
Southeast Asian

Bulletin of

Mathematics
c©SEAMS. 2022

Southeast Asian Bulletin of Mathematics (2022) 46: 479–490

An Ideal Based Regular Digraph of Ideals of

Commutative Rings

Masoud Karimi
Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd,

Iran

Email: karimimth@yahoo.com

Received 29 October 2016
Accepted 15 January 2019

Communicated by Qaiser Mushtaq

AMS Mathematics Subject Classification(2020): 05C20, 05C69, 13E05, 16P20

Abstract. Let R be a commutative ring. The regular digraph of ideals of R, denoted

by Γ(R), is a digraph whose vertex-set is the set of all non-trivial ideals of R and for

every two distinct vertices I and J , there is an arc from I to J , whenever I contains

a non-zero zero divisor on J . We generalize this notion with respect to an ideal I0
of R and denote it by ΓI0

(R) in such a way that I0 = 0 gives us Γ(R). Also by

verifying connectedness and diameter of ΓI0
(R), we will observe that there is a strong

relation between ΓI0
(R) and Γ(R/I0). Finally, we consider the number of non-singular

connected components of ΓI0
(R).
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1. Introduction

Let R be a commutative ring. Then, the regular digraph of ideals of R, denoted
by Γ(R), is a digraph whose vertex-set is the set of all nontrivial ideals of R,
and there is an arc from I to J , whenever I contains a J-regular element, that
is, an element x ∈ I such that xy 6= 0 for all y ∈ J with y 6= 0.

Authors in [9] introduced the notion of regular digraph of ideals of a com-

mutative ring; they denoted it by
−−→
Γreg(R). This work was mostly concerned

with only the colouring of Artinain rings and some results on diameter and con-
nectedness. Soon after, authors in [3, 2, 1] extensively discussed this graph and
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directed their study towards Noetherian rings.

A motivation of our attempt, is the work of Redmond in [10] (see also [6, 8]),
in which the concept of an ideal based zero divisor graph was introduced. He
showed that the zero divisor graph and its ideal based one, are strongly related
to each other by using the notion of quotient rings.

In this paper, for a given ideal I0 of R, by ΓI0(R) we denote the regular
digraph of ideals of R with respect to I0. It will be observed that in the case of
I0 = 0 we turn to Γ(R), indeed, Γ(R/I0) is isomorphic to an induced subgraph
of ΓI0(R).

We use standard terminology of ring theory following [4, 11], and [5, 7] to
that of graph theory. But for the sake of completeness, we state some definitions
and notations used throughout.

Throughout, all rings are assumed to be commutative and Noetherian, with
non-zero identity. For given ring R, the Jacobson radical denoted by J(R), is
the intersection of all maximal ideals of R, also by

√
I we denote the set

{x ∈ R | xk ∈ I, for some non-negative integer k},

and
√
0 is called Nilradical of R, but by way of exception we denote it by Nil(R).

Also, the set of all zero-divisors of an R-module M , which is denoted by ZR(M),
is the set

ZR(M) = {r ∈ R | rx = 0 for some non− zero element x in M}.

An element r ∈ R is called M -regular if r /∈ Z(M). We say that depth(R) = 0 if
every non-unit element of R is a zero-divisor. Let G be a simple graph. A vertex
x is isolated if no vertex of G is adjacent to x. G is called complete when all
vertices of G are adjacent to each other. Let A be a set of vertices of G. Then
the subgraph of G induced by vertices in A denoted by G[A].

The distance between two vertices x and y in G denoted by dG(x, y), is the
length of the shortest path between x and y. The diameter of G is the size of
the longest distances between vertices of G, and we denote it by diam(G). If G
is a directed graph (or digraph), an arc from a vertex x to a vertex y denoted
by x −→G y, if no confusion, only with x −→ y.

2. Preliminaries

In this section we introduce the regular digraph of ideals of a commutative
ring with respect an ideal, and state some preliminary results including some
theorems and lemmas from [3, 2].

Definition 2.1. Let I0 be an ideal of a commutative ring R. The regular digraph

of ideals of R with respect to I0, denoted by ΓI0(R). For distinct ideals I and J
of R, there is an arc from I to J if and only if there exists x ∈ I \ I0 such that

xy /∈ I0 for all y ∈ J \ I0. In this case we use I −→I0 J , to denote this arc.
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Clearly, I ⊆ I0 implies that I is an isolated vertices of ΓI0(R), thus the

vertex-set of ΓI0(R) is considered as the set of all ideals of R such that are not

contained in I0.

By definition, ΓI0(R) = Γ(R) if and only if I0 = 0.

Lemma 2.2. I −→I0 J if and only if (I + I0)/I0 * ZR/I0((J + I0)/I0).

Proof. Suppose that I −→I0 J . Then there exists x ∈ I \ I0 such that xy /∈ I0
for all y ∈ J \ I0. Since x + I0 is a non-zero element in (I + I0)/I0 so xy + I0
is a non-zero in (J + I0)/I0 for all y ∈ J \ I0. This follows that (I + I0)/I0 *
ZR/I0((I + I0)/I0).

Conversely, let (I+I0)/I0 * ZR/I0((I+I0)/I0). Hence there exists a non-zero
element x + I0 in (I + I0)/I0 such that (x + I0)(y + I0) = xy + I0 is non-zero
element in (J + I0)/I0 for all y ∈ J \ I0. On the other hand, x = x1 + x2 such
that x1 ∈ I \ I0. Thus, x1y /∈ I0 for all y ∈ J \ I0, and so I −→I0 J .

In the following lemma, we can establish some primary adjacencies in ΓI0(R).
The proof is routine and is omitted.

Lemma 2.3. Suppose that I0, I and J are distinct non-trivial ideals of R. Then

(i) If I0 + I = R, then I is adjacent to all other vertices of ΓI0(R).

(ii) If IJ ⊆ I0, then I and J are not adjacent.

(iii) Let I + I0 6= R and I + I0 6= J and I 6= J . Then, I −→I0 J if and only if

I + I0 −→I0 J .

(iv) Let J + I0 6= R and J + I0 6= I and I 6= J . Then, I −→I0 J if and only if

I −→I0 J + I0.

Theorem 2.4. Γ(R/I0) is isomorphic to ΓI0(R)[A].

Proof. Set A := {I | I0 ⊂ I}. Then the mapping I/I0 7−→ I provides a one
to one correspondence between vertex-set of Γ(R/I0) and A. Furthermore, by
Lemma 2.2, I/I0 −→ J/I0 is an arc in Γ(R/I0) if and only if I −→I0 J . Thus,
the mapping gives an isomorphism between Γ(R/I0) and ΓI0(R)[A].

Corollary 2.5. ΓI0(R) is a complete graph if and only if I0 is a prime ideal of R.

Proof. Suppose that I0 is a prime ideal. Since R/I0 is integral domain, we have
ZR/I0(R/I0) = {I0}. This, together with Lemma 2.2, implies that all vertices of
ΓI0(R) (if any) are adjacent to each other. Thus, ΓI0(R) is complete graph.

To the converse, suppose that ΓI0(R) is complete. Then in view of Theo-
rem 2.4, Γ(R/I0) is also complete. Now [9, Theorem 3.1] implies that R/I0 is
an integral domain, and so I0 is prime ideal.
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Theorem 2.6. Let R be a Noetherian ring. The graph Γ(R) is connected if and

only if one of the following statements holds:

(i) depth(R) 6= 0.

(ii) depth(R) = 0 and R = F×R′, where F is a field and R′ is not an Artinian

local ring.

Corollary 2.7. [3, Corollary 3.2] If R is a non-reduced ring such that Γ(R)
contains an isolated vertex, then Nil(R) is an isolated vertex in Γ(R).

3. Connectedness

We are interested to finding conditions under which ΓI0(R) to be connected.
First we need to discover isolated vertices. It is worth to recall from [3] that for
a given ring R we say depth(R) 6= 0 when there exists regular element.

Remark 3.1. Suppose that depth(R/I0) 6= 0. Let x + I0 ∈ R/I0 be a regular
element. Because (Rx + I0)/I0 * ZR/I0(R/I0), by Lemma 2.2, Rx is adjacent
to all other vertices of ΓI0(R) and so ΓI0(R) is connected. Moreover, in view
of Lemma 2.3 (i), by condition I0 * J(R) we are guaranteed that ΓI0(R) is
connected.

Next lemma is a routine statement in introductory ring-theory, and we will
apply it frequently.

Lemma 3.2. Suppose that R is a ring and I and J are distinct ideals. Then the

mapping

φ :
R

ker(φ)
−→ R

I
× R

J

by φ(x) = (x + I, x + J), is a ring isomorphism if and only if I + J = R and

ker(φ) = I ∩ J .

Theorem 3.3. Let depth(R/I0) = 0 and I0 ⊆ J(R). Then ΓI0(R) is empty if and

only if one of the following statements holds:

(i) R ∼= F1 × F2, where F1 and F2 are fields.

(ii) R/I0 is an Artinian local ring.

Proof. Suppose that (i) holds. Then R has only two distinct non-trivial ideals,
and so easily ΓI0(R) is empty.

Now suppose that (ii) holds. In view of [3, Theorem 2.5], Γ(R/I0) is empty,
so Lemma 2.2 shows that ΓI0(R) is empty.

Conversely, suppose that ΓI0(R) is empty. Then, Theorem 2.4 together with
[3, Theorem 2.5] show that either R/I0 is an Artinian local ring, which implies
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(ii), or R/I0 ∼= F1 × F2 where F1 and F2 are fields. In the preceding case, there
exist maximal ideals m and n of R in such a way that I0 = m ∩ n, hence by
Lemma 3.2 we can assume F1 = R/m and F2 = R/n.

We deduce from the assumption and Lemma 2.3(i) that I0 = J(R). To the
rest of proof, we claim that m

2 = m and n
2 = n. To do this, assume, without

loss of generality and contrary to the claim, that m2 6= m. Because

m
2 + I0
I0

∼= m
2 +m

m

× m
2 + n

n

= 0× F2,

and ZF1×F2
(0 × F2) = F1 × 0, thus

ZR/I0(
m

2 + I0
I0

) =
n

I0
.

On the other hand, it is clear that m/I0 * n/I0. This means that in contrast to
the assumption we obtain m −→I0 m

2. So we must have m
2 = m and similarly

n
2 = n. Accordingly, I20 = I0 and Nakayama’s Lemma imply that I0 = 0. So we

get (i).

Theorem 3.4. Let depth(R/I0) = 0 and I0 ⊆ J(R). Then ΓI0(R) has an isolated

vertex if and only if one of the following statements holds:

(i) R ∼= F1 × F2 where F1 and F2 are fields.

(ii) Γ(R/I0) has an isolated vertex and R/I0 is not reduced.

Proof. First suppose that (i) holds. Since J(R) = 0 and I0 ⊆ J(R), thus I0 = 0.
This means ΓI0(R) = Γ(R), which comprises two isolated vertices.

Now suppose that (ii) holds. We have the following facts concerning
√
I0.

(1) In view of [3, Corollary 3.2],
√
I0/I0 = Nil(R/I0) is an isolated vertex of

Γ(R/I0).

(2) By [3, Lemma 2.6], it follows from Lemma 2.2 that
√
I0 is not the initial

of any arc in ΓI0(R)

(3) By using [3, Proposition 3.1], ZR/I0(R/I0) = ZR/I0(
√
I0/I0).

(4) Since depth(R/I0) = 0, for given ideal I of R we have

I + I0
I0

⊆ ZR/I0

(

R

I0

)

= ZR/I0

(√
I0
I0

)

(5) Since I0 ⊆ J(R), we have I + I0 6= R.

In view of Lemma 2.2 and (4), there is not any arc to
√
I0, that is,

√
I0 is

not the terminal point of an arc; so (3) implies that
√
I0 is an isolated vertex of

ΓI0(R).

Conversely, suppose that ΓI0(R) meets an isolated vertex, say I. Then, in
view of Lemma 2.3, it is easy to see that (I + I0)/I0 is an isolated vertex of
Γ(R/I0). In the case that R/I0 is not reduced, we have (ii). So assume that R/I0
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is reduced. Since depth(R/I0) = 0, by [3, Lemma 3.4(ii)], R/I0 is a finite direct
product of fields. If there appears more than two fields, then by Theorem 2.6(ii),
Γ(R/I0) is connected, which is not possible. Thus R/I0 ∼= F1 × F2. By using
Lemma 3.2, F1 = R/m and F2 = R/n where m and n are maximal ideals of R
with I0 = m ∩ n.

Since I assumed to be a vertex, I * I0 = m ∩ n. From this, without loss of
generality, let I ⊆ m and I * n. Then we have

ZR/I0

(

I + I0
I0

)

=
n

I0
.

If I 6= m, then Lemma 2.2 implies m −→I0 I which is impossible. Hence we
must have I = m. By a similar argument one can conclude that m and n are
the only possible isolated vertices of ΓI0(R). Therefore, ΓI0(R) is empty, and
Theorem 3.3(i) gives that I0 = 0 as desired.

Corollary 3.5. Under the assumptions of Theorem 3.4, if moreover, I0 6=
√
I0,

then the ideal I is an isolated vertex if and only if I ⊆ √I0 and ZR/I0((I +
I0)/I0) = ZR/I0(R/I0).

Remark 3.6. Let R be a non-reduced ring with depth(R) = 0. Then Γ(R) has
no isolated vertex if and only if R ∼= F ×R′, where F is a field and R′ is not a
field.

Proof. Suppose that Γ(R) has no isolated vertex. Because Nil(R) is not an
isolated vertex of Γ(R), so by using [3, Lemma 2.4(i)] and [3, Lemma 2.6(ii)]
there exists a maximal idealm such that Ann(m) * m. Hence, Lemma 3.2 implies
that R ∼= R/Ann(m0)× R/m0. Since R is a non-reduced ring, R/Ann(m0) may
not be a field. This shows that R ∼= F × R′, where F is a field and R′ is not a
field.

Conversely, let R ∼= F ×R′, where F is a field. Then it is easy to verify that
vertices of Γ(R) are adjacent to F × 0 or 0 × R′. In other words, Γ(R) has no
isolated vertices.

Lemma 3.7. Let depth(R/I0) = 0 and I0 ⊆ J(R). If ΓI0(R) has no isolated

vertex, then I0 = m ∩ J0 at which m is a maximal ideal of R, and m + J0 = R
for some ideal J0 of R.

Proof. The proof falls into two cases.

Case 1. R/I0 is reduced. Since R/I0 is a finite direct product of fields, we
have I0 = m1 ∩ · · · ∩ mn, where mi are maximal ideals of R for i = 1, . . . , n.
Letting m = m1 and J0 = m2 ∩ · · · ∩mn gives the result.

Case 2. R/I0 is not reduced. Since ΓI0(R) does not meet any isolated
vertices, so Theorem 3.4 and Remark 3.6 imply that R/I0 ∼= F ×R′, where F is
a field and R′ is a non-reduced ring. Consequently, I0 = m ∩ J0 at which m is a
maximal ideal of R with m+ J0 = R for some ideal J0 of R.
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Remark 3.8. Suppose that depth(R/I0) = 0 and I0 ⊆ J(R). Furthermore,
assume that ΓI0(R) has no isolated vertices. In view of Lemma 3.7, R/I0 ∼=
F × R′, where m is a maximal ideal of R with m + J0 = R for some ideal J0 of
R, F = R/m, R′ = R/J0 also we have I0 = m ∩ J0.

Put
Θ := {I ∈ V(ΓI0(R)) | I ⊆ m, I * J0},
Σ := {I ∈ V(ΓI0 (R)) | I * m, I ⊆ J0},
Ω := {I ∈ V(ΓI0 (R)) | I * m, I * J0}.

Clearly V(ΓI0 (R)) = Θ ∪ Σ ∪ Ω. Since m ∈ Θ and J0 ∈ Σ, thus Θ and Σ are
non-empty sets. Moreover, if Ω = ∅, then J0 and m are the only maximal ideals
of R.

Lemma 3.9. Under notations and assumptions of Remark 3.8, for given ideals I
and J of R the following statements hold:

(i) If J ∈ Θ and J 6= m, then m −→I0 J .

(ii) I −→I0 m if and only if I + J0 = R, I 6= J0 and I 6= m.

(iii) If J ∈ Σ and J 6= J0, then J0 −→I0 J .

(iv) I −→I0 J0 if and only if I * m and I 6= J0.

(v) Let J ∈ Θ and I ∈ Ω. Then I −→I0 J if and only if I −→J0
J . Further-

more, there is no arc from J to I in ΓI0(R).

(vi) Vertices in Θ are not adjacent to vertices in Σ.

Proof. First note that because

ZR1×R2
(I × 0) = ZR1

(I)×R2

and
ZR1×R2

(0 × J) = R1 × ZR2
(J),

and that (I × 0) ∩ (0 × J) = 0, we can verify that

ZR1×R2
(I × J) = ZR1×R2

((I × 0) + (0× J)) = (ZR1
(I)×R2) ∪ (R1 × ZR2

(J)).

Moreover, to simplicity of notation, we let “ = ” stand for “ ∼= ” in Lemma 3.2
which we frequently use it.

(i) Suppose that J ∈ Θ and J 6= m. Since

ZR/I0

(

J

I0

)

= ZF×R′

(

0× J + J0
J0

)

= F × ZR/J0

(

J + J0
J0

)

and
m

I0
= 0×R′ * F × ZR/J0

(

J + J0
J0

)

thus, by Lemma 2.2, m −→I0 J .
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(ii) Suppose that I −→I0 m. Then
I + I0
I0

* ZR/I0(
m

I0
). In other words

I +m

m

× I + J0
J0

* ZF×R′(0 ×R′) = F × ZR′(R′).

This implies that (I + J0)/J0 * ZR′(R′). On the other hand, depth(R/I0) = 0
gives depth(R′) = 0. Thus, we must have (I + J0)/J0 = R′, and so I + J0 = R.

The converse implication is clear.

(iii) Suppose that J ∈ Σ and I 6= J0. Since

J0
I0

= F × 0 * 0×R′,

and

ZR/I0(
J

I0
) = ZF×R′(F × 0) = 0×R′

thus, J0 −→I0 J .

(iv) Suppose that I * J0. Then, (I + I0)/I0 * ZR/I0(J0/I0) if and only if

I +m

m

× I + J0
J0

* ZF×R′(F × 0) = 0×R′.

This is equivalent to say that I * m. So we obtain (iv).

(v) Suppose that I ∈ Ω and J ∈ Θ. Then, I −→I0 J if and only if

I +m

m

× I + J0
J0

* ZF×R′(
J +m

m

× J + J0
J0

).

Equivalently,

F × I + J0
J0

* ZF×R′(0× J + J0
J0

).

Since

ZF×R′(0 × J + J0
J0

) = F × ZR/J0
(
J + J0
J0

),

we have
I + J0
J0

* ZR/J0
(
J + J0
J0

).

Therefore, I −→J0
J if and only if I −→I0 J .

To the furthermore, note that by

ZF×R′(
I +m

m

× I + J0
J0

) = ZF×R′(F × I + J0
J0

) = (F ×ZR/J0
(
I + J0
J0

))∪(0×R′),

we obtain

J +m

m

× J + J0
J0

= 0× J + J0
J0

⊆ 0×R′ ⊆ ZF×R′(F × I + J0
J0

)
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which shows that there is no arc from J to I in ΓI0(R).

(vi) Suppose that I ∈ Σ and J ∈ Θ. Since IJ ⊆ I0, by Lemma 2.3 (ii), they
are not adjacent.

Now we are ready to prove the main result of this section.

Theorem 3.10. ΓI0(R) is connected if and only if one of the following statements

holds:

(i) I0 * J(R).

(ii) Γ(R/I0) is connected.

Proof. Suppose that ΓI0(R) is connected. In the case that depth(R/I0) 6= 0,
clearly Γ(R/I0) is connected, so (ii) holds. Assume that depth(R/I0) = 0.

If (i) holds, we have nothings to prove. So suppose that I0 ⊆ J(R). In view
of Lemma 3.7, R/I0 ∼= F × R′, where F = R/m and R′ = R/J0. In view of
Theorem 2.6, we need only to show that R/J0 is not Artinian local ring.

The subgraph of ΓI0(R) induced by Σ ∪ Θ is disconnected (see Lemma 3.9
(vi)), however, the subgraph of ΓI0(R) induced by Ω ∪ Σ is connected (see
Lemma 3.9 (v)). Consequently, there must exist an arc I −→I0 J where I ∈ Ω
and J ∈ Θ because ΓI0(R) is connected. So, as a result of Lemma 3.9 (v),
I −→J0

J . This, indeed, shows that ΓJ0
(R) is not empty, hence by Theo-

rem 3.3, R/J0 is not Artinian local ring. This is enough to deduce that Γ(R/I0)
is connected.

Conversely, if (i) holds, then by applying Lemma 2.3(i), ΓI0(R) is connected.
So, suppose that I0 ⊆ J(R) and Γ(R/I0) is connected. Then by Theorem 3.4
ΓI0(R) has no isolated vertices. In view of Lemma 3.9 all vertices of ΓI0(R) are
adjacent to m or J0, so we show that m and J0 can be connected via a path.

Since Γ(R/I0) is connected, there is a path in Γ(R/I0) (in fact in Γ(F ×R′))
as below.

F × 0←− F × I −→ 0× J ←− 0×R′.

This is a path in ΓI0(R), such that connects m and J0 because by Theorem 2.4,
Γ(R/I0) is a subgraph of ΓI0(R).

4. Diameter and Connected Components

This section is devoted to computing two numerical invariants, the diameter
and the number of connected components. Suppose that I0 * J(R). Then, in
view of Lemma 2.3 (i), diam(ΓI0(R)) ≤ 2. By Corollary 2.5, diam(ΓI0(R)) = 1
if and only if diam(Γ(R/I0) = 1. Therefore diam(ΓI0(R)) = 2 if and only if
diam(Γ(R/I0) = 2.

Hence by the above discussion, in the reminder of this section we assume
that I0 ⊆ J(R) and R is.
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Lemma 4.1. Let R be a ring. Then diam(Γ(R/I0)) ≤ diam(ΓI0(R))

Proof. Let us A be the set that we used in the proof of Theorem 2.4. First we
show that for any two vertices I and J in A

dΓI0
(R)[A](I, J) = dΓI0

(R)(I, J). (1)

From the fact ΓI0(R)[A] is a subgraph of ΓI0(R) it is clear that

dΓI0
(R)[A](I, J) ≥ dΓI0

(R)(I, J).

Now suppose that
I = I1 − I2 − · · · − In−1 − In = J

is a path in ΓI0(R) connecting I and J . In view of Lemma 2.3, if Ii + I0 6=
Ii+1 + I0, then they are adjacent for i = 1, . . . , n. Hence

dΓI0
(R)[A](I, J) ≤ dΓI0

(R)(I, J).

because Ii + I0 ∈ A. So we have the identity (1).

Finally, the fact that dΓI0
(R)(I, J) ≤ diam(ΓI0(R)) gives us diam(Γ(R/I0)) ≤

diam(ΓI0(R)).

Theorem 4.2. Let R be a ring. Then diam(Γ(R/I0)) = diam(ΓI0(R)). In par-

ticular diam(ΓI0(R)) ∈ {1, 2, 3, 4, 5}.

Proof. We have three cases:

Case 1. If diam(ΓI0(R)) ≤ 2, then by Corollary 2.5 I0 is not a prime
ideal, and so 2 ≤ diam(Γ(R/I0)). Now, by Lemma 4.1 we deduce that
diam(Γ(R/I0)) = 2. A similar discussion implies that if diam(ΓI0(R)) = 1,
then diam(Γ(R/I0)) = 1. Therefore, in the case that the diameter is at most
two, we have the identity diam(Γ(R/I0)) = diam(ΓI0(R)).

Case 2. diam(ΓI0(R)) ≥ 3. We claim that there are ideals I and J such that
I + I0 6= J + I0. To see this, we note that if I + I0 = J + I0, then I and J
belong to same sets Θ, Σ or Ω were introduced in Remark 3.8. Thus, in view of
Lemma 3.9, dΓI0

(R)(I, J) ≤ 2. Therefore, diam(ΓI0(R)) ≥ 3 implies that there
exist ideals I and J such that I + I0 6= J + I0. Let

I + I0 − I1 − · · · − In − J + I0

be a path in ΓI0(R) connecting I+I0 and J+I0. Then, by using Lemma 2.3(iii),
(iv), we can see that

dΓI0
(R)(I, J) ≤ dΓI0

(R)(I + I0, J + I0). (2)

Since I + I0, J + I0 ∈ A, by (1), (2) and Theorem 2.4, we have

dΓI0
(R)(I, J) ≤ dΓI0

(R)[A](I + I0, J + I0) ≤diam(ΓI0(R))[A]

=diam(Γ(R/I0)).
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Hence diam(ΓI0(R)) ≤ diam(Γ(R/I0)). Now the result follows from Lemma 4.1.
To see the “In particular” statement, we note that [3, Theorem 2.10] asserts
diam(Γ(R/I0)) ∈ {1, 2, 3, 4, 5}, so proof is complete.

For given ring R, let us πI0(R) and π(R) denote the number of non-singular
connected components of Γ(R) and ΓI0(R), respectively. In the light of [3,
Theorem 2.9] we will show that πI0(R) = π(R/I0). Before proceeding further,
we need to define our notations and some relevant properties.

Remark 4.3. For a vertex I of ΓI0(R) put T (I) := {J | I + I0 = J + I0} and
for a set of vertices C of ΓI0(R) put T (C) :=

⋃

I∈C T (I). Then it can easily be
seen that we have the following facts:

(i) T (I) ∩ T (I ′) 6= ∅ if and only if T (I) = T (I ′).

(ii) T (I) = T (I + I0).

(iii) Every in T (I) is adjacent to every vertex in T (J), or no edge within T (I)
and T (J).

(iv) The subgraph of ΓI0(R) induced by T (I) is either empty or complete.

(v) T (C ∪ C′) = T (C) ∪ T (C′).

(vi) C induces a connected subgraph if and only if T (C) induces a connected
subgraph.

Theorem 4.4. Suppose that ΓI0(R) is disconnected with I0 6= 0. If R/I0 is a

direct product of two fields, then πI0(R) ∈ {1, 2}, otherwise πI0(R) = π(R/I0).

Proof. Let R/I0 ∼= F1 × F2, where F1 and F2 are fields. Then, there exist
maximal ideals m and n of R (in fact the only maximal ideals) such that I0 =
m∩n. Clearly, every connected component meets a maximal ideal and, moreover,
in view of Theorem 3.3, ΓI0(R) is not empty, so 1 ≤ πI0 (R) ≤ 2.

As for the “otherwise” statement, due to ΓI0(R)[A] ∼= Γ(R/I0) where A =
{J |I0 ⊂ J}, we prefer to handle with ΓI0(R)[A].

Here, we are going to stablish a one to one correspondence between connected
components of ΓI0(R)[A] and those of ΓI0(R). To attain this, let C be a non-
singular connected component of ΓI0(R)[A]. Then the correspondence will be
derived from the following three steps:

Step 1. We claim that T (C) is a connected component of ΓI0(R). That T (C)
induces a connected subgraph of ΓI0(R) is easily obtained from Remark 4.3(vi).
But as to the maximality of T (C), assume that for given vertex J , {J} ∪ T (C)
induces a connected subgraph of ΓI0(R); hence by Remark 4.3(iv),(v),(vi),
T (J) ∪ T (C) = T ({J} ∪ C) and then {J} ∪ T (C) induce connected subgraphs
of ΓI0(R) and then ΓI0(R)[A], respectively. This implies that J + I0 ∈ C and
consequently T (J + I0) = T (J) ⊆ T (C), so we have J ∈ T (C).

Step 2. We claim that any connected component of ΓI0(R) is in the form of
T (C) at which C is a connected component of ΓI0(R)[A]. To get this, assume
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that H is a connected component of ΓI0(R). Easily we can see that

T (H) =
⋃

I∈H

T (I) =
⋃

I∈H

T (I + I0) ⊆ T (H ∩A). (3)

Because T (H ∩A) ⊆ T (H), (3) give us H = T (H ∩A) at which by Remark 4.3,
H ∩ A induces a connected subgraph of ΓI0(R)[A].

Now, assume that C1 is connected components of ΓI0(R)[A] such thatH∩A ⊆
C1. Then we can see that H = T (H) = T (H ∩ A) ⊆ T (C1). By Step 1, T (C1)
is a connected component of ΓI0(R), so H = T (C1), as desired.

Step 3. Let C and C′ be connected components of ΓI0(R)[A] in such a
way that T (C) = T (C′). Then, T (C ∪ C′) = T (C) = T (C′) is a connected
component, and so C ∪ C′ is a connected component of ΓI0(R)[A]. This shows
that C = C′.
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