Character Amenability of $C_0(X, A)$

King-Fai Lai

School of Mathematics and Statistics, Henan University, Kaifeng 475004, China

Email: kinglaihonkon@gmail.com

Bui Ngoc Muoi

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

Department of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Vietnam Email: buingocmuoi@hpu2.edu.vn; muoibn@mail.nsysu.edu.tw

Luoyi Shi

School of Software, Tiangong University, Tianjin, 300387, China

Email: shiluoyi@tiangong.edu.cn; shiluoyitjpu@163.com

Ngai-Ching Wong*

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

Department of Healthcare Administration and Medical Information, and Center of Fundamental Science, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan Email: wong@math.nsysu.edu.tw

Received 3 November 2021 Accepted 24 March 2022

Communicated by Tin-Yau Tam

Dedicated to the memory of Professor Ky Fan (1914–2010)

AMS Mathematics Subject Classification(2020): 46H20, 46J10

Abstract. Let A be a Banach algebra and X be a locally compact space. We derive various character amenability and construct the corresponding approximate character means of the A-valued continuous function algebra $C_0(X,A)$ directly from those of A.

^{*}Corresponding author.

Keywords: Banach algebra; Character amenability; Approximate ϕ -amenability; Approximate ϕ -mean.

1. Introduction

The concept of amenable Banach algebras was introduced by Johnson [7]. Let A be a (complex) Banach algebra and let E be a Banach A-bimodule. A bounded linear map $D: A \to E$ is called a *derivation* if D(ab) = a.D(b) + D(a).b for all a, b in A. Note that if E is a Banach A-bimodule then E^* is also a Banach A-bimodule with the module actions defined by

$$\langle a.x^*, x \rangle = \langle x^*, x.a \rangle$$
 and $\langle x^*.a, x \rangle = \langle x^*, a.x \rangle$, for $x^* \in E^*, x \in E, a \in A$.

We call A amenable if for any Banach A-bimodule E, every continuous derivation $D: A \to E^*$ is inner, i.e., there is an $x^* \in E^*$ such that

$$D(a) = d_{x^*}(a) := a.x^* - x^*.a, \quad \forall a \in A.$$

Let ϕ be a (nonzero) *character* on A, that is, a nonzero homomorphism from A into \mathbb{C} . For any right Banach A-module E, we define a left action

$$a.x = \phi(a)x$$
 for $a \in A, x \in E$,

to make E become a Banach A-bimodule, which we denote by E_{ϕ} . Following [6], we say that A is ϕ -amenable if for any right Banach A-module E, every continuous derivation $D: A \to E_{\phi}^*$ is inner. We call A character amenable if it is ϕ -amenable for every character ϕ on A. It is plain that every amenable Banach algebra is character amenable. However, the converse is not true in general. For example, the Fourier algebra A(G) of a locally compact group G is character amenable but it is not always amenable (see [6, Example 2.6]).

As generalizations, we call a Banach algebra A locally approximately ϕ -amenable if for any right A-module E and any continuous derivation $D: A \to E_{\phi}^*$, there is a net $\{\xi_{\alpha}\}_{\alpha}$ in E^* such that the inner derivations $d_{\xi_{\alpha}}(a) = a.\xi_{\alpha} - \xi_{\alpha}.a = a.\xi_{\alpha} - \phi(a)\xi_{\alpha}$ converge to D(a) in norm topology in E^* for each $a \in A$. If the convergence is always uniformly in $a \in K$ for any normed bounded (resp. compact) subset K of A, we call A uniformly (resp. compactly) approximately ϕ -amenable.

A net $\{u_{\alpha}\}_{\alpha}$ in A is called a locally approximate ϕ -mean if $\phi(u_{\alpha}) = 1$ for all α , and $||au_{\alpha} - \phi(a)u_{\alpha}|| \to 0$ for all $a \in A$. If the convergence is uniformly on any norm bounded (resp. compact) subset K of A, then $\{u_{\alpha}\}_{\alpha}$ is called a uniformly (resp. compactly) approximate ϕ -mean. It turns out that a uniformly approximate ϕ -mean $\{u_{\alpha}\}_{\alpha}$ must be uniformly bounded, i.e., $\sup_{\alpha} ||u_{\alpha}|| < +\infty$ [1, Proposition 5.4]. Moreover, if a locally approximate ϕ -mean $\{u_{\alpha}\}_{\alpha}$ is uniformly bounded then it is a compactly approximate ϕ -mean; in this case we call it a bounded approximate ϕ -mean.

Lemma 1.1.

- (i) [6, Theorem 1.4] A Banach algebra A is ϕ -amenable if and only if it has a bounded approximate ϕ -mean.
- (ii) [1, Propositions 2.2 and 2.3] A Banach algebra A is locally (resp. compactly) approximately ϕ -amenable if and only if it has a possibly unbounded locally (resp. compactly) approximate ϕ -mean.

More precisely, if $\{u_{\alpha}\}_{\alpha}$ is a locally (resp. compactly) approximate ϕ -mean of A, then for any continuous derivation $D:A\to E_{\phi}^*$, by letting $g_{\alpha}=-D(u_{\alpha})\in E^*$ we have $d_{g_{\alpha}}(a)$ converges to D(a) in norm for each $a\in A$ (resp. uniformly for a in any norm compact subset of A) (see the proof of [1, Proposition 2.2]). If the net $\{u_{\alpha}\}_{\alpha}$ is uniformly bounded, then so is $\{g_{\alpha}\}_{\alpha}$. In this case, for any weak* cluster point g of $\{g_{\alpha}\}_{\alpha}$, we have $D=d_{g}$ is an inner derivation.

Examples of derivations which are approximately inner but not inner can be found in [2, Section 8]. In summary, we have the following lemma.

Lemma 1.2. [6, 8, 1] Let ϕ be a character of a Banach algebra A. Then we have the following statements:

- (i) A is ϕ -amenable \iff A is uniformly approximately ϕ -amenable \iff ker ϕ has a bounded right approximate identity;
- (ii) A is locally approximately ϕ -amenable \iff ker ϕ has a right approximate identity.

Example 1.3. For each $n=1,2,\ldots$, let $A_n=\ell_n^1(\mathbb{C})$ be the n-dimensional l_1 space with entrywise multiplication. Let $A=\oplus_{c_0}A_n$ be the c_0 direct sum of A_n . Let $B=A\oplus\mathbb{C}I$ be the unitilization of A.

Let ϕ be the character of B such that $\phi(I)=1$ and $\phi(A)=0$. Since the kernel of ϕ , which is A, does not have a bounded approximate identity, B is not ϕ -amenable. However, the unbounded approximate identity of A provides an unbounded approximate ϕ -mean of B. Thus B is locally approximately ϕ -amenable.

We note that the amenability defined by Johnson in term of the existence of a compactly approximate diagonal, see [4], might not ensure the amenability of a Banach algebra; for example, when we consider the Segal algebra on a non-amenable locally compact group [3]. However, we do not know whether the compactly approximate ϕ -amenability is equivalent to either the local approximate ϕ -amenability or the (uniform) ϕ -amenability for a general Banach algebra.

Let X be a locally compact Hausdorff space, and A a Banach algebra. Let

$$C_0(X,A) := \{f: X \to A \text{ is continuous and vanishes at infinity}\}.$$

The uniform norm on $C_0(X, A)$ defined by

$$||f||_{\infty} = \sup\{||f(x)||_A : x \in X\}$$

makes $C_0(X, A)$ to be a Banach algebra.

Suggested by [6, Theorem 3.3], we shall see that if A is character amenable then $C_0(X,A)$ is character amenable. In fact, every character Φ of $C_0(X,A)$ assumes the form $\Phi(f) = \phi(f(t))$ for some character ϕ of A and for some point t in X. In this paper, we will construct explicitly an approximate Φ -mean for $C_0(X,A)$ from an approximate ϕ -mean of A. We also establish similar results involving the locally and the compactly approximate character amenability of A.

2. Results

In part (iii) below, if the positive constant $M < +\infty$ then $\{u_{\alpha}\}_{\alpha}$ will be a bounded approximate ϕ -mean. If $M = +\infty$ then it will be a (possibly unbounded) locally approximate ϕ -mean.

Lemma 2.1. Let ϕ be a nonzero character of a Banach algebra A, and $0 < M \le +\infty$. The following statements are equivalent:

- (i) For each finite subset F of A, there is a net $\{u_{\alpha}\}_{\alpha}$ in A with all $||u_{\alpha}|| \leq M$ such that $\phi(u_{\alpha}) = 1$ and $||au_{\alpha} \phi(a)u_{\alpha}|| \to 0$ for all $a \in F$.
- (ii) For each finite subset F of A, there is a net $\{u_{\alpha}\}_{\alpha}$ in A with all $||u_{\alpha}|| \leq M$ such that $\phi(u_{\alpha}) = 1$ and $au_{\alpha} \phi(a)u_{\alpha} \to 0$ weakly for all $a \in F$.
- (iii) There is a net $\{u_{\alpha}\}_{\alpha}$ in A with all $||u_{\alpha}|| \leq M$ such that $\phi(u_{\alpha}) = 1$ for all α , and $||au_{\alpha} \phi(a)u_{\alpha}|| \to 0$ for all $a \in A$.

Proof. Obviously, (iii) \implies (i) \implies (ii).

Following the reasoning in [6, Theorem 1.4], we will show that (ii) implies (i). Consider a finite subset F of A. Let $\{w_{\beta}\}_{\beta}$ be a net satisfying the condition in (ii). Let A^F be the locally convex product space of n copies of the Banach space A, where n is the finite cardinality of the set F, equipped with the product topology of the norm topology of A. It is known that its dual space $(A^F)^* = \bigoplus_{a \in F} A^*$ is the locally convex direct sum of n copies of the dual space A^* of A. In particular, the $\sigma(A^F, (A^F)^*)$ -topology, that is, the weak topology of A^F , agrees with the product topology of the weak topology of A. Define a linear map

$$T: A \to A^F$$
 by $T(u) = (au - \phi(a)u)_{a \in F}$.

Let $K = \{u \in A : ||u|| \le M, \phi(u) = 1\}$. Since K is a convex subset of A, we see that T(K) is convex in the product space A^F . Since $aw_\beta - \phi(a)w_\beta \to 0$ weakly for all $a \in F$, the point (0) with all coordinates 0 belongs to the closure of T(K) in the $\sigma(A^F, (A^F)^*)$ -topology. By the separation theorem, the closure of T(K) in A^F in the product topology of the norm topology agrees with that taken in the $\sigma(A^F, (A^F)^*)$ -topology. Hence there is a net $\{u_\alpha\}_\alpha$ in K such that $\|au_\alpha - \phi(a)u_\alpha\| \to 0$ for each $a \in F$, as asserted.

Finally, suppose that (i) holds. Then for each given $\varepsilon > 0$ and each finite subset F of A, there is a $u_{F,\varepsilon}$ in A with $||u_{F,\varepsilon}|| \leq M$ such that $||au_{F,\varepsilon} - \phi(a)u_{F,\varepsilon}|| \leq \varepsilon$. Order $\mathcal{J} = \{(F,\varepsilon) : F \subset A \text{ is finite}, \varepsilon > 0\}$ by letting $(F_1,\varepsilon_1) \leq (F_2,\varepsilon_2)$ if $F_1 \subseteq F_2$ and $\varepsilon_1 \geq \varepsilon_2$. Then the net $\{u_{F,\varepsilon} : (F,\varepsilon) \in \mathcal{J}\}$ satisfies the condition (iii).

Let X be a locally compact Hausdorff space and A a complex Banach algebra. Recall that for any character Φ on $C_0(X,A)$ there exist a character ϕ on A and a point t in X such that $\Phi(f) = \phi(f(t))$ for all $f \in C_0(X,A)$ (see [5]). We write $\Phi = \delta_t \otimes \phi$ for this connection. Let \mathcal{V}_t consist of all compact neighborhoods V of t in X, and ordered by reverse set inclusion. By the Urysohn lemma, for each $V \in \mathcal{V}_t$, there exists a nonnegative function $g_V \in C(X)$ such that

$$\operatorname{supp}(g_V) \subset V$$
, $\|g_V\| = g_V(t) = 1$ and $g_V \to \mathbf{1}_t$ pointwise, (1)

where $\mathbf{1}_t$ is the indicator function of the singleton $\{t\}$.

Theorem 2.2. Let ϕ be a nonzero character of a Banach algebra A. Let t be a point in a locally compact Hausdorff space X and $\Phi = \delta_t \otimes \phi$ be the associated character of $C_0(X,A)$. Assume that A is (resp. locally, compactly) ϕ -amenable. Then $C_0(X,A)$ is (resp. locally, compactly) Φ -amenable.

Proof. (i) Suppose A is locally approximately ϕ -amenable with a locally approximate ϕ -mean $\{u_{\alpha} : \alpha \in \mathcal{J}\}$. Let $\varepsilon > 0$, and $\mathcal{F} = \{f_1, \ldots, f_n\}$ be any finite subset of $C_0(X, A)$. Let $a_j = f_j(t) \in A$ for $j = 1, 2, \ldots, n$. For large enough index α , we have

$$||a_j.u_\alpha - \phi(a_j)u_\alpha|| < \varepsilon/2, \quad \forall j = 1, 2, \dots, n.$$

Let $V \in \mathcal{V}_t$ be a compact neighborhood of t and g_V a nonnegative continuous function in $C_0(X)$ supported in V with $g_V(t) = ||g_V|| = 1$. For small enough V we can assume that

$$||g_V a_j - g_V f_j|| < \frac{\varepsilon}{2||u_\alpha||}, \quad \forall j = 1, 2, \dots, n.$$

Consider $g_V u_\alpha \in C_0(X, A)$. We have $\Phi(g_V u_\alpha) = \phi(g_V(t)u_\alpha) = \phi(u_\alpha) = 1$. Observe that

$$||f_i g_V u_\alpha - \Phi(f_i) g_V u_\alpha|| \le ||(g_V f_i - g_V a_i) u_\alpha|| + ||g_V (a_i u_\alpha - \phi(a_i) u_\alpha)|| < \varepsilon.$$

In view of Lemma 2.1, we see that $C_0(X,A)$ is locally approximately Φ -amenable.

- (ii) Suppose A is ϕ -amenable with a uniformly bounded approximate ϕ -mean $\{u_{\alpha}\}_{\alpha}$. The construction in (a) gives us a locally approximate Φ -mean $\{g_{V}u_{\alpha}\}$ of $C_{0}(X,A)$. It is clear that $\sup_{\alpha,V}\|g_{V}u_{\alpha}\|=\sup_{\alpha}\|u_{\alpha}\|<+\infty$, and thus $C_{0}(X,A)$ is Φ -amenable.
- (iii) Finally, suppose A is compactly ϕ -amenable with a compactly bounded approximate ϕ -mean $\{u_{\alpha}\}_{\alpha}$. In this case, $\{u_{\alpha} : \alpha \in \mathcal{J}\}$ is a locally approximate

 ϕ -mean of A such that the convergence $||au_{\alpha} - \phi(a)u_{\alpha}|| \to 0$ is uniform on any compact set in A.

We want to show that $C_0(X, A)$ has a compactly approximate Φ -mean. It suffices to show that for any $\epsilon > 0$ and any compact set \mathcal{K} in $C_0(X, A)$, there is a v in $C_0(X, A)$ such that

$$||fv - \Phi(f)v|| < \epsilon, \quad \forall f \in \mathcal{K}.$$

We adapt some arguments from [4, Proposition 3.1]. Let $X_0 = X \cup \{\infty\}$ be the one-point compactification of X. In this way, every f in $C_0(X, A)$ can be considered as an element in $C(X_0, A)$ by assigning $f(\infty) = 0$. Let

$$K = \{ f(x) : f \in \mathcal{K}, x \in X_0 \}.$$

Since K is compact and X_0 is compact, K is a compact subset of A.

Let $\varepsilon > 0$. By assumption, there is an index α_0 such that for all $\alpha \ge \alpha_0$ we have $\phi(u_\alpha) = 1$ and

$$||bu_{\alpha} - \phi(b)u_{\alpha}|| \le \frac{\varepsilon}{6}, \quad \forall b \in K.$$
 (2)

Let $u = u_{\alpha}$ for any $\alpha \geq \alpha_0$. Since \mathcal{K} is compact, we can choose f_1, \ldots, f_m from \mathcal{K} such that every f in \mathcal{K} is within norm distance $\frac{\epsilon}{9||u||}$ from some f_i . Then the uniform continuity of f_1, \ldots, f_m ensures that there are nonempty open subsets X_1, \ldots, X_n of X_0 such that $X_0 = \bigcup_{k=1}^n X_k$, and

$$||f_i(x) - f_i(y)|| \le \frac{\varepsilon}{9||u||}, \quad \forall x, y \in X_k, \forall i = 1, 2, \dots, m, \forall k = 1, \dots, n.$$

Consequently,

$$||f(x) - f(y)|| \le \frac{\varepsilon}{3||u||}, \quad \forall x, y \in X_k, \forall f \in \mathcal{K}, \forall k = 1, 2, \dots, n.$$

Choose a continuous partition of unity, h_1, \ldots, h_n in $C(X_0)$, such that $0 \le h_k \le 1$, $\operatorname{supp}(h_k) \subset X_k$ and $\sum_{k=1}^n h_k = 1$. For each $k = 1, \ldots, n$, choose $x_k \in X_k$. For each $f \in \mathcal{K}$, let $f_{\varepsilon} = \sum_{k=1}^n h_k f(x_k)$. Then

$$||f - f_{\varepsilon}|| = \left\| \sum_{k=1}^{n} (h_k f - h_k f(x_k)) \right\| \le \frac{\varepsilon}{3||u||}, \quad \forall f \in \mathcal{K}.$$
 (3)

Let the finite positive number

$$L = \sup\{|\phi(f(x_k))| : f \in \mathcal{K}, k = 1, \dots, n\} + 1.$$

Then there exists $V_0 \in \mathcal{V}_t$ such that for any $V \in \mathcal{V}_t$ with $V \subseteq V_0$ we have

$$\|(h_k - h_k(t))g_V\| \le \frac{\varepsilon}{6\|u\|nL}, \quad \forall k \in 1, \dots, n.$$
 (4)

Since $f(x_k) \in K$ for any $f \in \mathcal{K}$, it follows from (2) and (4) that

$$||f_{\varepsilon}ug_{V} - \Phi(f_{\varepsilon})ug_{V}||$$

$$= ||ug_{V} \sum_{k=1}^{n} h_{k}f(x_{k}) - ug_{V} \sum_{k=1}^{n} h_{k}(t)\phi(f(x_{k}))||$$

$$\leq \sum_{k=1}^{n} ||[uf(x_{k}) - \phi(f(x_{k}))u]h_{k}g_{V}|| + \sum_{k=1}^{n} ||\phi(f(x_{k}))u||| ||[h_{k} - h_{k}(t)]g_{V}||$$

$$\leq \frac{\varepsilon}{6} + \sum_{k=1}^{n} L||u|| \frac{\varepsilon}{6||u||nL} = \frac{\varepsilon}{3}.$$
(5)

Therefore, for all $f \in \mathcal{K}$ it follows from (3) and (5) that

$$||fug_{V} - \Phi(f)ug_{V}||$$

$$\leq ||(f - f_{\varepsilon})ug_{V}|| + ||(f_{\varepsilon}u - \Phi(f_{\varepsilon})u)g_{V}|| + ||(\Phi(f_{\varepsilon}) - \Phi(f))ug_{V}||$$

$$\leq 2||u||\frac{\varepsilon}{3||u||} + \frac{\varepsilon}{3} = \varepsilon.$$

Let $v = ug_V$. We have $||fv - \Phi(f)v|| \le \varepsilon$ for all $f \in \mathcal{K}$. This completes the proof.

3. Remarks and Open Problem

We end this paper with an open problem about possible extensions of our result. Recall that a Banach algebra is weakly ϕ -amenable (resp. weakly amenable) if every continuous derivation $D: A \to A_{\phi}^*$ (resp. $D: A \to A^*$) is inner. It is showed in [4] that if X is a compact Hausdorff space and A is a commutative Banach algebra then C(X, A) is weakly amenable if and only if A is weak amenable. We ask for a similar result as in Theorem 2.2 for the weakly character amenability.

Question 3.1. Does the weak ϕ -amenability of A ensure the weak Φ -amenability of $C_0(X, A)$?

References

- H.P. Aghababa, L.Y. Shi, Y.J. Wu, Generalized notions of character amenability, Acta. Math. Sin. (Engl. Ser.) 29 (2013) 1329–1350.
- [2] F. Ghahramani, R.J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004) 229–260.
- [3] F. Ghahramani, Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, *Math. Proc. Cambridge Philos. Soc.* **142** (2007) 111–123.
- [4] R. Ghamarshoushtar, Y. Zhang, Amenability properties of Banach algebra valued continuous functions, J. Math. Anal. Appl. 422 (2015) 1335–1341.
- [5] W. Govaerts, Homomorphisms of weighted algebras of continuous functions, Annali di Matematica 116 (1978) 151–158.

[6] E. Kaniuth, A.T. Lau, J. Pym, On $\varphi-$ amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85–96.

- [7] B.E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., No. 127, American Mathematical Society, Providence, R.I., 1972.
- [8] M.S. Monfared, Character amenability of Banach algebras, *Math. Proc. Cambridge Philos. Soc.* **144** (2008) 697–706.