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Abstract. In this paper, we give the classification of the Gelfand space of uniform

algebra Aα on 2-torus. Moreover, we introduce the uniform algebra AS on n-torus Tn.

We give the Gelfand space of AS.
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1. Introduction

Let T2 denote the 2-torus T × T, where T denotes the unit circle. Let dµ be
normalized Lebesgue measure on T2, If f : T2 → C is in L2, the Fourier transform
is a function on Z2 given by

f̂(m,n) =

∫
T2

f(eis, eit)e−i(ms+nt)dµ.

∗This work is supported partially by NSF of China (Grant Nos. 11671314 and 12171251).
†Corresponding author.
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If α is a positive irrational number, define Aα to be the set of continuous func-
tions f : T2 → C with the property that

f̂(m,n) = 0 whenever m+ αn < 0.

By the continuity of the Fourier transform, Aα is a Banach space, and it is also
a uniform algebra under the norm

‖f‖ = sup
(z,w)∈T2

|f(z, w)|.

For more information, one can see [4]. It follows from [3, Corollary 15.18] that
the C∗-enveloping C∗

e (Aα) is C(S), where S is the Shilov boundary of Aα. It
follows from [6, Section 6] that S = T2.

In this paper, we will generalize Aα to high dimension, that is, define the
uniform algebra AS in n-torus T

n. Then we give the Gelfand space of AS.
Furthermore, we will give the classfication of Gelfand space of Aα in section 3.

2. Uniform Algebras on n-torus

For any m = (m0,m1, · · · ,mn) ∈ Zn+1 and ϑ = (θ0, θ2, · · · , θn) ∈ [0, 2π]n+1, let

m · ϑ := m0θ0 +m1θ1 + · · ·+mnθn.

For every function f ∈ C(Tn+1), its Fourier coefficients f̂(m) defined by

f̂(m) =

∫
[0,2π]

· · ·

∫
[0,2π]

f(θ)e−im·θdθ0dθ1 · · · dθn.

One can see [2] for more information about the Fourier analysis on n-torus Tn.

Let a1, a2, · · · , an be positive irrational numbers such that a1, a2, · · · , an are
linear independent in Z. Let

S = {(m0,m1, · · · ,mn) ∈ Z
n+1 : m0 +m1a1 + · · ·+mnan ≥ 0}

and
AS = {f ∈ C(Tn+1) : f̂(m) = 0 if m 6∈ S}.

By [2, Proposition 3.2.7], it is easy to see that AS is a uniform algebra. Moreover,
AS is a Dirichlet algebra, that is, AS + A∗

S
is dense in C(Tn+1) (the reason is

similar to the argument in [4, p. 91]).

Let D = {z ∈ C : |z| < 1} and D denote the closure of D in C. Put

A(Dn+1) = {f ∈ C(Tn+1) : f̂(m) = 0 if mi ≤ 0 for some i}.

Suppose that X ⊂ Cn+1, recall that h(X) is the set consisting of y such that
|p(y)| ≤ maxx∈X |p(x)| for any polynomial p (see [6, Definition 1.1]).
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Let p be any polynomial and assume that

p(x0, x1, · · · , xn) =

k∑
j=0

bjx
m

j
0

0 x
m

j
1

1 · · ·x
mj

n
n ,

where mj
0,m

j
1, · · · ,m

j
n ∈ N. If the function |p| attains its maximum on D

n+1

at z̃ = (z0, z1, · · · , zn) and there exists i such that |zi| < 1. Without loss of
generality, assume |z0| < 1 and |zi| = 1 for 1 ≤ i ≤ n. Since

max
z∈D

n+1
|p(z)| = |p(z0, z1, · · · , zn)| = |

k∑
j=0

bjz
m

j
0

0 z
m

j
1

1 · · · z
mj

n
n |,

by Maximum Modulus Principle one can derive that

max
z∈D

n+1
|p(z)| = |

k∑
j=0

(bjz
m

j
1

1 · · · z
mj

n
n )z

m
j
0

0 | < |

k∑
j=0

(bjz
m

j
1

1 · · · z
mj

n
n )x′m

j
0 |,

where |x′| = 1. Therefore, we have that

max
z∈D

n+1
|p(z)| = |p(z0, z1, · · · , zn)| < |p(x′, z1, · · · , zn)|,

which contradicts to that |p| attain its maximum at z̃ = (z0, z1, · · · , zn) ∈ D
n+1

.

Theorem 2.1. The Gelfand space for A(Dn+1) is D
n+1

.

Proof. The Gelfand space for A(Dn+1) is h(Tn+1) (see [6, Theorem 1.1]). More-

over, h(Tn+1) is D
n+1

by the above discription.

Since A(Dn+1) ⊂ AS ⊂ C(Tn+1), we have that

MC(Tn+1) ⊂MAS
⊂MA(Dn+1).

Let

G = {(z0, z1, · · · , zn) ∈ D
n+1

: |z1| = |z0|
a1 , |z2| = |z0|

a2 , · · · , |zn| = |z0|
an},

and we will prove that G =MAS
.

Theorem 2.2. Let z = (z0, z1, · · · , zn),w = (w0, w1, · · · , wn) ∈ G be such that
|z0|, |w0| 6= 1 and z0, w0 6= 0. Then for any ε > 0, there exist x1, x2, · · · , xn and
y1, y2, · · · , yn and q, p1, p2, · · · , pn such that

(i) |x1| = |xi| < 1 for any i = 1, 2, · · · , n;

(ii) |y1| = |yi| < 1 for any i = 1, 2, · · · , n;
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(iii) 0 < ai −
pi

q
< ε for any i = 1, 2, · · · , n;

(iv) |xq1 − z0|+ |xp1

1 − z1|+ · · ·+ |xpn
n − zn| < ε;

(v) |yq1 − w0|+ |yp1

1 − w1|+ · · ·+ |ypn
n − wn| < ε.

Proof. Let k ∈ Z, q = 2k and L = {x ∈ C : xq = z0} and J = {y ∈ C : yq = z0}.
Then

| |x|p − |zi|| = | |z0|
p
q − |z0|

ai | ∀x ∈ L;

| |y|p − |wi|| = | |w0|
p
q − |w0|

ai |, ∀x ∈ L.

One can choose odd numbers p1, p2, · · · , pn such that 0 < ai −
pi

q
< 1

2k for each

i = 1, 2, · · · , n. Since the maximum common factor for pi and 2k is 1, there
exists xi ∈ L and yi ∈ J such that

| arg(xpi

i )− arg(zi)| ≤
2π

2k
, ∀ i = 1, 2, · · · , n;

| arg(ypi

i )− arg(wi)| ≤
2π

2k
, ∀ i = 1, 2, · · · , n.

Therefore, the proof is complete when k is sufficiently large.

Theorem 2.3. Let f(x) =
∑k

j=0 cjx
m

j
0

0 x
m

j
1

1 · · ·x
mj

n
n , where mj

0 +m
j
1a1 +m

j
2a2 +

· · ·+mj
nan > 0 for every j = 0, 1, 2, · · · , k, and if t1, t2, · · · , tn satisfy

(i) ti < ai for each i = 1, 2, · · · , n;

(ii) mj
0 +m

j
1t1 +m

j
2t2 + · · ·+mj

ntn > 0 for each j = 0, 1, 2, · · · , k;

(iii) for any subset I ⊂ {1, 2, · · · , n}, we have that

j0 +
∑
i∈I

m
j
iai +

∑
i6∈I

m
j
i ti > 0.

Then f is continuous at Q = {z = (z0, z1, · · · , zn) ∈ Dn+1 : |z0|
ai ≤ |zi| ≤

|z0|
ti for all 1 ≤ i ≤ n}.

Proof. We only need to show that f is continuous on 0, that is,

lim
z∈Q,z→0

z
m

j
0

0 z
m

j
1

1 · · · z
mj

n
n = 0

for every j = 0, 1, 2, · · · , k. We will divide into two cases.

Case 1 : Suppose that mj
i ≥ 0 for every i = 1, 2, · · · , n. Then we can derive

that

|z
m

j
0

0 z
m

j
1

1 · · · z
mj

n
n | = |z0|

m
j
0 |z1|

m
j
1 · · · |zn|

mj
n

≤ |z0|
m

j
0
+m

j
1
t1+m

j
2
t2+···+mj

ntn → 0.
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Case 2 : Suppose that there exists i such that mj
i < 0. Without loss of

generality, we can assume that mj
1 < 0 and the others are positive. Then we

have that

|z
m

j
0

0 z
m

j
1

1 · · · z
mj

n
n | ≤ |z0|

m
j
0
+m

j
1
a1+m

j
2
t2+···+mj

ntn → 0.

By Theorem 2.3, it is easy to prove the following result.

Theorem 2.4. There exist t1, t2, · · · , tn satisfy the conditions (i)-(iii) of Theorem
2.3, and for any t′1, t

′
2, · · · , t

′
n with ti ≤ t′i < ai (i = 1, 2, · · · , n), we have that

t′1, t
′
2, · · · , t

′
n also satisfy the conditions (i)-(iii) of Theorem 2.3.

Theorem 2.5. Let f(x) =
∑k

j=0 cjx
m

j
0

0 x
m

j
1

1 · · ·x
mj

n
n satisfy mj

0 +m
j
1a1 +m

j
2a2 +

· · · +mj
nan ≥ 0 for every j = 0, 1, 2, · · · , k. Then the maximum of |f | on G is

attained at some z̃ = (z0, z1, · · · , zn) with |z0| = 1.

Proof. For any z = (z0, z1, · · · , zn) ∈ G with 0 < |z0| < 1 and any ε > 0, it fol-
lows from Theorem 2.2 that there exist q, p1, p2, · · · , pn, y1, y2, · · · , yn such that
|yi| = |y1| and ti <

pi

q
< ai for each 1 ≤ i ≤ n (that is, (yq1, y

p1

1 , y
p2

2 , · · · , y
pn
n ) ∈

Q) and
|z0 − y

q
1|+ |z1 − y

p1

1 |+ |z2 − y
p2

2 |+ · · ·+ |zn − ypn
n | ≤ ε.

Here, t1, t2, · · · , tn are defined in Theorem 2.4. Since yi = eiθiy1, one can derive
that

f(yq1 , y
p1

1 , y
p2

2 , · · · , y
pn
n )

= f(yq1 , y
p1

1 , (e
iθ2y1)

p2 , · · · , (eiθny1)
pn)

=

k∑
j=0

cj(y
q
1)

m
j
0(yp1

1 )m
j
1((eiθ2y1)

p2)m
j
2 · · · ((eiθny1)

pn)m
j
n

=

k∑
j=0

c′jy
qm

j
0
+p1m

j
1
+···+pnm

j
n

1 .

It follows from Theorem 2.4 that qmj
0 + p1m

j
1 + · · · + pnm

j
n ≥ 0 for any j =

0, 1, 2, · · · , k. By the Maximum Modulus Principle, there exists t0 with |t0| = 1
such that

f(yq1, y
p1

1 , y
p2

2 , · · · , y
pn
n )

<

k∑
j=0

c′jt
qj0+p1j1+···+pnjn
0

=

k∑
j=0

cj(t
q
0)

j0(tp1

0 )j1((eiθ2t0)
p2 )j2 · · · ((eiθn t0)

pn)jn

= f(tq0, t
p1

0 , (e
iθ2t0)

p2 , · · · , (eiθnt0)
pn).
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Note that (tq0, t
p1

0 , (e
iθ2t0)

p2 , · · · , (eiθnt0)
pn) ∈ Tn+1, the proof is complete.

It follows from Theorem 2.5 that G ⊂MAS
, and we will prove that G =MAS

.

Theorem 2.6. Suppose that z = (z0, z1, · · · , zn) ∈ D
n+1

and z 6∈ G and there
exist some i such that zi = 0. Then z 6∈MAS

.

Proof. Without loss of generality, assume that z = (z0, 0, z2, · · · , zn) with z0 6= 0.
Suppose on the contrary that z ∈ MAS

, choose a function f0(x0, x1, · · · , xn) =
xm0

0 xm1

1 , where m0 > 0,m1 < 0 and m0 + a1m1 > 0. Then f0 ∈ AS. Put
g0(x0, x1, · · · , xn) = x−m1

1 . Then we have that

zm0

0 = z(f0g0) = z(f0)z(g0) = 0,

which is a contradiction since zm0

0 6= 0.

Corollary 2.7. Suppose that z = (z0, z1, · · · , zn) ∈ D
n+1

, z 6∈ G and zi 6= 0 for all
0 ≤ i ≤ n. Then there existm0,m1, · · · ,mn such thatm0+a1m1+· · ·+anmn ≥ 0
and the function g(x0, x1, · · · , xn) = xm0

0 xm1

1 · · ·xmn
n satisfies |g(z)| > 1.

Proof. Since z 6∈ G, there exists i such that |z0|
a
i 6= |zi|. By [5, p. 12], if

m0+aimi > 0, the function f(x0, x1, · · · , xn) = xm0

0 xmi

i satisfies that |f(z)| > 1,
which implies that z 6∈MAS

.

Corollary 2.8. MAS
= G.

Proof. It follows from Theorem 2.6 and Corollary 2.7 thatMAS
⊂ G. Therefore,

G =MAS
.

3. Classifications of the Gelfand Space of Aα

In this section, let α be a positive irrational number, we will classify the Gelfand
space Mα of Aα.

At first, we will define the equivalent relation in the Gelfand space MA of
the uniform algebra A.

Definition 3.1. Let A be a uniform algebra and φ, θ ∈ MA. We say that φ ∼ ψ

if exist c > 0 such that
1

c
<
µ(θ)

µ(φ)
< c

for all µ ∈ Re(A) with µ > 0. The relation ∼ is a equivalent relation, and the
equivalent classes induced by ∼ are called parts (see [1, p. 142]).

Remark 3.2. It follows from [6, p. 89] that {0} is a singleton part.
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Theorem 3.3. Let θ = (z0, z
α
0 ), φ = (w0, w

α
0 ) ∈Mα. Suppose that 0 < z0 < w0 <

1 and 2w0

3−w0
< z0 < w0. Then we have that θ ∼ φ.

Proof. Let f(x) =
∑k

j=0 cjx
m0

j

0 x
m1

j

1 be such that Ref > 0 and m0
j +αm1

j ≥ 0 for
any j = 0, 1, · · · , k. By Theorem 2.2, for any ε > 0, there exist z̃, w̃, q, p such
that

(a) the maximum common factor of p, q is 1,

(b) 0 < α− p

q
< ε,

(c) |z̃q − z0|+ |z̃p − z1| < ε,

(d) |w̃q − w0|+ |w̃p − w1| < ε.

Note that z̃, w̃ are the qth roots of z, w, respectively. Choose m0
j and m1

j

such that m0
jq + m1

jp ≥ 0 for all j = 0, 1, 2, · · · , k. Then one can derive that
g(t) := f(tq, tp) is a polynomial with respect to t. Let u(t) = Reg(t). Then we
have

Ref(z̃q, z̃p)

Ref(w̃q, w̃p)
=

Reg(z̃)

Reg(w̃)
=
u(z̃)

u(w̃)
.

Since t
1
n
−1 converge to t−1 uniformly on [z0, w0], there exists q such that t

1
q
−1 <

2
z0

for all t ∈ [z0, w0], which implies that

w̃ − z̃ = w
1
q

0 − z
1
q

0 = (w0 − z0)
1

q
t̃
1
q
−1 < (w0 − z0)

2

qz0
,

where z0 < t̃ < w0. Note that 2w0
3−w0

≤ z0 < w0, we have that

w̃ − z̃ <
2w0

qz0
−

2

q
≤

3− w0

q
−

2

q
=

1

q
(1− w0),

and we also have

1− w̃ >
1

q
(1− w0).

Since u(t) is harmonic on plane and positive on D, by Harnack Inequality (see
[7, Theorem 11.11]), one can derive that

1−w0

q
− (w̃ − z̃)

1−w0

q
+ w̃ − z̃

u(w̃) ≤ u(z̃) ≤

1−w0

q
+ w̃ − z̃

1−w0

q
− (w̃ − z̃)

u(w̃).

It follows from w̃ − z̃ < 2
z0
(w0 − z0) <

1
q
(1 − w0) that

1− w0 −
2
z0
(w0 − z0)

1− w0 +
2
z0
(w0 − z0)

u(w̃) ≤ u(z̃) ≤
1− w0 +

2
z0
(w0 − z0)

1− w0 −
2
z0
(w0 − z0)

u(w̃).

Let

c =
1− w0 −

2
z0
(w0 − z0)

1− w0 +
2
z0
(w0 − z0)

.
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Then one can derive that

c ≤
f(z̃q, z̃p)

f(w̃q, w̃p)
≤

1

c
.

Let q → ∞. We have that c ≤ f(z0,z1)
f(w0,w1)

≤ 1
c
.

For the general g ∈ ReAα with g > 0, the Cesaro means gn converges uni-
formly to g. Since for n ∈ N, gn satisfies that

c ≤
gn(z0, z1)

gn(w0, w1)
≤

1

c
,

one can derive that g satisfies that.

c ≤
g(z0, z1)

g(w0, w1)
≤

1

c
.

Corollary 3.4. Suppose that θ = (z0, z
α
0 ), φ = (w0, w

α
0 ) are two elements in Mα

such that 0 < z0 < w0 < 1. Then θ ∼ φ.

Proof. By Theorem 3.3, if 0 < x < y < 1 such that 2y
3−y

< x ≤ y, then

(x, xα) ∼ (y, yα). For the function defined by

λ(t) = t−
2t

3− t
=
t− t2

3− t
∀ t ∈ [0, 1],

λ(t) has a positive minimum δ on [ z02 ,
1−w0

2 ]. It follows from the transitivity of
∼ that θ ∼ φ.
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