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Abstract. Picard sequences in the context of metric spaces are used to prove several

results for the presence of a fixed point. We further extend Brosowski-Meinardus type

results on invariant approximation in the case of normed linear spaces as an application

of the findings obtained. Some examples are also given to show how the obtained results

might be put to use. The findings presented improve on several previously published

findings.
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1. Introduction and Preliminaries

Because of its wide variety of applications, fixed point theory has sparked a lot of
interest in solving issues arising from nonlinear differential equations, nonlinear
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integral equations, game theory, mathematical economics, control theory, and so
on. Various investigators have studied fixed point theorems for various forms of
nonlinear contractive maps (see [4]-[29]) and references cited therein).

Let M be a nonempty set and T : M → M . A sequence {un} defined by
un = T nu0 is called a Picard sequence based at the point u0 ∈ M . T is said to
be a Picard operator if it has a unique fixed point z ∈ M and z = limn→∞ T nu
for all u ∈ M . Various classes of Picard operators exist in the literature (see, for
example, [1, 2, 3, 25, 26]).

In normed linear spaces, Meinardus [16] proposed the concept of invariant
approximation. In 1969, Fan [10] gave the classical best approximation theorem
and Brosowski [4] demonstrated certain conclusions on invariant approximation
using fixed point theory, generalising Meinardus’ work. Various generalisations
of Ky-Fan’s and Brosowski’s findings arose in the literature after that.

Singh [28] further attempted to show that the corresponding theorem of Singh
[27] remains true if T is supposed to be nonexpansive only on PC(x) ∪ {x}.
Many results have been proved since then in this direction (see Chandok et al.
[7], Chandok and Narang [8, 9], Mukherjee and Som [17], Narang and Chan-
dok [19, 20, 21], Rao and Mariadoss [23] and references cited therein). In this
study, we show several similar types of results for the set of best approxima-
tion on T -invariant points. We use Hardy-Roger type contraction mappings in
the setting of metric spaces to show some novel conclusions for the existence
of Picard operators. We obtain some interesting Brosowski-Meinardus type re-
sults on invariant approximation in the framework of normed linear spaces as
an application of the results proved in the second section. There are also some
non-trivial examples presented.

Definition 1.1. Let M be a nonempty subset of real normed linear space E and
x an element of E, not in the closure of M . The set of best M -approximants to
x consists of those g0 ∈ M satisfying ||x− g0|| = inf{||x− g|| : g ∈ M} and it is
denoted by PM (x) (see [29]).

Let T be a self mapping defined on a subset M of a normed linear space E. A
best approximant y in M to an element x0 in E is an invariant approximation
in E to x0 if Ty = y.

Example 1.2. (see [28]) Let E = R and M = [0, 12 ] ⊂ E. Define T : E → E as

Tx =











x− 1 if x < 0,

x if 0 ≤ x ≤ 1
2

x+1
2 if x > 1

2 .

Clearly, T (M) = M and T (1) = 1. Also, PM (1) = { 1
2}. Hence T has a fixed

point in E which is a best approximation to 1 in M . Thus, 1
2 is an invariant

approximation.
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Definition 1.3. An element g0 ∈ G is said to be best copproximation (see [12, 18])
to x ∈ E if ||g0− g|| ≤ ||x− g||, for all g ∈ G where G is a nonempty subset of a
normed linear space E. The set of all best coapproximants to x in G is denoted
by RG(x).

Definition 1.4. A nonempty subset M of E is said to be starshaped if there exists
some z ∈ M such that λx+ (1 − λ)z ∈ M for each x ∈ M , λ ∈ [0, 1].

The point z is called star-center of the set M .

It is clear that every convex subset is starshaped, but a starshaped set need
not be convex.

Definition 1.5. Let M be a nonempty subset of a metric space (X, d) and T :
M → M be a self map. Then T is said to be asymptotically regular (see, [5]) if
for all x ∈ M , d(T n(x), T n+1(x)) → 0 as n → ∞.

2. Fixed Points

We demonstrate some fixed point results for generalized contraction mappings
in metric spaces in this section.

We start with the following result which will be needed in the sequel.

Proposition 2.1. Let (X, d) be a metric space and T be self mapping on X such
that for all x, y ∈ X, we have

d(Tx, T y) ≤α1
[1 + d(y, T y)]d(x, Tx)

1 + d(x, y)
+ α2

d(x, Tx)d(y, T y)

1 + d(x, y)
+ α3(d(x, y))

+ α4(d(x, Tx) + d(y, T y)) + α5(d(x, T y) + d(y, Tx)),

(1)

where αi ∈ [0, 1), i = {1, 2, 3, 4, 5} with α1 + α2 + α3 + 2α4 + 2α5 < 1 and
α4 + α5 < 1. Then T is asymptotically regular.

Proof. Let x0 be an arbitrary point in X and {xn} be the Picard sequence in X
such that xn+1 = Txn = T nx0, for every n ≥ 0. So, from (1), we have

d(xn+2, xn+1) = d(Txn+1, T xn)

≤ α1
[1 + d(xn, T xn)]d(xn+1, T xn+1)

1 + d(xn+1, xn)
+ α2

d(xn+1, T xn+1)d(xn, T xn)

1 + d(xn+1, xn)

+α3(d(xn+1, xn)) + α4(d(xn+1, T xn+1) + d(xn, T xn))

+α5(d(xn+1, T xn) + d(xn, T xn+1))

= α1
[1 + d(xn, xn+1)]d(xn+1, xn+2)

1 + d(xn+1, xn)
+ α2

d(xn+1, xn+2)d(xn, xn+1)

1 + d(xn+1, xn)

+α3(d(xn+1, xn)) + α4(d(xn+1, xn+2) + d(xn, xn+1))

+α5(d(xn+1, xn+1) + d(xn, xn+2))
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≤ [α1 + α2]d(xn+1, xn+2) + α3(d(xn+1, xn))

+α4 (d(xn+1, xn+2) + d(xn, xn+1)) + α5(d(xn, xn+1) + d(xn+1, xn+2))

= (α1 + α2 + α4 + α5)d(xn+1, xn+2) + (α3 + α4 + α5)d(xn, xn+1),

which implies that

d(xn+2, xn+1) ≤
α3 + α4 + α5

1− (α1 + α2 + α4 + α5)
d(xn+1, xn). (2)

Take k = α3+α4+α5

1−(α1+α2+α4+α5)
< 1. Hence sequence {d(T nx0, T

n+1x0)} is a de-

creasing sequence. Using mathematical induction, we have

d(xn+2, xn+1) ≤ (k)
n+1

d(x1, x0). (3)

Taking the limit n → ∞, we have d(xn+2, xn+1) → 0, that is, d(T nx0, T
n+1x0)

→ 0. Hence the result.

Using Proposition 2.1, we prove our results.

Theorem 2.2. If T is asymptotically regular and satisfies (1) on a complete
metric space (X, d), then T is a Picard operator.

Proof. Using Proposition 2.1, we get the sequence {d(T nx0, T
n+1x0)} is decreas-

ing and d(T nx0, T
n+1x0) → 0 as n → ∞ for all x0 ∈ X . We claim that {xn} is

a Cauchy sequence. For m > n, and k = α3+α4+α5

1−(α1+α2+α4+α5)
, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

≤ (kn + kn+1 + . . .+ km−1)d(x0, x1)

≤
kn(1 − km−n)

1− k
d(x0, x1).

Therefore, d(xm, xn) → 0, when m,n → ∞. Thus {xn} is a Cauchy sequence in
a complete metric space X and so there exists u ∈ X such that limn→∞ xn = u.

We shall show that the point u is a fixed point of T . Suppose that Tu 6= u.
Then d(u, Tu) > 0. Consider

d(xn+1, T u) = d(Txn, T u)

≤ α1
d(xn, T xn)[1 + d(u, Tu)]

1 + d(xn, u)
+ α2

d(xn, T xn)d(u, Tu)

1 + d(xn, u)
+ α3(d(xn, u))

+α4(d(xn, T xn) + d(u, Tu)) + α5(d(xn, T u) + d(u, Txn))

= α1
d(xn, xn+1)[1 + d(u, Tu)]

1 + d(xn, u)
+ α2

d(xn, xn+1)d(u, Tu)

1 + d(xn, u)
+ α3(d(xn, u))

+α4(d(xn, xn+1) + d(u, Tu)) + α5(d(xn, T u) + d(u, xn+1)).

Taking n → ∞, we have d(u, Tu) ≤ (α4 + α5)d(u, Tu). This implies (1 − (α4 +
α5))d(u, Tu) ≤ 0, which is a contradiction. Thus d(u, Tu) = 0. Hence u is a
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fixed point of T . Here, we can see that every Picard sequence converges to the
fixed point of T . It is easy to show the uniqueness of fixed point. Therefore, T
is a Picard operator.

Example 2.3. Let X = [0, 1] and d be a usual metric on X .

Define T : X → X as Tx =

{

2
5 if x ∈ [0, 23 ),
1
5 if x ∈ [ 23 , 1].

Suppose α1 = 1
7 , α2 = 1

7 , α3 = 1
7 , α4 = 1

14 , α5 = 1
14 ∈ [0, 1) with α1 + α2 +

α3 + 2α4 + 2α5 = 10
14 < 1. Thus using Theorem 2.2, T is a Picard operator.

Notice that 0.4 ∈ X is a fixed point of T .

It is easy to see that if we choose x = 0, y = 1, T is not a Banach contraction.

Theorem 2.4. Let T be a self mapping from a complete metric space (X, d) into
itself satisfying (1). Suppose that for some positive integer n, T n is continuous.
Then T is a Picard operator.

Proof. On the same lines of Theorem 2.2, we define a sequence {xn} convergent
to u ∈ X . Therefore, there is a subsequence {xni

} of {xn}, converging to u. By
the continuity of T n, we have

T n(u) = T n( lim
i→∞

xni
)

= lim
i→∞

T n(xni
)

= lim
i→∞

xni+1

= u.

Hence u is a fixed point of T n.

Now, we show that Tu = u. Let m be the smallest positive integer such that
Tm(u) = u and T p(u) 6= u, for p = 1, 2, ...,m− 1. If m = 1, we have the result.
Consider m > 1 and using inequality (1), we have

d(Tu, u) = d(Tu, Tm(u))

≤ α1
d(u, Tu)[1 + d(Tm−1u, T (Tm−1u))]

1 + d(u, Tm−1u)
+ α2

d(u, Tu)d(Tm−1u, T (Tm−1u))

1 + d(u, Tm−1u)

+α3(d(u, T
m−1u)) + α4(d(u, Tu) + d(Tm−1u, T (Tm−1u)))

+α5(d(u, T (T
m−1u)) + d(Tm−1u, Tu))

< (α1 + α2)d(u, Tu) + α3(d(u, T
m−1u)) + α4(d(u, Tu) + d(Tm−1u, u))

+α5(d(T
m−1u, Tu))

≤ (α1 + α2)d(u, Tu) + α3(d(u, T
m−1u)) + α4(d(u, Tu) + d(Tm−1u, u))

+α5(d(T
m−1u, u) + d(u, Tu)).

This implies that d(u, Tu) < kd(u, Tm−1u), where k = α3+α4+α5

1−(α1+α2+α4+α5)
. Now,
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inductively, we get

d(u, Tm−1(u)) = d(Tmu, Tm−1(u))

≤ kd(Tm−1u, Tm−2(u))

≤ k2d(Tm−2u, Tm−3(u)) ≤ ... ≤ km−1d(Tu, u),

where k = α3+α4+α5

1−(α1+α2+α4+α5)
. Notice that k < 1. Therefore

d(u, Tu) ≤ kmd(u, Tu) < d(u, Tu),

which is a contradiction. Hence Tu = u. The uniqueness follows easily. Hence
the result.

Theorem 2.5. Let (X, d) be a complete metric space and T be self mapping on
X such that for all x ∈ X and Tx 6= T 2x, we have

d(Tx, T 2x) ≤α1
[1 + d(x, Tx)]d(Tx, T 2x)

1 + d(x, Tx)
+ α2

d(x, Tx)d(Tx, T 2x)

1 + d(x, Tx)

+ α3d(x, Tx) + α4(d(x, Tx) + d(Tx, T 2x)) + α5d(x, T
2x),

(4)

where αi ∈ [0, 1) (i = {1, 2, 3, 4, 5}) with α1 + α2 + α3 + 2α4 + 2α5 < 1 and
α4 + α5 < 1.

Then T is a Picard operator.

Proof. Let x0 be an arbitrary point in X . We assume that x0 6= Tx0 for all
x0 ∈ X . Let {xn} be the Picard sequence in X such that xn+1 = Txn = T nx0,
and bn = d(xn, xn+1) = d(T nx0, T

n+1x0) for every n ≥ 0. So, from (4), we have

bn+1 = d(xn+1, xn+2) = d(T nx0, T
n+1x0)

≤ α1
[1 + bn]bn+1

1 + bn
+ α2

bnbn+1

1 + bn
+ α3bn + α4(bn + bn+1)

+α5(d(xn, T xn+1))

≤ (α1 + α2)bn+1 + α2bn + α3(bn + bn+1) + α4(bn + bn+1)

= (α1 + α2 + α3 + α4)bn+1 + (α2 + α3 + α4)bn,

which implies that

bn+1 ≤
α2 + α3 + α4

1− (α1 + α2 + α3 + α4)
bn. (5)

Here, k = α2+α3+α4

1−(α1+α2+α3+α4)
< 1. Hence sequence {d(T nx0, T

n+1x0)} is a de-

creasing sequence. Using mathematical induction, we have

bn+1 ≤ (k)
n+1

b0. (6)

Taking the limit n → ∞, we have bn+1 → 0.
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We claim that {xn} is a Cauchy sequence. For m > n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + ...+ d(xn+1, xn)

≤ (km−1 + km−2 + ...+ kn)d(x1, x0)

≤
kn(1− km−n)

1− k
d(x1, x0).

Therefore, d(xm, xn) → 0, when m,n → ∞. Thus {xn} is a Cauchy sequence in
a complete metric space X and so there exists u ∈ X such that limn→∞ xn = u.

If u = Tu, we have the result. Assume that u 6= Tu. If Txn = Tu for infinite
values of n ≥ 0, then the sequence {xn} has a subsequence that converges to Tu
and uniqueness of limit implies u = Tu. Then we can assume that Txn 6= Tu
for all n ≥ 0. Consider

d(Tu, xn+1) = d(Tu, T 2xn−1)

≤ α1
d(Txn−1, T

2xn−1)[1 + d(u, Tu)]

1 + d(u, Txn−1)
+ α2

d(Txn−1, T
2xn−1)d(u, Tu)

1 + d(u, Txn−1)

+α3(d(u, Txn−1)) + α4(d(Txn−1, T
2xn−1) + d(u, Tu))

+α5(d(Txn−1, T u) + d(u, T 2xn−1))

= α1
d(xn, xn+1)[1 + d(u, Tu)]

1 + d(xn, u)
+ α2

d(xn, xn+1)d(u, Tu)

1 + d(xn, u)
+ α3(d(xn, u))

+α4(d(xn, xn+1) + d(u, Tu)) + α5(d(xn, T u) + d(u, xn+1)).

Taking n → ∞, we have d(u, Tu) ≤ (α4 + α5)d(u, Tu). This implies (1 − (α4 +
α5)) d(u, Tu) ≤ 0, which is a contradiction. Thus d(u, Tu) = 0. Hence u is a
fixed point of T . It is easy to verify that u is unique fixed point of T .

Theorem 2.6. Let (X, d) be a complete metric space and T be a self mapping
defined on X. Suppose that for some positive integer m, T satisfies the following
condition

d(Tmx, Tmy) ≤α1
d(x, Tmx)[1 + d(y, Tmy)]

1 + d(x, y)
+ α2

d(x, Tmx)d(y, Tmy)

1 + d(x, y)

+ α3(d(x, y)) + α4(d(x, T
mx) + d(y, Tmy))

+ α5(d(x, T
my) + d(y, Tmx)),

(7)

for all x, y ∈ X and for some αi ∈ [0, 1) (i = {1, 2, 3, 4, 5}) with α1 + α2 +
α3 + 2α4 + 2α5 < 1 and α4 + α5 < 1. If Tm is continuous, then T is a Picard
operator.

Proof. By Theorem 2.2, we conclude that Tm has a unique fixed point, say
u ∈ X . Consider

Tu = T (Tmu) = Tm(Tu).

Thus Tu is also a fixed point of Tm. But by Theorem 2.2, we know that Tm has
a unique fixed point u. It follows that u = Tu. Hence the result.
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Example 2.7. Let X = [0, 1] and d be a usual metric on X . Define T : X → X
as

Tx =

{

0 if x ∈ [0, 13 ],
1
3 if x ∈ (13 , 1].

Then choosing appropriately αi ∈ [0, 1) (i = {1, 2, 3, 4, 5}) with α1 + α2 + α3 +
2α4 + 2α5 < 1, inequality (7) of Theorem 2.6 is satisfied for all x, y ∈ X . Thus
using Theorem 2.6, T 2x = 0 for all x ∈ [0, 1] and 0 is a fixed point of T 2 and
hence of T .

Haghi et al. [14], in 2011, proved the following lemma by using the axiom of
choice.

Lemma 2.8. Let X be a nonempty set and T : X → X a function. Then there
exist a set E ⊆ X such that T (E) = T (X) and T : E → X is one-to-one.

By using the above lemma and Theorem 2.2, we prove the following common
fixed point theorem for two self maps.

Theorem 2.9. Let (X, d) be a complete metric space and T, S be two self maps
on X. Suppose that there exist αi ∈ [0, 1) (i = {1, 2, 3, 4, 5}) with α1+α2+α3+
2α4 + 2α5 < 1 and α4 + α5 < 1 such that for all x, y ∈ X, we have

d(Tx, T y) ≤α1
d(Sx, Tx)[1 + d(Sy, T y)]

1 + d(Sx, Sy)
+ α2

d(Sx, Tx)d(Sy, T y)

1 + d(Sx, Sy)

+ α3(d(Sx, Sy)) + α4(d(Sx, Tx) + d(Sy, T y))

+ α5(d(Sx, T y) + d(Sy, Tx)).

(8)

satisfying If T (X) ⊆ S(X) and S(X) is a complete subset of X then T and S
have a unique common fixed point in X.

Proof. By using Lemma 2.8, there exist E ⊆ X such that S(E) = S(X) and S :
E → X is one-to-one. Define h : S(E) → S(E) by h(Su) = Tu. Clearly, h is well

defined as S is one-to-one on E. Also, d(h(Su), h(Sv)) ≤ α1
d(Sx,Tx)[1+d(Sy,Ty)]

1+d(Sx,Sy) +

α2
d(Sx,Tx)d(Sy,Ty)

1+d(Sx,Sy) +α3(d(Sx, Sy))+α4(d(Sx, Tx)+d(Sy, T y))+α5(d(Sx, T y)+

d(Sy, Tx)) for all Sx, Sy ∈ S(E). Since S(E) = S(X) is complete, by using
Theorem 2.2, we can easily prove that T and S have a unique common fixed
point in X .

3. Ordered Metric Spaces

Fixed point theory for self mappings on partially ordered sets has been initiated
by Ran and Reurings [22], in dealing with matrix equations, and continued by
many mathematicians, particularly in dealing with differential equations.
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Let (X, d) be a metric space and (X,≤) be a partially ordered non-empty
set. The triplet (X, d,≤) is called a metric space endowed with partial order.
Moreover, two elements x, y ∈ X are called comparable if x ≤ y or y ≤ x holds.
A self mapping T on a partially ordered set (X,≤) is called nondecreasing if
Tx ≤ Ty whenever x ≤ y for all x, y ∈ X . Also, a metric space endowed with a
partial order (X, d,≤) is called regular if for every nondecreasing sequence {xn}
in X , convergent to some x ∈ X , we get xn ≤ x for all n ∈ N ∪ {0}.

Theorem 3.1. Let (X, d,≤) be a complete metric space endowed with a partial
order and T be a nondecreasing self mapping on X. Assume that there exist
αi ∈ [0, 1) (i = {1, 2, 3, 4, 5}) with α1+α2+α3+2α4+2α5 < 1, α1+α4+α5 < 1
and α3 + 2α5 < 1 such that for all comparable x, y ∈ X, we have

d(Tx, T y) ≤ α1
d(y, T y)[1 + d(x, Tx)]

1 + d(x, y)
+ α2

d(x, Tx)d(y, T y)

1 + d(x, y)
+ α3(d(x, y))

+α4(d(x, Tx) + d(y, T y)) + α5(d(x, T y) + d(y, Tx)). (9)

Further if there exists x0 ∈ X such that x0 ≤ Tx0 and X is regular, then T has
a fixed point. Moreover, the set of fixed points of T is well ordered if and only if
T has a unique fixed point.

Proof. Let x0 be an arbitrary point in X such that x0 ≤ Tx0 and {xn} be the
Picard sequence in X such that xn+1 = Txn = T nx0, for every n ≥ 0. As T is
nondecreasing, we deduce that

x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . , (10)

that is, xn and xn+1 are comparable and Txn 6= Txn+1 for all n ∈ N.

Proceeding as in the Proposition 2.1 and Theorem 2.2, we obtain that {xn} is
a Cauchy sequence. Since (X, d) is a complete metric space, there exists u ∈ X
such that limn→∞ xn = u.

If u = Tu, we have the result. Assume that u 6= Tu. Since X is regular, from
(10) we deduce that xn and u are comparable and Txn 6= Tu for all n ∈ N∪{0}.
Consider

d(xn+1, T u) = d(Txn, T u)

≤ α1
[1 + d(xn, T xn)]d(u, Tu)

1 + d(xn, u)
+ α2

d(xn, T xn)d(u, Tu)

1 + d(xn, u)
+ α3(d(xn, u))

+α4(d(xn, T xn) + d(u, Tu)) + α5(d(xn, T u) + d(u, Txn))

= α1
[1 + d(xn, xn+1)]d(u, Tu)

1 + d(xn, u)
+ α2

d(xn, xn+1)d(u, Tu)

1 + d(xn, u)
+ α3(d(xn, u))

+α4(d(xn, xn+1) + d(u, Tu)) + α5(d(xn, T u) + d(u, xn+1)).

Taking n → ∞, we have d(u, Tu) ≤ (α1 + α4 + α5)d(u, Tu). This implies
(1 − (α1 + α4 + α5))d(u, Tu) ≤ 0, which is a contradiction. Thus d(u, Tu) = 0.
Hence u is a fixed point of T .
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Next, we assume that the set of fixed points of T is well-ordered. We claim
that the fixed point of T is unique. Assume on the contrary that there exists
another fixed point w in X such that u 6= w. Then, by using the condition (9)
with x = u and y = w, we get

d(Tu, Tw) ≤ α1
[1 + d(u, Tu)]d(w, Tw)

1 + d(u,w)
+ α2

d(u, Tu)d(w, Tw)

1 + d(u,w)
+ α3(d(u,w))

+α4(d(u, Tu) + d(w, Tw)) + α5(d(u, Tw) + d(w, Tu))

= (α3 + 2α5) d(u,w).

This implies (1− (α3+2α5))d(u,w) ≤ 0, which is a contradiction. Hence u = w.
Conversely, if T has a unique fixed point, then the set of fixed points of T , being
a singleton, is well-ordered.

4. Best Approximation

As an application of results proved in the previous sections, we prove some results
on the set of best approximation.

Here, F (T ) denotes the set of all fixed points of T , clA denotes the closure
of set A and dist(x,A) denotes distance of set A from a point x.

Theorem 4.1. Let T be a self mapping of a normed linear space E with x ∈ F (T ).
If C ⊆ E, D = PC(x) is nonempty, closed and starshaped with star-center p,
clT (D) ⊆ D, clT (D) is compact, T is continuous on D and

||Tx− Ty|| ≤α1
dist(x, [Tx, p])[1 + dist(y, [Ty, p])]

1 + ||x− y||

+ α2
dist(x, [Tx, p])dist(y, [Ty, p])

1 + ||x− y||

+ α3||x− y||+ α4(dist(x, [Tx, p]) + dist(y, [Ty, p]))

+ α5(dist(x, [Ty, p]) + dist(y, [Tx, p])),

(11)

for all x, y ∈ D, where αi ∈ [0, 1), (i = {1, 2, 3, 4, 5}) with α1 + α2 + α3 + 2α4 +
2α5 < 1 and α4 + α5 < 1. Then D ∩ F (T ) 6= ∅.

Proof. Since D is nonempty and starshaped, there exists a star-center p in D
such that λp + (1 − λ)z ∈ D, for all z ∈ D, 0 ≤ λ ≤ 1. Define Tn : D → D
as Tnz = λnTz + (1 − λn)p, z ∈ D where {λn} is a sequence in (0, 1) such that
λn → 1. Also, from (11), we have

||Tnz − Tny|| = λn||Tz − Ty||

≤ λn[α1
dist(z, [Tz, p])[1 + dist(y, [Ty, p])]

1 + ||z − y||
+ α2

dist(z, [Tz, p])dist(y, [Ty, p])

1 + ||z − y||

+α3||z − y||+ α4(dist(z, [Tz, p]) + dist(y, [Ty, p]))
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+α5(dist(z, [Ty, p]) + dist(y, [Tz, p]))]

≤ λn[α1
||z − Tnz||[1 + ||y − Tny||]

1 + ||z − y||
+ α2

||z − Tnz|| ||y − Tny||

1 + ||z − y||

+α3||z − y||+ α4(||z − Tnz||+ ||y − Tny||)

+α5(||z − Tny||+ ||y − Tnz||)],

where λn[α1+α2+α3+2α4+2α5] < 1. Therefore by Theorem 2.2, each Tn has
a unique fixed point zn in D. Since clT (D) is compact, there is a subsequence
{Tzni

} of {Tzn} such that Tzni
→ z0 ∈ D. We claim that Tz0 = z0. As T is

continuous, we have

zni
= Tni

zni
= λni

Tzni
+ (1− λni

)p → Tz0.

Thus zni
→ Tz0 and consequently, Tz0 = z0 i.e. z0 ∈ D is a T -invariant point.

Let G0 denote the class of closed convex subsets of a normed linear space E
containing 0. For C ∈ G0 and u ∈ E, let Cu = {x ∈ C : ||x|| ≤ 2||u||}. Then
PC(u) ⊂ Cu ∈ G0.

Theorem 4.2. Let T be a continuous self mapping of a normed linear space E
with u ∈ F (T ) and C ∈ G0 such that T (Cu) ⊂ C. Suppose that clT (Cu) is
compact, and ||Tx − u|| ≤ ||x − u|| for all x ∈ Cu. Then we have the following
statements:

(i) PC(u) is nonempty, closed and convex;

(ii) T (PC(u)) ⊆ PC(u);

(iii) PC(u) ∩ F (T ) 6= ∅, provided that T satisfies (11) for some p ∈ PC(u).

Proof. If u ∈ C then the results are obvious. So assume that u /∈ C. If x ∈ C−Cu

then ||x|| > 2||u||. Therefore, ||x − u|| ≥ ||x|| − ||u|| > 2||u|| − ||u|| = ||u|| ≥
dist(u,C). Since cl(T (Cu)) is compact, and by the continuity of the norm, there
exists z ∈ cl(T (Cu)) such that dist(u, cl(T (Cu))) = ||z − u||. Hence

dist(u,C) ≤ dist(u, cl(T (Cu))) as T (Cu) ⊆ C =⇒ clT (Cu) ⊆ C

≤ dist(u, T (Cu))

≤ ||u− Tx||

≤ ||u− x||,

for all x ∈ Cu. Therefore, ||z − u|| ≤ dist(u,Cu) = dist(u,C) and ||z − u|| =
dist(u,C), i.e.

dist(u,C) = dist(u, clT (Cu)) = ||z − u||.

Hence z ∈ PC(u) and so PC(u) is nonempty. The closedness and convexity follow
from that of C. This proves (i).
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Now to prove T (PC(u)) ⊆ PC(u), let y ∈ T (PC(u)). Then y = Tz, for some
z ∈ PC(u) ⊂ Cu. Consider

||u− y|| = ||u− Tz|| ≤ ||u− z|| = dist(u,C),

and so y ∈ PC(z) as PC(u) ⊂ Cu implies that T (PC(u)) ⊂ C, that is, y ∈ C and
T (PC(u)) ⊆ PC(u).

Using the similar arguments as in Theorem 4.1, it is easy to show that PC(u)∩
F (T ) 6= ∅.

We now prove a result for T -invariant points from the set of best coapproxi-
mations.

Theorem 4.3. Let T be a continuous self mapping satisfying condition ||Tx−y|| ≤
||x − y||, for all x, y ∈ E and inequality (11) on a normed linear space E, G a
subset of E such that RG(x) is compact and starshaped. Then RG(x) contains
a T -invariant point.

Proof. Let g0 ∈ RG(x). Consider

||Tg0 − g|| ≤ ||g0 − g|| ≤ ||x− g||,

for all g ∈ G and so Tg0 ∈ RG(x), i.e. T : RG(x) → RG(x). Since RG(x)
is starshaped, there exists p ∈ RG(x) such that λz + (1 − λ)p ∈ RG(x) for all
z ∈ RG(x), λ ∈ [0, 1).

Let {λn}, 0 ≤ λn < 1, be a sequence of real numbers such that λn → 1 as
n → ∞. Define Tn : RG(x) → RG(x) as Tnz = λnTz + (1 − λn)p, z ∈ RG(x).
Since T is a self map on RG(x) and RG(x) is starshaped, each Tn is a well defined
and maps RG(x) into RG(x). Following the similar lines of Theorem 4.1, each
Tn has a unique fixed point xn in RG(x) i.e. Tnxn = xn for each n. Since RG(x)
is compact, {xn} has a subsequence xni

→ x ∈ RG(x).

Now, we claim that Tx = x. As T is continuous, we have

xni
= Tni

xni
= λni

Txni
+ (1− λni

)p → Tx.

Thus xni
→ Tx and consequently, Tx = x i.e. x ∈ RG(x) is a T -invariant point.

Remark 4.4.

(i) When α1 = α2 = α4 = α5 = 0, in Theorem 2.2, we have a famous Banach
contraction principle.

(ii) When α1 = α2 = α3 = α5 = 0, in Theorem 2.2, we have a Kannan
contraction mapping (see [15]).

(iii) When α1 = α2 = α3 = α4 = 0, in Theorem 2.2, we have a Fisher con-
traction mapping (see [11]). A similar conclusion was also obtained by
Chatterjea (see [6]).



Best Approximation and Fixed Points 703

(iv) Contraction maaping (1) in Theorem 2.2, is also an extension of Reich type
contraction mapping (see [24]).

(v) For different variants of inequality (1), we have many interesting results
by appropriately choosing αi, i = {1, 2, 3, 4, 5}.
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