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Abstract. The concept of geometric-arithmetic index GA1 was introduced in the chem-

ical graph theory recently, but it has shown to be useful. The aim of this paper is

to give new inequalities involving the geometric-arithmetic index and characterize ex-

tremal graphs with respect to them.
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1. Introduction

A single number, representing a chemical structure in graph-theoretical terms
via the molecular graph, is called a topological descriptor and if it is well cor-
related with a molecular property it is called topological index, which is used
to understand physicochemical properties of chemical compounds. Topological
indices are interesting since they capture some of the properties of a molecule in
a single number. Hundreds of topological indices have been introduced and stud-
ied, starting with the seminal work by Wiener in which he used the sum of all
shortest-path distances of a (molecular) graph for modeling physical properties
of alkanes (see [47]).

Topological indices based on end-vertex degrees of edges have been used over
50 years. Among them, several indices are recognized to be useful tools in
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chemical researches. Probably, the best know such descriptors are the Randić
connectivity index (R) [36] and the Zagreb indices. The first and second Zagreb
indices, denoted by M1 and M2, respectively, and introduced by Gutman and
Trinajstić in 1972 (see [20]), are defined as

M1(G) =
∑

u∈V (G)

d2u, M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and
du is the degree of the vertex u.

There is a vast amount of research on the Zagreb indices. For details of
their chemical applications and mathematical theory see [16, 17, 18], and the
references therein.

In [23, 24, 29], the first and second variable Zagreb indices are defined as

Mα
1 (G) =

∑

u∈V (G)

dαu , Mα
2 (G) =

∑

uv∈E(G)

(dudv)
α,

with α ∈ R.

Multiplicative versions of the first and the second Zagreb indices, Π1 and Π2,
were first considered in [42], defined as

Π1(G) =
∏

u∈V (G)

d2u, Π2(G) =
∏

uv∈E(G)

dudv.

Also, the multiplicative sum Zagreb index Π∗
1 was introduced in [11] as

Π∗
1(G) =

∏

uv∈E(G)

(du + dv).

The concept of variable molecular descriptors was proposed as a new way
of characterizing heteroatoms in molecules (see [33, 34]), but also to assess the
structural differences (e.g., the relative role of carbon atoms of acyclic and cyclic
parts in alkylcycloalkanes [35]). The idea behind the variable molecular de-
scriptors is that the variables are determined during the regression so that the
standard error of estimate for a particular studied property is as small as possible
(see, e.g., [29]).

In the paper of Gutman and Tošović [19], the correlation abilities of 20 vertex-
degree-based topological indices occurring in the chemical literature were tested
for the case of standard heats of formation and normal boiling points of octane
isomers. It is remarkable to realize that the second variable Zagreb index Mα

2

with exponent α = −1 (and to a lesser extent with exponent α = −2) performs
significantly better than the Randić index (R = M−0.5

2 ).

The second variable Zagreb index has been used in the structure-boiling
point modeling of benzenoid hydrocarbons [31]. Besides, variable Zagreb indices
exhibit a potential applicability for deriving multi-linear regression models [10].
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Various properties and relations of these indices are discussed in several papers
(see, e.g., [3, 4, 5, 9, 24, 25, 48, 49]).

Note that M2
1 is the first Zagreb index M1, M

−1
1 is the inverse index ID, M3

1

is the forgotten index F , etc.; also, M
−1/2
2 is the usual Randić index, M1

2 is the
second Zagreb index M2, M

−1
2 is the modified Zagreb index, etc.

The general sum-connectivity index was defined by Zhou and Trinajstić in
[51] as

χα(G) =
∑

uv∈E(G)

(du + dv)
α.

Note that χ
1
is the first Zagreb index M1, 2χ

−1
is the harmonic index H , χ

−1/2

is the sum-connectivity index χ, etc.

The first geometric-arithmetic index GA1 is defined in [44] as

GA1 = GA1(G) =
∑

uv∈E(G)

√
dudv

1
2 (du + dv)

.

Although GA1 was introduced in 2009, there are many papers dealing with
this index (see, e.g., [6, 7, 8, 15, 21, 26, 27, 30, 32, 37, 38, 39, 40, 44] and
the references therein). There are other geometric-arithmetic indices, like Zp,q

(Z0,1 = GA1), but the results in [7, p. 598] show that the GA1 index gathers the
same information on observed molecule as other Zp,q indices.

Although only about 1000 benzenoid hydrocarbons are known, the num-
ber of possible benzenoid hydrocarbons is huge. For instance, the number of
possible benzenoid hydrocarbons with 35 benzene rings is 5.85 ·1021 [43]. There-
fore, modeling their physico-chemical properties is important in order to predict
properties of currently unknown species. The predicting ability of the GA1 index
compared with Randić index is reasonably better (see [7, Table 1]). The graphic
in [7, Fig. 7] (from [7, Table 2], [41]) shows that there exists a good linear corre-
lation between GA1 and the heat of formation of benzenoid hydrocarbons (the
correlation coefficient is equal to 0.972).

Furthermore, the improvement in prediction with GA1 index comparing to
Randić index in the case of standard enthalpy of vaporization is more than
9%. That is why one can think that GA1 index should be considered in the
QSPR/QSAR researches.

A main topic in the study of topological indices is to find bounds of the
indices involving several parameters. The main aim of this paper is to obtain
new inequalities involving the geometric-arithmetic index GA1 and characterize
graphs extremal with respect to them.

Throughout this paper, we use G = (V (G), E(G)) to denote a (non-oriented)
finite simple (without multiple edges and loops) graph without isolated vertices.
We denote by ∆, δ, n,m the maximum degree, the minimum degree, and the
cardinality of the set of vertices and edges of G, respectively.
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2. Inequalities Involving the Geometric-Arithmetic Index

Theorem 2.1. If G is a graph with m edges, maximum degree ∆ and minimum

degree δ, then

GA1(G) ≥ m− 1

2

(
√
∆−

√
δ
)2
H(G),

and the equality is attained if and only if G is regular graph or bipartite.

Proof. We have

GA1(G) +
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
=

∑

uv∈E(G)

( √
dudv

1
2 (du + dv)

+

(√
du −

√
dv
)2

du + dv

)

=
∑

uv∈E(G)

1 = m.

So since

∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
≤ 1

2

∑

uv∈E(G)

2
(√

∆−
√
δ
)2

du + dv
=

1

2

(
√
∆−

√
δ
)2
H(G),

we conclude

GA1(G) ≥ m− 1

2

(
√
∆−

√
δ
)2
H(G).

Moreover, if the equality is attained, then
∣

∣

√
du−

√
dv
∣

∣ =
√
∆−

√
δ for every

uv ∈ E(G); thus, {du, dv} = {∆, δ} for every uv ∈ E(G), and G is a regular or
bipartite graph. Note that if {du, dv} 6= {∆, δ} for some uv ∈ E(G), then the
equality fails. Moreover, if G is connected and bipartite, then vertices in each
part have the same degree.

The following well-known result provides a converse of Cauchy-Schwarz in-
equality (see, e.g., [28, Lemma 3.4]).

Lemma 2.2. If aj , bj ≥ 0 and ωbj ≤ aj ≤ Ωbj for 1 ≤ j ≤ k, then

(

k
∑

j=1

a2j

)1/2( k
∑

j=1

b2j

)1/2

≤ 1

2

(

√

Ω

ω
+

√

ω

Ω

)

k
∑

j=1

ajbj .

If aj > 0 for some 1 ≤ j ≤ k, then the equality holds if and only if ω = Ω and

aj = ωbj for every 1 ≤ j ≤ k.

The following Kober’s inequalities appear in [22] (see also [50, Lemma 1]).

Lemma 2.3. If aj > 0 for 1 ≤ j ≤ k, then

k
∑

j=1

aj + k(k − 1)
(

k
∏

j=1

aj

)1/k

≤
(

k
∑

j=1

√
aj

)2

≤ (k − 1)
k
∑

j=1

aj + k
(

k
∏

j=1

aj

)1/k

.
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Now we can apply these lemmas above to obtain some relations of the
Geometric-Arithmetic index, GA1, with the multiplicative versions of the Za-
gred indices, Π1,Π2 and Π∗

1.

Theorem 2.4. If G is a graph with m edges, maximum degree ∆ and minimum

degree δ, then

GA1(G) ≤ M
1/2
2 (G)H(G) − 2m(m− 1)

Π2(G)1/(2m)

Π∗
1(G)1/m

,

GA1(G) ≥ 4∆δ

(m− 1)(∆ + δ)2
M

1/2
2 (G)H(G) − 2m

m− 1

Π2(G)1/(2m)

Π∗
1(G)1/m

.

The equality in the first bound is attained for every regular graph; the equality

in the second bound is attained if and only if G is regular.

Proof. The first inequality in Lemma 2.3 and Cauchy-Schwarz inequality give

∑

uv∈E(G)

√
dudv

du + dv
+m(m− 1)

(

∏

uv∈E(G)

√
dudv

du + dv

)1/m

≤
(

∑

uv∈E(G)

(dudv)
1/4

(du + dv)1/2

)2

≤
∑

uv∈E(G)

(dudv)
1/2

∑

uv∈E(G)

1

du + dv
= M

1/2
2 (G)

1

2
H(G),

GA1(G) + 2m(m− 1)
Π2(G)1/(2m)

Π∗
1(G)1/m

≤ M
1/2
2 (G)H(G).

Since

(dudv)
1/4

1
(du+dv)1/2

= (dudv)
1/4(du + dv)

1/2

and
√
2 δ =

√
δ
√
2δ ≤ (dudv)

1/4(du + dv)
1/2 ≤

√
∆
√
2∆ =

√
2∆,

Lemma 2.2 gives

(

∑

uv∈E(G)

(dudv)
1/4

(du + dv)1/2

)2

≥
∑

uv∈E(G)(dudv)
1/2
∑

uv∈E(G)
1

du+dv

1
4

(
√

∆
δ +

√

δ
∆

)2

=
2∆δ

(∆ + δ)2
M

1/2
2 (G)H(G).
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This inequality and Lemma 2.3 give

(m− 1)
∑

uv∈E(G)

√
dudv

du + dv
+m

(

∏

uv∈E(G)

√
dudv

du + dv

)1/m

≥
(

∑

uv∈E(G)

(dudv)
1/4

(du + dv)1/2

)2

≥ 2∆δ

(∆ + δ)2
M

1/2
2 (G)H(G),

(m− 1)GA1(G) + 2m
Π2(G)1/(2m)

Π∗
1(G)1/m

≥ 4∆δ

(∆ + δ)2
M

1/2
2 (G)H(G).

If G is a regular graph, then

M
1/2
2 (G)H(G)− 2m(m− 1)

Π2(G)1/(2m)

Π∗
1(G)1/m

=∆m
m

∆
− 2m(m− 1)

(∆2m)1/(2m)

((2∆)m)1/m
= m = GA1(G),

4∆δ

(m− 1)(∆ + δ)2
M

1/2
2 (G)H(G) − 2m

m− 1

Π2(G)1/(2m)

Π∗
1(G)1/m

=
4∆2

(m− 1)4∆2
∆m

m

∆
− 2m

m− 1

(∆2m)1/(2m)

((2∆)m)1/m
= m = GA1(G).

If the equality in the second bound is attained, then Lemma 2.2 gives
√
2 δ =√

2∆, i.e., G is regular.

Theorem 2.5. If G is a graph with m edges, then

GA1(G) ≥ 2m
Π2(G)1/(2m)

Π∗
1(G)1/m

,

and the equality is attained if G is either a regular graph or a bipartite graph

where vertices in each part have the same degree.

Proof. Using the fact that the geometric mean is at most the arithmetic mean,
we obtain

1

2m
GA1(G) =

1

m

∑

uv∈E(G)

√
dudv

du + dv
≥
(

∏

uv∈E(G)

√
dudv

du + dv

)1/m

=

(

∏

uv∈E(G) dudv

)1/(2m)

(

∏

uv∈E(G)(du + dv)
)1/m

=
Π2(G)1/(2m)

Π∗
1(G)1/m

.

If G is a regular graph or a bipartite graph where vertices in each part have the
same degree, then

2m
Π2(G)1/(2m)

Π∗
1(G)1/m

= 2m
((∆δ)m)1/(2m)

((∆ + δ)m)1/m
=

2
√
∆δ

∆+ δ
m = GA1(G),
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Figure 1: A graph that attains the equality in Theorem 2.5.

and the equality holds.

Note that the equality in the theorem above is attained if and only if√
dudv/(du + dv) is constant for every uv ∈ E(G), and so the geometric mean

is equal to the arithmetic mean. Since
√
du dv

du+dv
is a 0-homogenous expression we

have for instance,
√
2·4

2+4 =
√
4·8

4+8 . Then the equality in Theorem 2.5 might be
attained for some graphs with degree sequence involving more than two values.
For instance, the equality is attained for a graph G obtained from a cube graph
Q3 by adding a new vertex v connected to every vertices in V (Q3), and then
applying edge-subdivision to every edge in E(Q3), see Figure 1. Note that G
has one vertex with degree 8, eight vertices with degree 4 and twelve vertices
with degree 2 such that the edges join vertices with either degrees 8 and 4, or
degrees 4 and 2.

Also, given different integers d1, . . . , dk, if Gi is any di-regular graph, then
the equality in Theorem 2.5 is attained by the union G = ∪k

i=1Gi.

In the same paper, where Zagreb indices were introduced, the forgotten topo-

logical index (or F-index ) is defined as

F (G) =
∑

u∈V (G)

d3u =
∑

uv∈E(G)

(d2u + d2v).

Both the forgotten topological index and the first Zagreb index were employed
in the formulas for total π-electron energy in [20], as a measure of branching
extent of the carbon-atom skeleton of the underlying molecule.

The Albertson index is defined in [1] (see [2]) as

Alb(G) =
∑

uv∈E(G)

|du − dv|.
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This index is also known as third Zagreb index (see [13]) andmisbalance deg index

(see [45, 46]). This is a significant predictor of standard enthalpy of vaporization
for octane isomers (see [45]).

Theorem 2.6. If G is a graph with maximum degree ∆ and minimum degree δ,
then

GA1(G) ≥ F (G)

2∆2
− (∆− δ)Alb(G)

2∆δ
,

and the equality is attained if and only if G is regular.

Proof. Since

d2u + d2v
2∆

≤ d2u + d2v
du + dv

=
2dudv
du + dv

+
(du − dv)

2

du + dv
≤ 2∆

√
dudv

du + dv
+

(du − dv)
2

du + dv
,

for every uv ∈ E(G), we have

F (G)

2∆
≤ ∆GA1(G) +

∑

uv∈E(G)

(du − dv)
2

du + dv
.

Since

∑

uv∈E(G)

(du − dv)
2

du + dv
≤ ∆− δ

2δ

∑

uv∈E(G)

|du − dv| =
∆− δ

2δ
Alb(G),

we conclude
F (G)

2∆
≤ ∆GA1(G) +

(∆− δ)Alb(G)

2δ
.

If the graph is regular, then

F (G)

2∆2
− (∆− δ)Alb(G)

2∆δ
=

F (G)

2∆2
=

2∆2m

2∆2
= m = GA1(G).

The first argument gives that if the bound is attained, then du+dv = 2∆ for
every uv ∈ E(G). Thus, du = ∆ for every u ∈ V (G) and G is regular.

The following lemma, that will be useful, is the well-known Jensen’s inequal-
ity.

Lemma 2.7. For a real convex function ϕ, numbers x1, x2, . . . , xn in its domain,

and positive weights a1, a2, . . . , an, we have

ϕ

(∑

aixi
∑

ai

)

≤
∑

aiϕ(xi)
∑

ai
,

and the inequality is reversed if ϕ is concave, which is

ϕ

(∑

aixi
∑

ai

)

≥
∑

aiϕ(xi)
∑

ai
.
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Equality holds if and only if x1 = x2 = · · · = xn or ϕ is linear on a domain

containing x1, x2, · · · , xn.

Theorem 2.8. Let G be a graph with m edges, maximum degree ∆ and minimum

degree δ, and let t0 be the unique real root of the equation t3 − t2 − t − 1 = 0.
Then

GA1(G) ≥
{

m2

∆H(G) if ∆/δ ≤ t40,
4
√
∆δm2

(∆+δ)2H(G) if ∆/δ ≥ t40.

The equality holds in the first bound if G is regular. The equality holds in the

second bound if G is a bipartite graph where vertices in each part have the same

degree.

Proof. Since f(x) = 1/x is a convex function in R+, Lemma 2.7 gives

m
∑

uv∈E(G)
2
√
dudv

du+dv

≤ 1

m

∑

uv∈E(G)

du + dv

2
√
dudv

du + dv
2

2

du + dv
,

m2

GA1(G)
≤ H(G) max

x,y∈[δ,∆]
g(x, y),

where

g(x, y) =
(x+ y)2

4
√
xy

=
1

4

(

x3/4y−1/4 + y3/4x−1/4
)2
.

Since

∂g

∂x
=

1

2

(

x3/4y−1/4 + y3/4x−1/4
)

(3

4
x−1/4y−1/4 − 1

4
y3/4x−5/4

)

=
1

8

(

x3/4y−1/4 + y3/4x−1/4
)

x−5/4y−1/4(3x− y),

∂g

∂y
=

1

8

(

y3/4x−1/4 + x3/4y−1/4
)

y−5/4x−1/4(3y − x),

we have

max
y∈[δ,∆]

g(x, y) = max
{

g(x, δ), g(x,∆)
}

,

max
x∈[δ,∆]

g(x, y) = max
{

g(δ, y), g(∆, y)
}

,

max
x,y∈[δ,∆]

g(x, y) = max
{

g(δ, δ), g(δ,∆), g(∆, δ), g(∆,∆)
}

.

Since g(x, x) = x is an increasing function and g(x, y) = g(y, x), we have

max
x,y∈[δ,∆]

g(x, y) = max
{

g(∆,∆), g(∆, δ)
}

= max
{

∆,
(∆ + δ)2

4
√
∆δ

}

.

The function f(t) = t3 − t2 − t − 1 has derivative f ′(t) = 3t2 − 2t − 1 =
(3t + 1)(t − 1). It is easy to check that f(t) has a unique real zero t0 > 1 and
f(t) ≥ 0 if and only if t ≥ t0.
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Thus, the function F (t) = t4 − 2t3 + 1 = (t3 − t2 − t − 1)(t − 1) satisfies
F (t) ≥ 0 if t ≥ t0 and F (t) ≤ 0 if 1 ≤ t ≤ t0. Consequently, we have

t4 + 1 ≥2t3, if t ≥ t0,

x4 + y4 ≥2x3y, if x/y ≥ t0,

∆+ δ ≥2∆3/4δ1/4, if ∆/δ ≥ t40,

(∆ + δ)2

4
√
∆δ

≥∆, if ∆/δ ≥ t40.

In a similar way, we obtain

(∆ + δ)2

4
√
∆δ

≤ ∆, if ∆/δ ≤ t40.

If the graph is regular, then H(G) = m/∆, GA1(G) = m and the equality in
the first bound holds.

If G is a bipartite graph where vertices in each part have the same degree,
then

4
√
∆δ m2

(∆ + δ)2H(G)
=

4
√
∆δ m2

(∆ + δ)22m/(∆ + δ)
=

2
√
∆δ

∆+ δ
m = GA1(G).

Theorem 2.9. Let G be a graph with m edges and maximum degree ∆. Then

GA1(G) ≥
√
2m2

√

∆M1(G)M−1
2 (G)

,

and the equality is attained if and only if G is a regular graph.

Proof. Since f(x) = 1/x is a convex function in R+, Lemma 2.7 gives

m

GA1(G)
=

m
∑

uv∈E(G)
2
√
dudv

du+dv

≤ 1

m

∑

uv∈E(G)

du + dv

2
√
dudv

.

Using the Cauchy-Schwarz inequality, we obtain

∑

uv∈E(G)

du + dv

2
√
dudv

≤
(

∑

uv∈E(G)

(du + dv)
2

4

)1/2( ∑

uv∈E(G)

1

dudv

)1/2

≤
(

∑

uv∈E(G)

∆(du + dv)

2

)1/2(

M−1
2 (G)

)1/2

=

√

∆

2
M1(G)M−1

2 (G) .

Thus, we have √
2m2

√

∆M1(G)M−1
2 (G)

≤ GA1(G).
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Now if the graph is regular, then M1(G) = 2m∆, M−1
2 (G) = m/∆2 and

GA1(G) = m, so the equality holds. On the other hand if the equality holds,
then du + dv = 2∆ for every uv ∈ E(G) which implies that du = ∆ for every
u ∈ V (G), i.e., G is regular.

Theorem 2.10. Let G be a graph with m edges and maximum degree ∆. Then

GA1(G) ≥ 2m− 1

2

√

2∆M1(G)M−1
2 (G) ,

and the equality is attained if and only if G is regular.

Proof. Since, for all a, b > 0,
a

b
+

b

a
≥ 2,

and the equality is attained if and only if a = b, we have

∑

uv∈E(G)

2
√
dudv

du + dv
+

∑

uv∈E(G)

du + dv

2
√
dudv

≥ 2m.

Using the Cauchy-Schwarz inequality, we obtain

∑

uv∈E(G)

du + dv

2
√
dudv

≤
(

∑

uv∈E(G)

(du + dv)
2

4

)1/2( ∑

uv∈E(G)

1

dudv

)1/2

≤
(

∑

uv∈E(G)

∆(du + dv)

2

)1/2(

M−1
2 (G)

)1/2

=

√

∆

2
M1(G)M−1

2 (G) .

Thus, we have

GA1(G) ≥ 2m− 1

2

√

2∆M1(G)M−1
2 (G) .

If the equality is attained, then du + dv = 2∆ for every uv ∈ E(G) which
implies that G is regular.

If G is regular, then

2m− 1

2

√

2∆M1(G)M−1
2 (G) = 2m− 1

2

√
2∆2∆m∆−2m = m = GA1(G).

Estrada et al. [12] defined atom-bond connectivity index as

ABC(G) =
∑

uv∈E(G)

√

du + dv − 2

du dv
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They showed that the ABC index correlates well with the heats of formation of
alkanes and can therefore serve the purpose of predicting their thermodynamic
properties. Furtula et al. [14] made a generalization of ABC index, defined as

ABCα(G) =
∑

uv∈E(G)

(

du + dv − 2

du dv

)α

, where α ∈ R.

Theorem 2.11. Let G be a graph with maximum degree ∆ and without isolated

edges, and α > 0. Then

(

2∆− 2

∆2

)α

GA1(G) ≤ ABCα(G) ≤ (∆− 1)α(∆ + 1)

2∆α+ 1

2

GA1(G).

Furthermore, the lower bound is attained if and only if G is regular, and the

upper bound is attained if and only if G is union of start graphs S∆+1.

Proof. Note that (du, dv) 6= (1, 1) since G does not have isolated edges and
consequently ∆ ≥ 2. We are going to compute the minimum and maximum

values of f(x, y) =
(

x+y−2
xy

)α
x+y
2
√
xy = y−α−

1

2

2 (x + y − 2)α(x + y)x−α− 1

2 on 1 ≤
x ≤ y, 2 ≤ y ≤ ∆. We have

∂f

∂x
=

y−α− 1

2

2

[

α(x+ y − 2)α−1(x + y)x−α− 1

2 + (x+ y − 2)αx−α− 1

2

]

− y−α− 1

2

2

[

(x+ y − 2)α(x+ y)
(

α+
1

2

)

x−α− 3

2

]

=
y−α− 1

2

2
(x+ y − 2)α−1x−α− 3

2 [α(x + y)x+ (x+ y − 2)x]

− y−α− 1

2

2
(x + y − 2)α−1x−α− 3

2

[

(

α+
1

2

)

(x+ y − 2)(x+ y)

]

=
y−α− 1

2

2
(x+ y − 2)α−1x−α− 3

2

[

α(x+ y)
(

x− (x+ y − 2)
)]

+
y−α− 1

2

2
(x + y − 2)α−1x−α− 3

2

[

(x+ y − 2)
(

x− 1

2
(x + y)

)

]

=
y−α− 1

2

2
(x+ y − 2)α−1x−α− 3

2

[

α(x+ y)(2 − y) +
1

2
(x+ y − 2)(x− y)

]

≤ 0.

So, f(x, y) ≥ f(y, y) for every x ∈ [1, y] and y ≥ 2. Indeed, f(x, y) is strictly
decreasing on x ∈ [1, y] for every fixed y ≥ 2. Now consider

g(y) = f(y, y) =

(

y + y − 2

yy

)α
y + y

2
√
yy

= 2α
(

y − 1

y2

)α

.
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Note that g′(y) = 2αα
(

y−1
y2

)α−1 (
y−1
y2

)′
= 2αα

(

y−1
y2

)α−1
2−y
y3 ≤ 0 on 2 ≤ y ≤

∆. Moreover, g is strictly decreasing on y ∈ [2,∆]. Thus, we have f(x, y) ≥
g(y) ≥ g(∆) for every 1 ≤ x ≤ y, 2 ≤ y ≤ ∆ and the equalities hold if and only
if x = y = ∆. Therefore,

(

du + dv − 2

dudv

)α

≥
(

2∆− 2

∆2

)α
2
√
dudv

du + dv
for every uv ∈ E(G),

and the equality is attained if and only if du = dv = ∆. Then we obtain the
lower bound by summing up.

On the other hand, we have f(x, y) ≤ f(1, y) for every x ∈ [1, y] and y ≥ 2.
Consider

h(y) = f(1, y) =

(

1 + y − 2

y

)α
1 + y

2
√
y

=
1

2
(y − 1)α(y + 1)y−α− 1

2 .

Then

h′(y) =
1

2

[

α(y − 1)α−1(y + 1)y−α− 1

2 + (y − 1)αy−α− 1

2

]

− 1

2

[

(

α+
1

2

)

(y − 1)α(y + 1)y−α− 3

2

]

=
1

2
(y − 1)α−1y−α− 3

2

[

α(y + 1)y + (y − 1)y −
(

α+
1

2

)

(y − 1)(y + 1)

]

=
1

2
(y − 1)α−1y−α− 3

2

[

α(y + 1)
(

y − (y − 1)
)

+ (y − 1)
(

y − 1

2
(y + 1)

)

]

=
1

2
(y − 1)α−1y−α− 3

2

[

α(y + 1) +
1

2
(y − 1)2

]

> 0.

Thus, we have f(x, y) ≤ h(y) ≤ h(∆) for every 1 ≤ x ≤ y, 2 ≤ y ≤ ∆ and
the equalities hold if and only if x = 1 and y = ∆. Therefore,

(

du + dv − 2

dudv

)α

≤ (∆− 1)α(∆ + 1)

2∆α+ 1

2

2
√
dudv

du + dv
for every uv ∈ E(G),

and the equality is attained if and only if {du, dv} = {1,∆} for every uv ∈ E(G),
i.e., every connected component of G is a star graph S∆+1. Then we obtain the
upper bound by summing up.
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