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Abstract. We call a real multi-dimensional array a tensor for short. In enumerating

vertices of the polytopes of stochastic tensors, different approaches have been used:

(1) Combinatorial method via Latin squares; (2) Analytic (topological) approach by

using hyperplanes; (3) Computational geometry (polytope theory) approach; and (4)

Optimization (linear programming) approach. As all these approaches are worthy of

consideration and investigation in the enumeration problem, various bounds have been

obtained. This note is to compare the existing upper bounds arose from different

approaches.
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Polytopes play an important role in mathematics and applications, most notably
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in discrete geometry and linear programming. Here by a polytope we mean a
bounded convex set contained in a Euclidean space R

d that is generated by
finitely many points. In other words, if P ⊂ R

d is a polytope, then P is the
convex hull of a finite set of points in R

d (see, e.g., [4, p. 8] or [27, p. 4]). The
Krein-Milman Theorem (see, e.g., [4, p. 121]) ensures that every polytope is the
convex hull of its vertices (extreme points). It is a fundamental and central
question in the polytope theory to determine the number and structures of the
vertices (or faces of higher dimensions) for a given polytope, and this is an
extremely difficult problem in general (see, e.g., [5] or [27, p. 254]).

A doubly stochastic matrix is a nonnegative square matrix in which each row
sum as well as each column sum is equal to one. The classical Birkhoff polytope
Bn consists of n×n doubly stochastic matrices, and the celebrated Birkhoff-von
Neumann Theorem states that Bn is the convex hull of all n × n permutation
matrices (see, e.g., [25, p. 159]). In other words, as a polytope in R

n2

, Bn has n!
vertices (see, e.g., [27, p. 20]). Carathéodory’s theorem ensures that every n× n

doubly stochastic matrix can be written as a convex combination of at most
n2 − 2n+2 permutation matrices. Geometrical and combinatorial properties of
the Birkhoff polytope have been extensively studied; see, e.g., [2, 6, 7, 8, 10, 11,
20, 17]; see also [18, pp. 47–52] for a brief account.

We are concerned with the polytopes of stochastic tensors. We simply call
a real multidimensional array (i.e., matrix of higher order or hypermatrix) a
tensor. See, e.g., [12, 21, 22], for the theory and applications of tensors. By
a stochastic tensor we mean a tensor of certain stochastic properties (such as
line-stochasticity, defined below, and plane-stochasticity, etc.).

Let n1, n2, . . . , nd be positive integers. As usual, we write

A = (ai1i2...id), where ai1i2...id ∈ R, ik = 1, 2, . . . , nk, k = 1, 2, . . . , d,

for an n1 × n2 × · · · × nd tensor A of order d (the number of indices). A tensor
A = (ai1i2...id) may be regarded as an element in R

n1n2···nd . The tensors of order
1 (i.e., d = 1) are the vectors in R

n1 , while the 2nd order tensors are the usual
matrices. A regular Rubik’s Cube may be regarded as a 3 × 3 × 3 tensor. An
m × n × 3 tensor has three (frontal) layers of m × n matrices, and it may be
identified with an m× (3n) rectangular matrix. If n1 = n2 = · · · = nd = n, we

say that A has order d and dimension n or A is an

d
︷ ︸︸ ︷

n× · · · × n tensor. (Note:
the terms order and dimension may be defined differently in other texts.)

For a nonnegative tensor A = (ai1i2...id) of order d and dimension n, we say
that A is line-stochastic [13] if the sum of the entries on each line is 1, that is,

n∑

i=1

a···i··· = 1.

An n × n doubly stochastic matrix, in particular, a permutation matrix,
is a line-stochastic tensor of order 2 and dimension n. The Birkhoff polytope
Bn of n × n doubly stochastic matrices is generated (via convex combinations)
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by exactly the permutation matrices. However, for higher order tensors, the
situation is very different and it can be much more complicated. Let

Q =
1

2





0 1 1
1 1 0
1 0 1

∣
∣
∣
∣
∣
∣

1 1 0
0 1 1
1 0 1

∣
∣
∣
∣
∣
∣

1 0 1
1 0 1
0 2 0



 .

Then Q is a line-stochastic tensor of order 3 and dimension 3. One may verify
that Q is not a convex combination of (0,1)-tensors (i.e., permutation tensors).

We denote by Ln the polytope of the n × n × n (triply) line-stochastic ten-
sors. (One may define stochastic tensors of higher orders, such as triply plane-
stochastic tensors.) The Krein-Milman Theorem asserts that every polytope is
the convex hull of its extreme points. Then what are those for Ln? The above
example Q shows that L3 has extreme points other than the (0,1)-tensors.

It is an interesting problem and uneasy task (see, e.g., [16]) to determine the
extreme points for a polytope of stochastic tensors; see [15] for more information
on this topic. For other aspects such as the permanents of tensors, see [24] and
the references therein. For general tensors and their properties, the reader is
referred to the books [12, 21, 22].

In enumerating vertices of the polytope Ln, different approaches have been
undertaken: (1). Combinatorial method via Latin squares (see, e.g., [3, Theo-
rem 0.1] or [1, Theorem 2.0.10]); (2). Analytic approach by using hyperplane
and induction [9]; (3). Computational geometry approach [16]; and (4). Op-
timization (operation research) approach [26]. As all these approaches to the
enumeration are worthy of investigation, various bounds have been obtained.
We compare the existing bounds arose from different approaches.

Let f0(Ln) be the number of vertices of Ln. (Note: fi(P) usually denotes the
number of faces of dimension i of polytope P .) We have seen the estimation of
f0(Ln) in various ways. By a combinatorial method using Latin squares, Ahmed,
De Loera, and Hemmecke (see [1, Theorem 2.0.10] or [3, Theorem 0.1]) gave an

explicit lower bound (n!)2n

nn2 . A sharper lower bound is immediate by noticing

that the number of Latin squares of order n, denoted by L(n), is equal to the
number of n× n× n line-stochastic (0,1)-tensors (see [14] or [23, pp. 159–161]).
Observe that every (0-1)-stochastic tensor is an extreme point. So

(n!)2n

nn2
≤ L(n) ≤ f0(Ln).

This brilliant idea is seen in Jurkat and Ryser [14]. For the case of n = 3, one
may identity (via one-to-one mapping) a 3× 3 Latin square S with a 3 × 3× 3
tensor cube T : If (i, j)-entry of the Latin square is k, 1 ≤ i, j, k ≤ 3, then let
tijk = 1 and all other tpqr = 0. For example,

S =





1 2 3
2 3 1
3 1 2



 7→ T =





1 0 0
0 0 1
0 1 0

∣
∣
∣
∣
∣
∣

0 1 0
1 0 0
0 0 1

∣
∣
∣
∣
∣
∣

0 0 1
0 1 0
1 0 0



 .
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Other approaches and upper bounds are recapped below.

By an analytic and topological approach using hyperplanes and induction,
Chang, Paksoy, and Zhang [9] obtained an upper bound.

Theorem 1. [9, Theorem 4.1] Let f0(Ln) be the number of vertices of the polytope

Ln of the n× n× n line-stochastic tensors. Then

f0(Ln) ≤
1

n3

(
p(n)

n3 − 1

)

, (1)

where p(n) = n3 + 6n2 − 6n+ 2.

By a computational geometry approach using the McMullen Upper Bound
Theorem (UBT) [19] (see also, e.g., [5, p. 90]) for polytopes. Li, Zhang and
Zhang [16] showed an upper bound.

Theorem 2. [16, Theorem 2] Let f0(Ln) be the number of vertices of the polytope

Ln of the n× n× n line-stochastic tensors. Then

f0(Ln) ≤

(

n3 − b (n−1)3+1
2 c

3n2 − 3n+ 1

)

+

(

n3 − b (n−1)3+2
2 c

3n2 − 3n+ 1

)

. (2)

It is shown in [16, Proposition 3] that the upper bound in (2) is better
(shaper) than the one in (1). However, the lower bound derived by computational
geometry approach (lower bound theorem) is no better in general.

By an approach of optimization and linear programming, Zhang and Zhang
presented another upper bound for f0(Ln).

Theorem 3. [26, Theorem 3.4] Let f0(Ln) be the number of vertices of the poly-

tope Ln of the n× n× n line-stochastic tensors. Then

f0(Ln) ≤

3n2−3n+1∑

k=n2

(
n3

k

)

. (3)

It was asked [16] and has remained unanswered whether there is a comparison
between the bounds in (2) and (3). That is, would the upper bound by the
computational geometry be better (or worse) than the one by optimization and
linear programming? We answer the question now.

Theorem 4. The upper bound in (2) is sharper than that in (3). In fact, for
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n ≥ 2,
(

n3 − b (n−1)3+1
2 c

3n2 − 3n+ 1

)

+

(

n3 − b (n−1)3+2
2 c

3n2 − 3n+ 1

)

<

(
n3

3n2 − 3n+ 1

)

<

3n2−3n+1∑

k=n2

(
n3

k

)

.

Proof. The second inequality is obvious. We show the first one. We first prove
that if a, b, k are positive integers with k ≥ 2, a > b, and b(k + 1) > a+ k, then

2

(
a

b

)

<

(
a+ k

b

)

. (4)

This is justified as follows. Since k ≥ 2, a > b, and b(k + 1) > a+ k, we have
(

a+ k

a+ k − b

)k

=

(

1 +
b

a+ k − b

)k

> 1 +
bk

a+ k − b
> 2.

On the other hand, noticing that

a+ k

a+ k − b
<

a+ k − 1

a+ k − b− 1
< · · · <

a+ 1

a− b+ 1
,

we get

(a+ k)(a+ k − 1) · · · (a+ 1)

(a+ k − b)(a+ k − b − 1) · · · (a− b+ 1)
>

(
a+ k

a+ k − b

)k

> 2.

Hence
(
a+k

b

)

(
a
b

) =

(a+k)!
b!(a+k−b)!

a!
b!(a−b)!

=
(a+ k)(a+ k − 1) · · · (a+ 1)

(a+ k − b)(a+ k − b− 1) · · · (a− b+ 1)
> 2.

Now for the claimed inequality in the theorem, it is easy to check the case of
n = 2 by direct computations:

(
7
7

)
+
(
7
7

)
<
(
8
7

)
<
∑7

k=4

(
8
k

)
.

Let n ≥ 3. Then n3 − b (n−1)3+1
2 c < n3 − n. With

(
a

b

)
<
(
a+1
b

)
, we derive

(

n3 − b (n−1)3+1
2 c

3n2 − 3n+ 1

)

+

(

n3 − b (n−1)3+2
2 c

3n2 − 3n+ 1

)

≤ 2

(

n3 − b (n−1)3+1
2 c

3n2 − 3n+ 1

)

< 2

(
n3 − n

3n2 − 3n+ 1

)

.
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In (4), we set a = n3 − n, b = 3n2 − 3n+ 1, and k = n. Then a > b, k ≥ 2,
and b(k + 1) = (3n2 − 3n+ 1)(n+ 1) > n3 − n+ n = a+ k. It follows that

2

(
n3 − n

3n2 − 3n+ 1

)

<

(
n3

3n2 − 3n+ 1

)

.

By characterization of extreme points of polytopes described through linear
inequalities (half-spaces), Zhang and Zhang gave an estimate of f0(Ln) in [26].

Theorem 5. [26, Theorem 3.6] Let f0(Ln) be the number of vertices of the poly-

tope Ln of the n× n× n line-stochastic tensors. Then

f0(Ln) ≤

(
n3 + 3n2 − 3n+ 1

n3

)

. (5)

However, this upper bound in (5) is no better than that in (3).

Theorem 6. The upper bound in (3) is sharper than that in (5). That is,

3n2−3n+1∑

k=n2

(
n3

k

)

<

(
n3 + 3n2 − 3n+ 1

n3

)

.

Proof. If n = 1, it is obvious. If n = 2, then
(
8
4

)
+
(
8
5

)
+
(
8
6

)
+
(
8
7

)
< 1

23

(
15
8

)
.

Let n ≥ 3. With the identity
(
a
b

)
+
(

a
b+1

)
=
(
a+1
b+1

)
, we can show that

m∑

k=0

(
a

b+ k

)

≤

(
a+m

b+m

)

.

Now we compute

3n2−3n+1∑

k=n2

(
n3

k

)

=
2n2−3n+1∑

k=0

(
n3

n2 + k

)

≤

(
n3 + 2n2 − 3n+ 1
n2 + 2n2 − 3n+ 1

)

=

(
n3 + 2n2 − 3n+ 1

3n2 − 3n+ 1

)

<

(
n3 + 3n2 − 3n+ 1

3n2 − 3n+ 1

)

=

(
n3 + 3n2 − 3n+ 1

n3

)

.
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Proposition 7. The upper bound in (5) is sharper than that in (1). That is, for

n ≥ 2,
(
n3 + 3n2 − 3n+ 1

n3

)

<
1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)

.

Proof. If n = 2, then
(
n3 + 3n2 − 3n+ 1

n3

)

=

(
15

8

)

<
1

23

(
22

7

)

=
1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)

.

Let n ≥ 3. Note that for positive integers a, b, and x, we have
(
a

b

)

<

(
a+ 1

b+ 1

)

if a > b,

(
a

b

)

≤

(
a

b+ 1

)

if a ≥ 2b+ 1, (6)

and
a+ 1

b + 1
>

a+ 2

b+ 2
> · · · >

a+ x

b+ x
if a > b and x > 2.

We obtain

a+ x

b+ x
·
a+ x− 1

b+ x− 1
· · ·

a+ 1

b+ 1
>

(
a+ x

b+ x

)x

=

(

1 +
a− b

b+ x

)x

.

Since n ≥ 3, we have n(n3−1) ≥ 2(6n2−6n+3). Setting a = n3+5n2−6n+2,
b = 5n2 − 6n+ 3, and x = n2 in the above discussion, we derive
(

1 +
a− b

b+ x

)x

=

[(

1 +
n3 − 1

6n2 − 6n+ 3

)n ]n

>

(

1 +
n(n3 − 1)

6n2 − 6n+ 3

)n

≥ 3n ≥ n3.

Hence
(
a+ x

b + x

)

=
a+ x

b+ x
·
a+ x− 1

b+ x− 1
· · ·

a+ 1

b+ 1

(
a

b

)

>

(
a+ x

b+ x

)x (
a

b

)

> n3

(
a

b

)

.

Since n ≥ 3, n3 + 3n2 − 3n+ 1 > 2(3n2 − 3n+ 1) + 1. Using (6), we have
(
n3 + 3n2 − 3n+ 1

n3

)

=

(
n3 + 3n2 − 3n+ 1

3n2 − 3n+ 1

)

<

(
n3 + 3n2 − 3n+ 1

3n2 − 3n+ 2

)

<

(
n3 + 3n2 − 3n+ 1 + (2n2 − 3n+ 1)

3n2 − 3n+ 2 + (2n2 − 3n+ 1)

)

=

(
n3 + 5n2 − 6n+ 2

5n2 − 6n+ 3

)

=

(
a

b

)

<
1

n3

(
n3 + 5n2 − 6n+ 2 + (n2)

5n2 − 6n+ 3 + (n2)

)

=
1

n3

(
n3 + 6n2 − 6n+ 2

6n2 − 6n+ 3

)

=
1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)

.
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We summarize the comparisons of the upper bounds for f0(Ln) as follows.

Corollary 8. Let f0(Ln) be the number of vertices of the polytope Ln of the

n× n× n line-stochastic tensors with n ≥ 2. Then

f0(Ln)

≤

(

n3 − b (n−1)3+1
2 c

3n2 − 3n+ 1

)

+

(

n3 − b (n−1)3+2
2 c

3n2 − 3n+ 1

)

(by polytope theory)

<

3n2−3n+1∑

k=n2

(
n3

k

)

(by optimization and linear programing)

<

(
n3 + 3n2 − 3n+ 1

n3

)

(by half-spaces)

<
1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)

(by topology and hyperplanes).

As the authors previously pointed out that these upper bounds are very large
when n is large and the bounds are loose due to the structures of the polytopes.
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