = γ, bγ = b;

(ii) η(v, u, (γ1b)γ2) = η(v, u, b); if γ ∈ {v, u, b} then η(v, u, b) = e;

(iii) (cb)u = cubuκ(u, c, b);

(iv) κ(u, (γ1c)γ2, (γ3b)γ4) = κ(u, c, b) and if γ ∈ {u, c, b) then κ(u, c, b) = e;

(v) ξ(((γu)γ1, (γ2c)γ3), ((γ4v)γ5, (γ6b)γ7)) = ξ((u, c), (v, b)) and ξ((e, e), (v, b))
= e and ξ((u, c), (e, e)) = e for every u and v in A, b, c in B, γ, γ1,...,γ7
in N , where e denotes the neutral element in N and in A and B. We put
(a1, b1)(a2, b2) = (a1a2, b1b

a1

2 ξ((a1, b1), (a2, b2))) for each a1, a2 in A, b1
and b2 in B.
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The Cartesian product A × B supplied with such a binary operation in Re-
mark 4.3 will be denoted by A

⊗φ,η,κ,ξ
B.

Theorem 4.4. Let the conditions of Remark 4.3 be fulfilled. Then the Carte-
sian product A × B supplied with a binary operation in Remark 4.3 is a core
quasigroup.

Proof. From the conditions of Remark 4.3 it follows that the binary operation
in Remark 4.3 is single-valued. The group N is normal in the quasigroups A
and B by Conditions of embeddings in Remark 4.4. Hence for each a ∈ A and
β ∈ N there exists (aβ)/a ∈ N and a\(βa) ∈ N , since aN = Na for each a ∈ A.
Similarly it is for B. Thus there are single-valued mappings rA,a(β) = (aβ)/a,
řA,a(β) = a \ (βa), rB,b(β) = (bβ)/b, řB,b(β) = b \ (βb), rA,a : N → N ,
řA,a : N → N , rB,b : N → N , řB,b : N → N for each a ∈ A and b ∈ B.
Evidently rA,a(řA,a(β)) = β and řA,a(rA,a(β)) = β for each a ∈ A and β ∈ N ,
and similarly for B.

Let I1 = ((a1, b1)(a2, b2))(a3, b3) and I2 = (a1, b1)((a2, b2)(a3, b3)), where a1,
a2, a3 belong to A, b1, b2, b3 belong to B. Then we infer that I1 = ((a1a2)a3,
(b1b

a1

2 )ξ((a1, b1), (a2, b2))b
a1a2

3 ξ((a1a2, b1b
a1

2 ), (a3, b3))) and I2 = (a1(a2a3),
b1(b

a1

2 b
a1a2

3 )β) with β = η(a1, a2, b3)κ(a1, b2, b
a2

3 )[ξ((a2, b2), (a3, b3))]
a1ξ((a1, b1),

(a2a3, b2b
a2

3 )). Hence I1 = (a, bα) and I2 = (a, bβ), where
a = a1(a2a3) and b = b1(b

a1

2 b
a1a2

3 ), α = řB,b(pA(a1, a2, a3))
pB(b1, b

a1

2 , b
a1a2

3 ) řB,b
a1a2

3

(ξ((a1, b1), (a2, b2))) ξ((a1a2, b1b
a1

2 ), (a3, b3))).

Therefore

I1 = I2p with p = pA
⊗

φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3)),

I1 = tI2 with t = tA
⊗

φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3)); (172)

p = β−1α and t = rA,a(rB,b(p)). (173)

Apparently tA
⊗

φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3)) ∈ N and pA
⊗

φ,η,κ,ξ B((a1, b1),

(a2, b2), (a3, b3)) ∈ N for each aj ∈ A, bj ∈ B, j ∈ {1, 2, 3}, since α and β belong
to the group N .

If γ ∈ N and either (γ, e) or (e, γ) belongs to {(a1, b1), (a2, b2), (a3, b3)},
then from the conditions of Section 4.3 and Formulas (172) and (173) it fol-
lows that pA

⊗
φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3)) = e and tA

⊗
φ,η,κ,ξ B((a1, b1),

(a2, b2), (a3, b3)) = e, consequently, (N, e) ∪ (e,N) ⊂ N(A
⊗φ,η,κ,ξ

B).

Apparently (iii) in Definition 2.1 follows from (v) and multiplication (binary
operation) in Remark 4.3.

Next we consider the following equation

(a1, b1)(a, b) = (e, e), (174)

where a ∈ A, b ∈ B.

From (ii) in Definition 2.1 for core quasigroups A and B, (v) and multiplica-
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tion (binary operation) in Remark 4.3 we deduce that

a1 = e/a, (175)

consequently, b1b
(e/a)ξ((e/a, b1), (a, b)) = e and hence

b1 = e/[b(e/a)ξ((e/a, e/b(e/a)), (a, b))]. (176)

Thus a1 ∈ A and b1 ∈ B given by (175) and (176) provide a unique solution of
(174).

Similarly from the following equation

(a, b)(a2, b2) = (e, e), (177)

where a ∈ A, b ∈ B we infer that

a2 = a \ e, (178)

consequently, bba2ξ((a, b), (a\e, b2)) = e and hence ba2 = b\ [ξ((a, b), (a\e, b2))]−1

by Conditions (i), (ii) in Definition 2.1 and the conditions on φ, ηφ and ξφ in
Remark 4.3 for core A and B. On the other hand, (ba2)

e/a = b2η(e/a, a, b2),
consequently, by Lemmas 2.2, 2.3 and the conditions of Section 4.3

b2 = (b \ [ξ((a, b), (a \ e, (b \ e)e/a))]−1)e/a)/η(e/a, a, (b \ e)e/a). (179)

Thus Formulas (178) and (179) provide a unique solution of (177).

Next we put (a1, b1) = (e, e)/(a, b) and (a2, b2) = (a, b) \ (e, e) and

(a, b) \ (c, d) = ((a, b) \ (e, e))(c, d)p((a, b), (a, b) \ (e, e), (c, d)); (180)

(c, d)/(a, b) = [t((c, d), (e, e)/(a, b), (a, b))]−1(c, d)((e, e)/(a, b)) (181)

and eG = (e, e), where G = A
⊗φ,η,κ,ξB.

Definition 4.5. The core quasigroup A
⊗φ,η,κ,ξ

B provided by Theorem 4.4 we
call a smashed product of core quasigroups A and B with smashing factors φ, η,
κ and ξ.

Corollary 4.6. Suppose that the conditions of Remark 4.3 are fulfilled and A
and B are topological T1 core quasigroups and smashing factors φ, η, κ, ξ are
jointly continuous by their variables. Suppose also that A

⊗φ,η,κ,ξ
B is supplied

with a topology induced from the Tychonoff product topology on A × B. Then
A
⊗φ,η,κ,ξB is a topological T1 core quasigroup.

Corollary 4.7. If the conditions of Corollary 4.6 are satisfied and quasigroups A
and B are locally compact, then A

⊗φ,η,κ,ξ
B is locally compact. Moreover, if A

and B satisfy Condition (70) and ranges of η, κ, ξ are contained in N0(A)N0(B),

then A
⊗φ,η,κ,ξ B satisfies Condition (70).
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Proof. Corollaries 4.6 and 4.7 follow immediately from Theorems 2.3.11, 3.2.4,
3.3.13 in [10] and Theorems 2.8, 3.4 and Corollary 2.6, since N0(A)N0(B) ⊆ N ⊆

N(A)∩N(B) and because N0(A)N0(B) is a compact subgroup in A
⊗φ,η,κ,ξ

B.

Remark 4.8. From Theorems 4.1, 4.4 and Corollaries 4.2, 4.6, 4.7 it follows that
taking nontrivial φ, η, κ and ξ and starting even from groups with nontrivial
N(Gj) or N(A) and Gj/ · /N(Gj) or A/ · /N(A) it is possible to construct new
core quasigroups with nontrivial N0(G) and ranges tG(G,G,G) and pG(G,G,G)
of tG and pG may be infinite and nondiscrete. With suitable smashing factors
φ, η, κ and ξ and with nontrivial core quasigroups or groups A and B it is easy
to get examples of core quasigroups in which e/a 6= a \ e for an infinite family

of elements a in A
⊗φ,η,κ,ξ

B.

It is worth to mention that under rather general conditions an existence
of a nontrivial nonnegative left invariant measure on the Borel σ-algebra of a
topological unital quasigroup implies that it is either locally compact or dense in
some locally compact unital quasigroup [28]. In the latter article also examples
of quasigroups are discussed.

Conclusion 4.9. The results of this article can be used for further studies of
measures on homogeneous spaces and noncommutative manifolds related with
quasigroups. Other applications of left invariant measures on quasigroups belong
to mathematical coding theory and technics such as assessing of web structural
logic and semantic analysis [4, 3, 32]. This is natural, because codings and paral-
lel architectures are frequently based on binary systems and measures. Another
very important applications are in representation theory of quasigroups and
harmonic analysis on quasigroups, mathematical physics, quantum field theory,
quantum gravity, gauge theory, etc. [6, 7, 11, 16, 23, 25].
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Basel, 2007.
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[24] S.V. Ludkovsky, W. Sprössig, Ordered representations of normal and super-
differential operators in quaternion and octonion Hilbert spaces, Adv. Appl. Clif-
ford Alg. 20 (2) (2010) 321–342.
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