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Abstract. Using the concept of weakly compatible mappings between set-valued map-

pings and single valued mappings due to Ćirić and Ume [5], we prove some results

on common fixed points for hybrid pairs of family of mappings satisfying a general-

ized contraction type condition on a complete metrically convex metric spaces which

generalize relevant results in [2, 6, 5, 23, 17]. As an application of our main result,

we also prove a common fixed point theorem in Banach spaces besides furnishing an

illustrative example.
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1. Introduction

In 1972, Assad and Kirk [2] initiated the study of nonself multi-valued mappings
and also proved fixed point theorems for such mappings. After this result, sev-
eral fixed point theorems for such mappings were proved which include relevant
results in [1, 6, 5, 14, 19].

On the other hand there exists fixed point theorems for hybrid pairs of self
mappings which are presented in [9, 16]. Combining these two ideas, Ahmad and
Imdad [4, 3], Imdad and Khan [13, 12, 11, 10], Khan and Imdad [18] and Khan
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[17] have recently proved results on fixed and coincidence points of generalized
hybrid contractions for compatible mappings, pointwise R-weakly commuting
mappings as well as weakly compatible mappings.

The purpose of this paper is to extend and generalize the fixed point the-
orem due to Ćirić and Ume [5] proved for nonself multi-valued mappings to
family of hybrid pairs of weakly compatible mappings which is either partially
or completely generalizes the results in [2, 6, 5, 23, 17]. Here for the sake of
completeness, we state the main theorem of Ćirić and Ume [5] which runs as
follows:

Theorem 1.1. Let (X, d) be a complete metrically convex metric space and K
be a nonempty closed subset of X. Let S, T be mappings of K into CB(X) such
that

H(Sx, T y) ≤α d(x, y) + βmax {D(x, Sx), D(y, T y)}

+ γmax {D(x, Sx) +D(y, T y), D(x, T y) +D(y, Sx)}
(1)

for all x, y ∈ X where α, β, γ ≥ 0 are such that α+ 2β + 3γ + αγ < 1.

If Sx ⊆ K and Tx ⊆ K for each x ∈ δK(The boundary of K), then there
exists a point u ∈ K such that u ∈ Su, u ∈ Tu and Su = Tu.

Notice that D(x, Sx) = inf{ d(x, y) : y ∈ Sx}.

2. Preliminaries

Let (X, d) be a metric space. We denote

(i) CB(X) = {A : A is nonempty closed and bounded subset of X},

(ii) for nonempty subsets A,B of X, x ∈ X, d(x,A) = inf{d(x, a) : a ∈ A}
and H(A,B) = max[{sup d(a,B) : a ∈ A}, {sup d(A, b) : b ∈ B}].

It is well known (cf. Kuratowski [20]) that CB(X) is a metric space with the
distance function H which is known as Hausdorff-Pompeiu metric on X.

Definition 2.1. [22, Definition] Two self mappings F and T of a metric space
(X, d) are T -weak compatible iff the following limits exist and satisfy:

(i) limn→∞ d(TFxn, FTxn) ≤ limn→∞ d(FTxn, Fxn), and

(ii) limn→∞ d(TFxn, T xn) ≤ limn→∞ d(FTxn, Fxn).

whenever {xn} is a sequence in X such that Txn → t, Fxn → t for some
t ∈ X.

Definition 2.2. [22, Definition] Mappings F : X → CB(X) and T : X → X are
T -weak compatible if TFx ∈ CB(X) for all x ∈ X and the following limits exist
and satisfy:
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(i) limn→∞ H(TFxn, FTxn) ≤ limn→∞ H(FTxn, Fxn), and

(ii) limn→∞ H(TFxn, T xn) ≤ limn→∞ H(FTxn, Fxn),

whenever {xn} is a sequence in X such that Txn → t ∈ A and Fxn → A ∈
CB(X).

Motivated by the definition of weak compatability in [22, 7] adopted the same
to nonself setting.

Definition 2.3. [7, Definition] Let K be a nonempty subset of a metric space
(X, d). Mappings F : K → CB(X) and T : K → X are said to be weakly
compatible on K if for any sequences {xn} and {yn} in K such that Txn ∈
K,F (xn) ∩K 6= φ, the following limits exist and satisfy:

(i) lim supn→∞ d(Tyn, FTxn) ≤ lim supn→∞ H(FTxn, Fxn), and

(ii) lim supn→∞ d(Tyn, T xn) ≤ lim supn→∞ H(FTxn, Fxn),

whenever yn ∈ F (xn) ∩K and limn→∞ d(yn, T xn) = 0.

Notice that if F : X → X and T : X → X are self mappings of X and lim
sup is replaced by lim, then this definition reduces to [22, Definition 2.2].

Definition 2.4. [13, Definition] Let K be a nonempty subset of a metric space
(X, d), T : K → X and F : K → CB(X). The pair (F, T ) is said to be quasi-
coincidentally commuting if for all coincidence points ‘x′ of (F, T ), TFx ⊂ FTx
whenever Fx ⊂ K and Tx ∈ K for all x ∈ K.

Definition 2.5. [13, Definition] A mapping T : K → X is said to be coincidentally
idempotent w.r.t mapping F : K → CB(X), if T is idempotent at the coincidence
points of the pair (F, T ).

Definition 2.6. [18, Definition] A mapping T : K → X is said to be occasionally
coincidentally idempotent w.r.t mapping F : K → CB(X), if there exists a point
z ∈ K such that T is idempotent at the coincidence points of the pair (F, T ).

Definition 2.7. [2, Definition] A metric space (X, d) is said to be metrically
convex if for any x, y ∈ X with x 6= y there exists a point z ∈ X, x 6= z 6= y such
that

d(x, z) + d(z, y) = d(x, y).

Lemma 2.8. [2, Lemma 2.8] Let K be a nonempty closed subset of a metrically
convex metric space (X, d). If x ∈ K and y /∈ K then there exists a point z ∈ δK
(the boundary of K) such that

d(x, z) + d(z, y) = d(x, y).
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Lemma 2.9. [6, Lemma 2.9] Let A,B ∈ CB(X) and a ∈ A. Then for any positive
number q < 1 there exists b = b(a) in B such that q d(a, b) ≤ H(A,B).

3. Main Results

Theorem 3.1. Let (X, d) be a complete metrically convex metric space and K be
a nonempty closed subset of X. Let {Fn}

∞
n=1 : K → CB(X) and S, T : K → X

satisfying the conditions:

(i) δK ⊆ SK ∩ TK,Fi(K) ∩K ⊆ SK,Fj(K) ∩K ⊆ TK,

(ii) Tx ∈ δK ⇒ Fi(x) ⊆ K,Sx ∈ δK ⇒ Fj(x) ⊆ K, and

H(Fi(x), Fj(y))

≤α d(Tx, Sy) + βmax{d(Tx, Fi(x)), d(Sy, Fj(y))}

+ γmax{d(Tx, Fi(x)) + d(Sy, Fj(y)), d(Tx, Fj(y))

+ d(Sy, Fi(x))}

(2)

where i = 2n−1, j = 2n, (n ∈ N), i 6= j for all x, y ∈ X with x 6= y, where
α, β, γ ≥ 0, q < 1 such that α+ 2β + 3γ + αγ < q < 1,

(iii) (Fi(x), T ) and (Fj(y), S) are weakly compatible pairs,

(iv) T and S are continuous on K.

Then there exists a point z ∈ K such that z = Tz = Sz ∈ Fi(z) ∩ Fj(z).

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the
following way. Let x ∈ δK. Then due to δK ⊆ TK there exists a point
x0 ∈ K such that x = Tx0. From Tx ∈ δK ⇒ Fi(x) ⊆ K, one concludes that
F1(x0) ⊆ F1(K) ∩K ⊆ SK. Let x1 ∈ K be such that y1 = Sx1 ∈ F1(x0) ⊆ K.
Since y1 ∈ F1(x0), there exists a point y2 ∈ F2(x1) such that

q d(y1, y2) ≤ H(F1(x0), F2(x1)).

Suppose y2 ∈ K. Then y2 ∈ F2(K)∩K ⊆ TK, which implies that there exists
a point x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K, then there exists a
point p ∈ δK such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ δK ⊆ TK, there exists a point x2 ∈ K such that p = Tx2 and so

d(Sx1, T x2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 ∈ F3(x2) be such that q d(y2, y3) ≤ H(F2(x1), F3(x2)).

Thus, repeating the foregoing arguments, one obtains two sequences {xn}
and {yn} such that

(a) y2n ∈ F2n(x2n−1), for all n ∈ N, y2n+1 ∈ F2n+1(x2n) for all n ∈ N0 =
N ∪ {0},
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(b) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ δK, and

d(Sx2n−1, T x2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n)

(c) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ δK, and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

(d) q d(y2n−1, y2n) ≤ H(F2n−1(x2n−2), F2n(x2n−1)) and q d(y2n, y2n+1) ≤
H(F2n(x2n−1), F2n+1(x2n)).

We denote

P◦ = {Tx2i ∈ {Tx2n} : Tx2i = y2i},

P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},

Q◦ = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},

Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

One can note that (Tx2n, Sx2n+1) 6∈ P1 ×Q1 and (Sx2n−1, T x2n) 6∈ Q1×P1.

Now we distinguish the following three cases:

Case 1. If (Tx2n, Sx2n+1) ∈ P◦ ×Q◦, then

q d(Tx2n, Sx2n+1)

= q d(y2n, y2n+1) ≤ H(F2n+1(x2n), F2n(x2n−1))

≤ αd(Tx2n, Sx2n−1) + βmax{d(Tx2n, F2n+1(x2n)), d(Sx2n−1, F2n(x2n−1))}

+ γ max{d(Tx2n, F2n+1(x2n)) + d(Sx2n−1, F2n(x2n−1)),

d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))}

≤ α d(y2n−1, y2n) + β max{d(y2n, y2n+1), d(y2n−1, y2n)}

+γ max{d(y2n, y2n+1) + d(y2n−1, y2n), d(y2n−1, y2n+1)}

≤ α d(y2n−1, y2n) + β max{d(y2n−1, y2n), d(y2n, y2n+1)}

+γ {d(y2n−1, y2n) + d(y2n, y2n+1)},

q d(Tx2n, Sx2n+1)

≤ (α+ γ) d(y2n−1, y2n) + β max{d(y2n−1, y2n), d(y2n, y2n+1)} (3)

+γ d(y2n, y2n+1).

If we suppose that d(y2n−1, y2n) ≤ d(y2n, y2n+1) then we obtain

q d(Tx2n, Sx2n+1) ≤ (α + β + 2γ) d(y2n, y2n+1)

which is a contradiction. Therefore from (3) we obtain

q d(Tx2n, Sx2n+1) ≤ (α+ β + γ) d(y2n, y2n−1) + γ d(y2n, y2n+1)
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which in turn yields

d(Tx2n, Sx2n+1) ≤

(

α+ β + γ

q − γ

)

d(Sx2n−1, T x2n). (4)

Similarly if (Sx2n−1, T x2n) ∈ Q◦ × P◦, then

d(Sx2n−1, T x2n) ≤

(

α+ β + γ

q − γ

)

d(Sx2n−1, T x2n−2). (5)

Case 2. If (Tx2n, Sx2n+1) ∈ P◦ ×Q1 then

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1),

which in turn yields d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1), and
hence

q d(Tx2n, Sx2n+1) ≤ q d(y2n, y2n+1) ≤ H(F2n+1(x2n), F2n(x2n−1)).

Now, proceeding as in Case 1, we have

d(Tx2n, Sx2n+1) ≤

(

α+ β + γ

q − γ

)

d(Sx2n−1, T x2n).

If (Sx2n−1, T x2n) ∈ Q1 × P◦ then as earlier, we also obtain

d(Sx2n−1, T x2n) ≤

(

α+ β + γ

q − γ

)

d(Sx2n−1, T x2n−2).

Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q◦ then Sx2n−1 = y2n−1. As in Case 1, we
get

q d(Tx2n, Sx2n+1)

= q d(Tx2n, y2n+1) ≤ q {d(Tx2n, y2n) + d(y2n, y2n+1)}

≤ q d(Tx2n, y2n) + q d(y2n, y2n+1)

≤ q d(Tx2n, y2n) +H(F2n+1(x2n), F2n(x2n−1))

≤ qd(Tx2n, y2n) + αd(Tx2n, Sx2n−1) + βmax{d(Tx2n, y2n+1), d(y2n−1, y2n)}

+γmax{d(Tx2n, y2n+1)+d(y2n−1, y2n), d(Tx2n, y2n) + d(Sx2n−1, Sx2n+1)}.

Since α < q and d(Tx2n, y2n) + d(Tx2n, Sx2n−1) = d(Sx2n−1, y2n) we obtain

q d(Tx2n, y2n) + α d(Tx2n, Sx2n−1) ≤ q d(Sx2n−1, y2n).

Also, by the triangle inequality, we obtain

d(Tx2n, y2n) + d(Sx2n−1, Sx2n+1)

≤ d(Tx2n, y2n) + d(Sx2n−1, T x2n) + d(Tx2n, Sx2n+1)

≤ d(Sx2n−1, y2n) + d(Tx2n, Sx2n+1).
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Therefore

q d(Tx2n, Sx2n+1)

≤ q d(Sx2n−1, y2n) + β max{d(Tx2n, y2n+1), d(y2n−1, y2n)}

+γ {d(Sx2n−1, y2n) + d(Tx2n, y2n+1)}

If d(Tx2n, y2n+1) ≥ d(y2n−1, y2n) then we obtain

d(Tx2n, Sx2n+1) ≤

(

q + γ

q − β − γ

)

d(Sx2n−1, y2n).

Otherwise, if d(Tx2n, y2n+1) ≤ d(y2n−1, y2n) then

d(Tx2n, Sx2n+1) ≤

(

q + β + γ

q − γ

)

d(Sx2n−1, y2n)

≤

(

q + γ

q − β − γ

)

d(Sx2n−1, y2n).

Now, proceeding as earlier, we also obtain

d(Sx2n−1, y2n) ≤

(

α+ β + γ

q − γ

)

d(Sx2n−1, T x2n−2).

Therefore combining above inequalities, we have

d(Tx2n, Sx2n+1) ≤ kd(Sx2n−1, T x2n−2),

where k =
(

q+γ
q−β−γ

)(

α+β+γ
q−γ

)

.

Thus in all the cases, we have

d(Tx2n, Sx2n+1) ≤ kmax {d(Sx2n−1, T x2n), d(Tx2n−2, Sx2n−1)}, (6)

whereas

d(Sx2n+1, T x2n+2) ≤ kmax {d(Sx2n−1, T x2n), d(Tx2n, Sx2n+1)}. (7)

Now on the lines of Assad and Kirk [3], it can be shown by induction that
for n ≥ 1, we have

d(Tx2n, Sx2n+1) ≤ knδ and d(Sx2n+1, T x2n+2) ≤ kn+
1

2 δ,

whereas
δ = k

−1

2 max {d(Tx0, Sx1), d(Sx1, T x2)}.

Thus the sequence {Tx0, Sx1, T x2, Sx3, . . . , Sx2n−1, T x2n, Sx2n+1, . . .} is
Cauchy and converges to some point z. It follows that {Tx2n} → z as n → ∞
that is y2n → z as n → ∞. For each y2n denoted by Y2n one of the sub-
sets {F2n(x2n−1)} which contains y2n and also y2n+1 denoted by Y2n+1 one
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of the subsets {F2n+1(x2n)} which contains y2n+1. Then H(Y2n, Y2n+1) ≤
(α+β+γ

q−γ
)d(Sx2n−1, T x2n) (See (4)), or

H(Y2n+1, Y2n+2) ≤ k max{d(Sx2n−1, T x2n), d(Tx2n, Sx2n+1)} (by (7)) (8)

Since the sequence is Cauchy, it follows that {Yn} is Cauchy in the complete
metric space (CB(X), H). Thus limn→∞ Yn = Y for some Y ∈ CB(X). Now we
have

D(z, Y ) ≤ d(z, yn) +H(Yn, Y ) → 0 as n → ∞

and hence z ∈ Y. By the construction of the sequence there exists at least one
subsequence {Tx2nk

} or {Sx2nk+1} which is contained in P◦ or Q◦ respectively.
Consequently the subsequence {Sx2nk+1} which is contained in Q◦ for each
k ∈ N, converges to z. Since Sx2n+1 = y2n+1, {SSx2nk+1} and {F2n(Sx2nk−1)}
are well defined. Set

Lk = d(Sx2nk+1, F2n(Sx2nk−1)) and Rk = H(F2n(x2nk−1), F2n(Sx2nk−1)).

Therefore

Rk ≤ H(Y2nk
, Y2nk+1) +H(F2n+1(x2nk

), F2n(Sx2nk−1))

≤ H(Y2nk
, Y2nk+1)+αd(Tx2nk

, SSx2nk−1)+βmax{d(Tx2nk
, F2n+1(x2nk

)),

d(SSx2nk−1, F2n(Sx2nk−1))}+ γ max{d(Tx2nk
, F2n+1(x2nk

))

+d(SSx2nk−1, F2n(Sx2nk−1)),

d(Tx2nk
, F2n(Sx2nk−1)) + d(F2n+1(x2nk

), SSx2nk−1)}

≤ H(Y2nk
, Y2nk+1) + α d(y2nk

, SSx2nk−1) + β max{d(y2nk
, y2nk+1),

d(SSx2nk−1, F2n(Sx2nk−1))}+ γ max{d(y2nk
, y2nk+1)

+d(SSx2nk−1, F2n(Sx2nk−1)),

d(y2nk
, F2n(Sx2nk−1)) + d(y2nk+1, SSx2nk−1)}

≤ H(Y2nk
, Y2nk+1) + α [d(F2n(Sx2nk−1), SSx2nk−1) +Rk]

+β [d(SSx2nk−1, F2n(Sx2nk−1)) +Rk]

+γ [d(Sx2nk+1, SSx2nk−1) +Rk].

Hence

Rk ≤H(Y2nk
, Y2nk+1) + (α+ β) [d(SSx2nk−1, F2n(Sx2nk−1)) +Rk]

+ γ [d(Sx2nk+1, SSx2nk−1) +Rk]
(9)

Since Yn → Y, Sx2nk+1 → z and as S is continuous, it follows that the
real sequence {Rk} is bounded. Thus lim supn→∞ Rk exists. Since F2n and S
are weakly compatible and Sx2nk+1 = y2nk+1 ∈ K, y2nk+1 ∈ F2n(K) ∩K and
limn→∞ d(Sx2nk+1, y2nk

) = 0. Using Definition 2.3, one gets

lim sup
n→∞

Lk ≤ lim sup
n→∞

Rk, (10)

lim sup
n→∞

d(SSx2nk+1, Sx2nk−1) ≤ lim sup
n→∞

Rk. (11)
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Denoting lim supn→∞ Rk as R and taking the upper limit in (8), by (9) and
(10), we get R ≤ (α + β + γ)R. Hence R = 0. Then from (11), d(Sz, z) = 0.
Thus Sz = z. Similarly, using the foregoing arguments, we obtain Tz = z. In
order to show that z ∈ F2n(z), consider

q d(y2nk+1, F2n(z))

≤ H(F2n+1(x2nk
), F2n(z))

≤ α d(Tx2nk
, Sz) + β max{d(Tx2nk

, F2n+1(x2nk
)), d(Sz, F2n(z))}

+γ max{d(Tx2nk
, F2n+1(x2nk

)) + d(Sz, F2n(z)), d(Tx2nk
, F2n(z))

+d(Sz, F2n+1(x2nk
))}

≤ β d(z, F2n(z)) + γ d(z, F2n(z)),

implying thereby z ∈ F2n(z).

Next consider

q d(F2n+1(z), z)

≤ H(F2n+1(z), F2n(z))

≤ α d(Tz, Sz) + β max{d(Tz, F2n+1(z)), d(Sz, F2n(z))}

+γmax{d(Tz, F2n+1(z)) + d(Sz, F2n(z)), d(Tz, F2n(z)) + d(Sz, F2n+1(z))}

≤ β d(z, F2n+1(z)) + γ d(z, F2n+1(z)),

implying thereby z ∈ F2n+1(z). Thus we obtained z = Tz = Sz ∈ Fi(z) ∩
Fj(z), which shows that z is a common coincidence point of {Fn}, S and T. This
completes the proof.

Remark 3.2. Setting Fi = Fj = F for all (i and j), S = T = IK and β = 0 = γ
in Theorem 3.1, we deduce a theorem due to Assad and Kirk [3].

Remark 3.3. By setting Fi = F for all i, Fj = G for all j and S = T = IK in

Theorem 3.1, we deduce a theorem due to Ćirić and Ume [7].

Remark 3.4. By setting Fi = F for all i, Fj = G for all j and S = T = IK in

Theorem 3.1, we deduce a partially generalized form of a result due to Ćirić and
Ume [6].

Remark 3.5. By setting Fi = Fj = F for all (i and j) and S = T = IK in
Theorem 3.1, we deduce a theorem due to Rhoades [23].

Theorem 3.6. Let (X, d) be a complete metrically convex metric space and K be
a nonempty closed subset of X. Let F : K → CB(X) satisfying the contraction
condition:

H(Fx, Fy) ≤ α d(x, y) + βmax{d(x, Fx), d(y, Fy)} + γ {d(x, Fy) + d(y, Fx)}
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for all x, y ∈ X where α, β, γ ≥ 0 such that (1+α+γ
1−β−γ

)(α+β+γ
1−γ

) < 1.

If Fx ⊆ K for each x ∈ δK, then there exists z ∈ K such that z ∈ Fz.

Proof. From the condition of Rhoades [23], one can write
(

1 + α+ γ

1− β − γ

)(

α+ β + γ

1− γ

)

=
α+ β + γ + α2 + αβ + αγ + αγ + βγ + γ2

1− γ − β + βγ − γ + γ2

=
α+ 2β + 3γ + αγ + α2 + αβ + αγ + βγ + γ2 − β − 2γ

1 + γ(β + γ)− β − 2γ

=
α+ 2β + 3γ + αγ + α(α + β + γ) + (β + γ)γ − β − 2γ

1 + γ(β + γ)− β − 2γ

Rhoades condition implies that α+2β+3γ+αγ+α(α+β+γ) < 1. Thus, we
can say that Theorem 3.1 is a generalization of the theorem of Rhoades. Notice
that condition (2) for β = 0 and γ = 0 reduces to α < 1.

Remark 3.7. Theorem 3.1 is a generalization and extension of Theorem 2.1 due
to Ćirić and Ume [7] and generalization of theorem due to Assad and Kirk [3],
Assad [4], Khan [21], Itoh [14] and Rhoades [23]. The present technique of proof
gives a simplication of the corresponding proofs given by Ćirić and Ume [7], Itoh
[14], Khan [21] and Rhoades [23].

In the next theorem we utilize the closedness of TK and SK (or Fi(K) and
Fj(K)) to relax the continuity requirements besides minimizing the commuta-
tivity requirements to merely coincidence points.

Theorem 3.8. Let (X, d) be a metrically convex metric space and K be a
nonempty closed subset of X. Let Fn : K → CB(X) and S, T : K → X satisfying
(2) and the conditions (i) and (ii) of the Theorem 3.1. Suppose that TK and
SK (or Fi(K) and Fj(K)) are closed subspaces of X. Then the pair (Fj , S) as
well as (Fi, T ) has a point of coincidence.

Moreover, (Fi, T ) has a common fixed point if T is quasi-coincidentally com-
muting and occasionally coincidentally idempotent w.r.t Fi, whereas (Fj , S) has
a common fixed point provided S is quasi-coincidentally commuting and occa-
sionally coincidentally idempotent w.r.t Fj .

Proof. Proceeding as in Theorem 3.1, we assume that there exists a subsequence
{Tx2nk

} which is contained in P◦ and TK as well as SK are closed subspaces
of X. Since {Tx2nk

} is Cauchy in TK, it converges to a point u ∈ TK. Let
v ∈ T−1u. Then Tv = u. Since {Sx2nk+1} is a subsequence of Cauchy sequence,
{Sx2nk+1} converges to u as well. Using (2) we can write

q d(Fi(v), T x2nk
)

≤ H(Fi(v), Fj(x2nk−1))
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≤ α d(Tv, Sx2nk−1) + β max{d(Sx2nk−1, Fj(x2nk−1)), d(Tv, Fi(v))}

+ γ max{d(Sx2nk−1, Fj(x2nk−1)) + d(Tv, Fi(v)),

d(Tv, Fj(x2nk−1)) + d(Sx2nk−1, Fi(v))},

which on letting k → ∞, reduces to

q d(Fi(v), u) ≤ β max{d(u, Fi(v)), 0} + γ max{d(Fi(v), u), d(Fi(v), u)}

≤ (β + γ) d(u, Fi(v)),

yielding thereby u ∈ Fi(v), which implies that u = Tv ∈ Fi(v) as Fi(v) is closed.

Since Cauchy sequence {Tx2nk
} converges to u ∈ K and u ∈ Fi(v), u ∈

Fi(K)∩K ⊆ SK, there exists w ∈ K such that Sw = u. Again using (2) we get

q d(Sw, Fj(w))

= q d(Tv, Fj(w)) ≤ H(Fi(v), Fj(w))

≤ α d(Tv, Sw) + β max{d(Tv, Fi(v)), d(Sw, Fj(w))}

+ γ max{d(Tv, Fi(v)) + d(Sw, Fj(w)), d(Tv, Fj(w)) + d(Sw, Fi(v))}

≤ (α+ β + γ) d(Sw, Fj(w)),

implying thereby Sw ∈ Fj(w), that is w is a coincidence point of (S, Fj).

In case Fi(K) and Fj(K) are closed subspaces, then u ∈ Fi(K)∩K ⊆ SK or
Fj(K)∩K ⊆ TK. The analogous arguments establish the desired conclusions. If
we assume that there exists a subsequence {Sx2nk+1} contained in Q◦ with TK
as well as SK are closed subspaces of X, then noting that {Sx2nk+1} is Cauchy
in SK, the foregoing arguments establish that Tz ∈ Fi(z) and Sw ∈ Fj(w).

Since v is a coincidence point of (Fi, T ) therefore using quasi-coincidentally
commuting property of (Fi, T ) and occasionally coincidentally idempotent prop-
erty of T w.r.t Fi we have

Tv ∈ Fi(v) and u = Tv ⇒ Tu = TTv = Tv = u.

Therefore u = Tu = TTv ∈ TFi(v) ⊂ Fi(Tv) = Fi(u), which shows that u is
the common fixed point of (Fi, T ). Similarly using the quasi-coincidentally com-
muting property of (Fj , S) and occasionally coincidentally idempotent property
of S w.r.t Fj we can show that (Fj , S) has a common fixed point as well. This
completes the proof.

Finally, we prove a theorem when closedness of K is replaced by compactness
of K.

Theorem 3.9. Let (X, d) be a complete metrically convex metric space and K be
a nonempty compact subset of X. Let {Fn}

∞
n=1 : K → CB(X) and T : K → X

satisfying:

(i) δK ⊆ TK, (Fi(K) ∪ Fj(K)) ∩K ⊆ TK,
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(ii) Tx ∈ δK ⇒ Fi(x) ∪ Fj(x) ⊆ K, with

H(Fi(x), Fj(y)) < M(x, y), when M(x, y) > 0, for all x, y ∈ K,

where

M(x, y) =α d(Tx, T y) + β max{d(Tx, Fi(x)), d(Ty, Fj(y))}

+ γ max{d(Tx, Fi(x)) + d(Ty, Fj(y)), d(Tx, Fj(y))

+ d(Ty, Fi(x))}

(12)

for all x, y ∈ X with x 6= y, where α, β and γ are non-negative reals with
α+ 2β + 3γ + αγ ≤ q ≤ 1. If T is weakly compatible with Fn then Fn and
T have a common coincidence. Moreover Fn and T have a common fixed
point provided Tz remains fixed under T.

Proof. We assert that M(x, y) = 0 for some x, y ∈ K. Otherwise M(x, y) 6= 0,
for any x, y ∈ K implies that

f(x, y) =
H(Fi(x), Fj(y))

M(x, y)

is continuous and satisfies f(x, y) < 1 for all (x, y) ∈ K × K. Since K × K is
compact, there exists (u, v) ∈ K × K such that f(x, y) ≤ f(u, v) = c < 1 for
x, y ∈ K, which in turn yields H(Fi(x), Fj(y)) ≤ cM(x, y) for x, y ∈ K and
0 < c < 1. Therefore using (12) we obtain

max

{

α+ β + γ

q − γ
,

α+ γ

q − β − γ

}

< 1.

Now by Theorem 3.1 (with restrictionS = T,) we get Tz ∈ Fi(z) ∩ Fj(z)
for some z ∈ K and one concludes M(z, z) = 0, contradicting the facts that
M(x, y) > 0. Therefore M(x, y) = 0 for some x, y ∈ K which implies Tx ∈ Fi(x)
and Tx = Ty ∈ Fj(y). If M(x, x) = 0 then Tx ∈ Fj(x) and if M(x, x) 6= 0 then
using (12) we infer that d(Tx, Fj(x)) ≤ 0 yielding thereby Tx ∈ Fj(x). Similarly
in either of the cases M(y, y) = 0 or M(y, y) > 0 we conclude that Ty ∈ Fi(y).
Thus we have shown that Fn and T have a common point of coincidence.

By setting T = IK in Theorem 3.9, we deduce the following corollary for a
family of maps.

Corollary 3.10. Let (X, d) be a complete metrically convex metric space and K
be a nonempty compact subset of X. Let {Fn}

∞
n=1 : K → CB(X) satisfying:

x ∈ δK ⇒ Fi(x), Fj(x) ⊂ K,

H(Fi(x), Fj(y)) < α d(x, y) + β max{d(x, Fi(x)), d(y, Fj(y))}

+γmax{d(x, Fi(x))+d(y, Fj(y)), d(x, Fj(y)) + d(y, Fi(x))}
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for all x, y ∈ X with x 6= y, where α, β and γ are non-negative reals with
α+ 2β + 3γ + αγ ≤ q ≤ 1. Then z ∈ Fi(z) and z ∈ Fj(z).

Remark 3.11. Similar corollaries can also be derived for a family of maps by
setting Fi = Fj and T = IK in Theorem 3.9.

4. An Illustrative Example

Now, we furnish an example which demonstrates the validity of the hypotheses
of Theorem 3.1 besides establishing the genuineness of our extension over other
relevant results of the existing literature.

Example 4.1. Let X = < be the set of reals equipped with natural distance and
K = {−1

3
} ∪ [0, 1]. Define Fn : K → CB(X) and S, T : K → X by

Fi(x) =

{

[−x
2
, 0] if 0 ≤ x < 1,
{0} if x ∈ {−1

3
, 1},

T x =

{

−x
3

if 0 ≤ x < 1,
1 if x = {−1

3
, 1},

Fj(x) =

{

[−x
4
, 0] if 0 ≤ x < 1,
{0} if x ∈ {−1

3
, 1}

Sx =

{

−x
4

if 0 ≤ x < 1,
1 if x = {−1

3
, 1},

where i = 2n − 1 and j = 2n. Since δK( the boundary of K) = {−1

3
, 0, 1}.

Clearly δK ⊂ TK ∩ SK.

Further, Fi(K)∩K = (−1

2
, 0]∩K ⊂ TK and Fj(K)∩K = (−1

4
, 0]∩K ⊂ SK.

Also

T

(

−1

3

)

= 1 ∈ δK ⇒ Fi

(

−1

3

)

= {0} ⊆ K,

T (0) = 0 ∈ δK ⇒ Fi(0) = {0} ⊆ K,

T (1) = 1 ∈ δK ⇒ Fi(1) = {0} ⊆ K,

S

(

−1

3

)

= 1 ∈ δK ⇒ Fj

(

−1

3

)

= {0} ⊆ K,

S(0) = 0 ∈ δK ⇒ Fj(0) = {0} ⊆ K,

S(1) = 1 ∈ δK ⇒ Fj(1) = {0} ⊆ K.

Similarly, by a routine calculation we can show that (Fi, Fj) is a generalized
(S, T ) contraction pair of K into CB(X) with α = 1

3
and β = γ = 1

7
. And also

‘0’ is a point of coincidence as T 0 = Fi(0) and S0 = Fj(0). Thus Fn, S and T
have a point of common coincidence, whereas both the pairs (Fi, T ) and (Fj , S)
are weakly compatible pairs and the pair (T, S) is continuous. Thus all the
conditions of Theorem 3.1 are satisfied and note that ‘0’ is the unique common
fixed point of Fn, S and T.
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5. Application

Now we state and prove the following theorem in Banach spaces as an application
of our main Theorem 3.1 for two pairs of single valued nonself mappings. While
proving this result the notion of demiclosed and starshaped subset are utilized.

Definition 5.1. [8, Definition] Let K be a non empty subset of a normed linear
space X. A mapping T : K → X is said to be demiclosed if {xn} ⊂ K,xn → x
and Txn → y ∈ X then Tx = y.

Definition 5.2. [10, Definition] Let K be a non empty subset of a normed linear
space X. K is said to be starshaped if there exists at least one point p ∈ K such
that for each x ∈ K and t ∈ [0, 1], (1− t)p+ tx ∈ K.

Definition 5.3. [15, Definition] A pair (F, T ) of nonself mappings defined on a
nonempty subset K of a set X is said to be weakly compatible if Fx = Tx for
some x ∈ K with Fx, Tx ∈ K ⇒ FTx = TFx.

Theorem 5.4. Let K be a nonempty weakly compact starshaped subset of a Ba-
nach space X. Let (F,G) a generalized (S, T ) nonexpansive mappings of K into
X satisfying:

(i) δK ⊆ SK ∩ TK,FK ∩K ⊆ SK,GK ∩K ⊆ TK,

(ii) Tx ∈ δK ⇒ Fx ∈ K,Sx ∈ δK ⇒ Gx ∈ K,

(iii) (F, T ) and (G,S) are weakly compatibles pairs, with

d(Fx,Gy)

<α d(Tx, T y) + β max{d(Tx, Fx), d(Ty,Gy)}

+ γ max{d(Tx, Fx) + d(Ty,Gy), d(Tx,Gy) + d(Ty, Fx)}

(13)

for all x, y ∈ X with x 6= y, where α, β and γ are non-negative reals with
α+2β+3γ+αγ ≤ 1. Moreover, if (I−F ) and (I−G) are demiclosed, then
the mappings F,G, S and T have a common fixed point z ∈ K provided S
and T are continuous.

Proof. Choose p ∈ K such that (1− t)p+ tx ∈ K for all x ∈ K and all t ∈ (0, 1).
Take kn = 1 − 1

n
, n = 2, 3, 4, . . . and define Fn, Gn : K → X by Fn(x) =

(1− kn)p+ kn(Fx) and Gn(x) = (1− kn)p+ kn(Gx) for all x ∈ K. It is easy to
verify that (Fn, Gn) is a generalized (S, T ) contractive mapping of K into X and
Fn, Gn satisfy conditions (i), (ii) and (iii). Since weak topology is Hausdorff and
K is weakly compact, we can conclude thatK is weakly closed and hence strongly
closed. Now by Theorem 3.1 (for single valued setting) for each n ≥ 2, Fn, Gn, S
and T have a unique common fixed point, say zn ∈ K. Now it follows that zn has
a weakly convergent subsequence and we can assume that zn itself converges to
z ∈ K weakly. Since weakly convergent sequences are norm bounded, therefore
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we can find a constant M > 0 such that ||zn|| < M for all n ≥ 2. Now for every
n ≥ 2, we can have

||(I − F )zn|| = ||zn − [k−1
n {Fzn − (1− kn)p}]||

= ||zn − [k−1
n Fzn − k−1

n (1− kn)p]||

= ||(1− k−1
n )zn − (1− k−1

n )p||

= ||(1− k−1
n )(zn − p)||

≤ |(1− k−1
n )|(||(zn||+ ||p||)

≤ |(1− k−1
n )|(M + ||p||)

since ||zn|| ≤ M. Since k−1
n → 1 as n → ∞, we have (I − F )zn → 0 ∈ K. Also

zn → z ∈ K and (I − F ) is demiclosed, it follows that (I − F )z = 0 giving
thereby Fz = z. Similarly using the demiclosedness of (I −G) we can show that
Gz = z. Since for each n ≥ 2, T zn = zn and Szn = zn, therefore taking the limit
as n → ∞, we obtain Tz = Sz = z as T and S are continuous. This completes
the proof.

By setting S = IK in Theorem 5.1 we deduce the following corollary for three
maps.

Corollary 5.5. Let K be a nonempty weakly compact starshaped subset of Banach
space X. Let (F,G) be a generalized T non-expansive mappings of K into X
satisfying:

(i) Tx ∈ δK ⇒ Fx,Gx ∈ K,

(ii) δK ⊆ TK, (FK ∪GK) ∩K ⊆ TK

(iii) F and T are weakly compatible pairs.

Moreover, if (I − F ) is demiclosed, then the mappings F,G and T have a
common fixed point z ∈ K provided T is continuous.
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