Gelfand Spaces of Uniform Algebras on \boldsymbol{n}-torus*

Yunbai Dong
Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China
Email: baiyunmu301@126.com

Lei Li^{\dagger} and Tong Liu
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
Email: leilee@nankai.edu.cn; 895270374@qq.com

Received 2 November 2021
Accepted 20 March 2022
Communicated by Ngai-Ching Wong
Dedicated to the memory of Professor Ky Fan (1914-2010)

AMS Mathematics Subject Classification(2020): 46J10

Abstract

In this paper, we give the classification of the Gelfand space of uniform algebra \mathcal{A}_{α} on 2-torus. Moreover, we introduce the uniform algebra $\mathcal{A}_{\mathbb{S}}$ on n-torus \mathbb{T}^{n}. We give the Gelfand space of $\mathcal{A}_{\mathbb{S}}$.

Keywords: Uniform algebra; n-tours; Gelfand space.

1. Introduction

Let \mathbb{T}^{2} denote the 2 -torus $\mathbb{T} \times \mathbb{T}$, where \mathbb{T} denotes the unit circle. Let $d \mu$ be normalized Lebesgue measure on \mathbb{T}^{2}, If $f: \mathbb{T}^{2} \rightarrow \mathbb{C}$ is in L^{2}, the Fourier transform is a function on \mathbb{Z}^{2} given by

$$
\hat{f}(m, n)=\int_{\mathbb{T}^{2}} f\left(e^{i s}, e^{i t}\right) e^{-i(m s+n t)} d \mu
$$

[^0]If α is a positive irrational number, define \mathcal{A}_{α} to be the set of continuous functions $f: \mathbb{T}^{2} \rightarrow \mathbb{C}$ with the property that

$$
\hat{f}(m, n)=0 \quad \text { whenever } m+\alpha n<0
$$

By the continuity of the Fourier transform, \mathcal{A}_{α} is a Banach space, and it is also a uniform algebra under the norm

$$
\|f\|=\sup _{(z, w) \in \mathbb{T}^{2}}|f(z, w)| .
$$

For more information, one can see [4]. It follows from [3, Corollary 15.18] that the C^{*}-enveloping $C_{e}^{*}\left(\mathcal{A}_{\alpha}\right)$ is $C(\mathfrak{S})$, where \mathfrak{S} is the Shilov boundary of \mathcal{A}_{α}. It follows from $[6$, Section 6$]$ that $\mathfrak{S}=\mathbb{T}^{2}$.

In this paper, we will generalize \mathcal{A}_{α} to high dimension, that is, define the uniform algebra $\mathcal{A}_{\mathbb{S}}$ in n-torus \mathbb{T}^{n}. Then we give the Gelfand space of $\mathcal{A}_{\mathbb{S}}$. Furthermore, we will give the classfication of Gelfand space of \mathcal{A}_{α} in section 3 .

2. Uniform Algebras on n-torus

For any $\mathfrak{m}=\left(m_{0}, m_{1}, \cdots, m_{n}\right) \in \mathbb{Z}^{n+1}$ and $\vartheta=\left(\theta_{0}, \theta_{2}, \cdots, \theta_{n}\right) \in[0,2 \pi]^{n+1}$, let

$$
\mathfrak{m} \cdot \vartheta:=m_{0} \theta_{0}+m_{1} \theta_{1}+\cdots+m_{n} \theta_{n}
$$

For every function $f \in C\left(\mathbb{T}^{n+1}\right)$, its Fourier coefficients $\hat{f}(\mathfrak{m})$ defined by

$$
\hat{f}(\mathfrak{m})=\int_{[0,2 \pi]} \cdots \int_{[0,2 \pi]} f(\theta) e^{-i m \cdot \theta} d \theta_{0} d \theta_{1} \cdots d \theta_{n}
$$

One can see [2] for more information about the Fourier analysis on n-torus \mathbb{T}^{n}.
Let $a_{1}, a_{2}, \cdots, a_{n}$ be positive irrational numbers such that $a_{1}, a_{2}, \cdots, a_{n}$ are linear independent in \mathbb{Z}. Let

$$
\mathbb{S}=\left\{\left(m_{0}, m_{1}, \cdots, m_{n}\right) \in \mathbb{Z}^{n+1}: m_{0}+m_{1} a_{1}+\cdots+m_{n} a_{n} \geq 0\right\}
$$

and

$$
\mathcal{A}_{\mathbb{S}}=\left\{f \in C\left(\mathbb{T}^{n+1}\right): \hat{f}(\mathfrak{m})=0 \text { if } \mathfrak{m} \notin \mathbb{S}\right\}
$$

By [2, Proposition 3.2.7], it is easy to see that $\mathcal{A}_{\mathbb{S}}$ is a uniform algebra. Moreover, $\mathcal{A}_{\mathbb{S}}$ is a Dirichlet algebra, that is, $\mathcal{A}_{\mathbb{S}}+\mathcal{A}_{\mathbb{S}}^{*}$ is dense in $C\left(\mathbb{T}^{n+1}\right)$ (the reason is similar to the argument in [4, p. 91]).

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $\overline{\mathbb{D}}$ denote the closure of \mathbb{D} in \mathbb{C}. Put

$$
\mathcal{A}\left(\mathbb{D}^{n+1}\right)=\left\{f \in C\left(\mathbb{T}^{n+1}\right): \hat{f}(\mathfrak{m})=0 \text { if } m_{i} \leq 0 \text { for some } i\right\}
$$

Suppose that $X \subset \mathbb{C}^{n+1}$, recall that $h(X)$ is the set consisting of y such that $|p(y)| \leq \max _{x \in X}|p(x)|$ for any polynomial p (see [6, Definition 1.1]).

Let p be any polynomial and assume that

$$
p\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\sum_{j=0}^{k} b_{j} x_{0}^{m_{0}^{j}} x_{1}^{m_{1}^{j}} \cdots x_{n}^{m_{n}^{j}}
$$

where $m_{0}^{j}, m_{1}^{j}, \cdots, m_{n}^{j} \in \mathbb{N}$. If the function $|p|$ attains its maximum on $\overline{\mathbb{D}}^{n+1}$ at $\tilde{\mathfrak{z}}=\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ and there exists i such that $\left|z_{i}\right|<1$. Without loss of generality, assume $\left|z_{0}\right|<1$ and $\left|z_{i}\right|=1$ for $1 \leq i \leq n$. Since

$$
\max _{\mathfrak{z} \in \overline{\mathbb{D}}^{n+1}}|p(\mathfrak{z})|=\left|p\left(z_{0}, z_{1}, \cdots, z_{n}\right)\right|=\left|\sum_{j=0}^{k} b_{j} z_{0}^{m_{0}^{j}} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}\right|
$$

by Maximum Modulus Principle one can derive that

$$
\max _{\mathfrak{z} \in \overline{\mathbb{D}}^{n+1}}|p(\mathfrak{z})|=\left|\sum_{j=0}^{k}\left(b_{j} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}\right) z_{0}^{m_{0}^{j}}\right|<\left|\sum_{j=0}^{k}\left(b_{j} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}\right) x^{\prime m_{0}^{j}}\right|
$$

where $\left|x^{\prime}\right|=1$. Therefore, we have that

$$
\max _{\mathfrak{z} \in \overline{\mathbb{D}}^{n+1}}|p(\mathfrak{z})|=\left|p\left(z_{0}, z_{1}, \cdots, z_{n}\right)\right|<\left|p\left(x^{\prime}, z_{1}, \cdots, z_{n}\right)\right|
$$

which contradicts to that $|p|$ attain its maximum at $\tilde{\mathfrak{z}}=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \overline{\mathbb{D}}^{n+1}$.

Theorem 2.1. The Gelfand space for $\mathcal{A}\left(\mathbb{D}^{n+1}\right)$ is $\overline{\mathbb{D}}^{n+1}$.
Proof. The Gelfand space for $\mathcal{A}\left(\mathbb{D}^{n+1}\right)$ is $h\left(\mathbb{T}^{n+1}\right)$ (see [6, Theorem 1.1]). Moreover, $h\left(\mathbb{T}^{n+1}\right)$ is $\overline{\mathbb{D}}^{n+1}$ by the above discription.

Since $\mathcal{A}\left(\mathbb{D}^{n+1}\right) \subset \mathcal{A}_{\mathbb{S}} \subset C\left(\mathbb{T}^{n+1}\right)$, we have that

$$
M_{C\left(\mathbb{T}^{n+1}\right)} \subset M_{\mathcal{A}_{\mathbb{s}}} \subset M_{\mathcal{A}\left(\mathbb{D}^{n+1}\right)}
$$

Let

$$
\mathbb{G}=\left\{\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \overline{\mathbb{D}}^{n+1}:\left|z_{1}\right|=\left|z_{0}\right|^{a_{1}},\left|z_{2}\right|=\left|z_{0}\right|^{a_{2}}, \cdots,\left|z_{n}\right|=\left|z_{0}\right|^{a_{n}}\right\}
$$

and we will prove that $\mathbb{G}=M_{\mathcal{A}_{\mathbb{s}}}$.

Theorem 2.2. Let $\mathfrak{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right), \mathfrak{w}=\left(w_{0}, w_{1}, \cdots, w_{n}\right) \in \mathbb{G}$ be such that $\left|z_{0}\right|,\left|w_{0}\right| \neq 1$ and $z_{0}, w_{0} \neq 0$. Then for any $\varepsilon>0$, there exist $x_{1}, x_{2}, \cdots, x_{n}$ and $y_{1}, y_{2}, \cdots, y_{n}$ and $q, p_{1}, p_{2}, \cdots, p_{n}$ such that
(i) $\left|x_{1}\right|=\left|x_{i}\right|<1$ for any $i=1,2, \cdots, n$;
(ii) $\left|y_{1}\right|=\left|y_{i}\right|<1$ for any $i=1,2, \cdots, n$;
(iii) $0<a_{i}-\frac{p_{i}}{q}<\varepsilon$ for any $i=1,2, \cdots, n$;
(iv) $\left|x_{1}^{q}-z_{0}\right|+\left|x_{1}^{p_{1}}-z_{1}\right|+\cdots+\left|x_{n}^{p_{n}}-z_{n}\right|<\varepsilon$;
(v) $\left|y_{1}^{q}-w_{0}\right|+\left|y_{1}^{p_{1}}-w_{1}\right|+\cdots+\left|y_{n}^{p_{n}}-w_{n}\right|<\varepsilon$.

Proof. Let $k \in \mathbb{Z}, q=2^{k}$ and $L=\left\{x \in \mathbb{C}: x^{q}=z_{0}\right\}$ and $J=\left\{y \in \mathbb{C}: y^{q}=z_{0}\right\}$. Then

One can choose odd numbers $p_{1}, p_{2}, \cdots, p_{n}$ such that $0<a_{i}-\frac{p_{i}}{q}<\frac{1}{2^{k}}$ for each $i=1,2, \cdots, n$. Since the maximum common factor for p_{i} and 2^{k} is 1 , there exists $x_{i} \in L$ and $y_{i} \in J$ such that

$$
\begin{aligned}
& \left|\arg \left(x_{i}^{p_{i}}\right)-\arg \left(z_{i}\right)\right| \leq \frac{2 \pi}{2^{k}}, \quad \forall i=1,2, \cdots, n \\
& \left|\arg \left(y_{i}^{p_{i}}\right)-\arg \left(w_{i}\right)\right| \leq \frac{2 \pi}{2^{k}}, \quad \forall i=1,2, \cdots, n
\end{aligned}
$$

Therefore, the proof is complete when k is sufficiently large.

Theorem 2.3. Let $f(x)=\sum_{j=0}^{k} c_{j} x_{0}^{m_{0}^{j}} x_{1}^{m_{1}^{j}} \cdots x_{n}^{m_{n}^{j}}$, where $m_{0}^{j}+m_{1}^{j} a_{1}+m_{2}^{j} a_{2}+$ $\cdots+m_{n}^{j} a_{n}>0$ for every $j=0,1,2, \cdots, k$, and if $t_{1}, t_{2}, \cdots, t_{n}$ satisfy
(i) $t_{i}<a_{i}$ for each $i=1,2, \cdots, n$;
(ii) $m_{0}^{j}+m_{1}^{j} t_{1}+m_{2}^{j} t_{2}+\cdots+m_{n}^{j} t_{n}>0$ for each $j=0,1,2, \cdots, k$;
(iii) for any subset $I \subset\{1,2, \cdots, n\}$, we have that

$$
j_{0}+\sum_{i \in I} m_{i}^{j} a_{i}+\sum_{i \notin I} m_{i}^{j} t_{i}>0
$$

Then f is continuous at $\mathcal{Q}=\left\{\mathfrak{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \mathbb{D}^{n+1}:\left|z_{0}\right|^{a_{i}} \leq\left|z_{i}\right| \leq\right.$ $\left|z_{0}\right|^{t_{i}}$ for all $\left.1 \leq i \leq n\right\}$.

Proof. We only need to show that f is continuous on 0 , that is,

$$
\lim _{\mathfrak{z} \in \mathcal{Q}, \mathfrak{z} \rightarrow 0} z_{0}^{m_{0}^{j}} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}=0
$$

for every $j=0,1,2, \cdots, k$. We will divide into two cases.
Case 1: Suppose that $m_{i}^{j} \geq 0$ for every $i=1,2, \cdots, n$. Then we can derive that

$$
\begin{aligned}
\left|z_{0}^{m_{0}^{j}} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}\right| & =\left|z_{0}\right|^{m_{0}^{j}}\left|z_{1}\right|^{m_{1}^{j}} \cdots\left|z_{n}\right|^{m_{n}^{j}} \\
& \leq\left|z_{0}\right|^{m_{0}^{j}+m_{1}^{j} t_{1}+m_{2}^{j} t_{2}+\cdots+m_{n}^{j} t_{n}} \rightarrow 0
\end{aligned}
$$

Case 2: Suppose that there exists i such that $m_{i}^{j}<0$. Without loss of generality, we can assume that $m_{1}^{j}<0$ and the others are positive. Then we have that

$$
\left|z_{0}^{m_{0}^{j}} z_{1}^{m_{1}^{j}} \cdots z_{n}^{m_{n}^{j}}\right| \leq\left|z_{0}\right|^{m_{0}^{j}+m_{1}^{j} a_{1}+m_{2}^{j} t_{2}+\cdots+m_{n}^{j} t_{n}} \rightarrow 0
$$

By Theorem 2.3, it is easy to prove the following result.
Theorem 2.4. There exist $t_{1}, t_{2}, \cdots, t_{n}$ satisfy the conditions (i)-(iii) of Theorem 2.3, and for any $t_{1}^{\prime}, t_{2}^{\prime}, \cdots, t_{n}^{\prime}$ with $t_{i} \leq t_{i}^{\prime}<a_{i}(i=1,2, \cdots, n)$, we have that $t_{1}^{\prime}, t_{2}^{\prime}, \cdots, t_{n}^{\prime}$ also satisfy the conditions (i)-(iii) of Theorem 2.3.

Theorem 2.5. Let $f(x)=\sum_{j=0}^{k} c_{j} x_{0}^{m_{0}^{j}} x_{1}^{m_{1}^{j}} \cdots x_{n}^{m_{n}^{j}}$ satisfy $m_{0}^{j}+m_{1}^{j} a_{1}+m_{2}^{j} a_{2}+$ $\cdots+m_{n}^{j} a_{n} \geq 0$ for every $j=0,1,2, \cdots, k$. Then the maximum of $|f|$ on \mathbb{G} is attained at some $\tilde{\mathfrak{j}}=\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ with $\left|z_{0}\right|=1$.

Proof. For any $\mathfrak{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \mathbb{G}$ with $0<\left|z_{0}\right|<1$ and any $\varepsilon>0$, it follows from Theorem 2.2 that there exist $q, p_{1}, p_{2}, \cdots, p_{n}, y_{1}, y_{2}, \cdots, y_{n}$ such that $\left|y_{i}\right|=\left|y_{1}\right|$ and $t_{i}<\frac{p_{i}}{q}<a_{i}$ for each $1 \leq i \leq n$ (that is, $\left(y_{1}^{q}, y_{1}^{p_{1}}, y_{2}^{p_{2}}, \cdots, y_{n}^{p_{n}}\right) \in$ \mathcal{Q}) and

$$
\left|z_{0}-y_{1}^{q}\right|+\left|z_{1}-y_{1}^{p_{1}}\right|+\left|z_{2}-y_{2}^{p_{2}}\right|+\cdots+\left|z_{n}-y_{n}^{p_{n}}\right| \leq \varepsilon .
$$

Here, $t_{1}, t_{2}, \cdots, t_{n}$ are defined in Theorem 2.4. Since $y_{i}=e^{i \theta_{i}} y_{1}$, one can derive that

$$
\begin{aligned}
& f\left(y_{1}^{q}, y_{1}^{p_{1}}, y_{2}^{p_{2}}, \cdots, y_{n}^{p_{n}}\right) \\
= & f\left(y_{1}^{q}, y_{1}^{p_{1}},\left(e^{i \theta_{2}} y_{1}\right)^{p_{2}}, \cdots,\left(e^{i \theta_{n}} y_{1}\right)^{p_{n}}\right) \\
= & \sum_{j=0}^{k} c_{j}\left(y_{1}^{q}\right)^{m_{0}^{j}}\left(y_{1}^{p_{1}}\right)^{m_{1}^{j}}\left(\left(e^{i \theta_{2}} y_{1}\right)^{p_{2}}\right)^{m_{2}^{j}} \cdots\left(\left(e^{i \theta_{n}} y_{1}\right)^{p_{n}}\right)^{m_{n}^{j}} \\
= & \sum_{j=0}^{k} c_{j}^{\prime} y_{1}^{q m_{0}^{j}+p_{1} m_{1}^{j}+\cdots+p_{n} m_{n}^{j}} .
\end{aligned}
$$

It follows from Theorem 2.4 that $q m_{0}^{j}+p_{1} m_{1}^{j}+\cdots+p_{n} m_{n}^{j} \geq 0$ for any $j=$ $0,1,2, \cdots, k$. By the Maximum Modulus Principle, there exists t_{0} with $\left|t_{0}\right|=1$ such that

$$
\begin{aligned}
& f\left(y_{1}^{q}, y_{1}^{p_{1}}, y_{2}^{p_{2}}, \cdots, y_{n}^{p_{n}}\right) \\
< & \sum_{j=0}^{k} c_{j}^{\prime} t_{0}^{q j_{0}+p_{1} j_{1}+\cdots+p_{n} j_{n}} \\
= & \sum_{j=0}^{k} c_{j}\left(t_{0}^{q}\right)^{j_{0}}\left(t_{0}^{p_{1}}\right)^{j_{1}}\left(\left(e^{i \theta_{2}} t_{0}\right)^{p_{2}}\right)^{j_{2}} \cdots\left(\left(e^{i \theta_{n}} t_{0}\right)^{p_{n}}\right)^{j_{n}} \\
= & f\left(t_{0}^{q}, t_{0}^{p_{1}},\left(e^{i \theta_{2}} t_{0}\right)^{p_{2}}, \cdots,\left(e^{i \theta_{n}} t_{0}\right)^{p_{n}}\right) .
\end{aligned}
$$

Note that $\left(t_{0}^{q}, t_{0}^{p_{1}},\left(e^{i \theta_{2}} t_{0}\right)^{p_{2}}, \cdots,\left(e^{i \theta_{n}} t_{0}\right)^{p_{n}}\right) \in \mathbb{T}^{n+1}$, the proof is complete.

It follows from Theorem 2.5 that $\mathbb{G} \subset M_{\mathcal{A}_{\mathbb{S}}}$, and we will prove that $\mathbb{G}=M_{\mathcal{A}_{\mathbb{S}}}$.
Theorem 2.6. Suppose that $\mathfrak{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \overline{\mathbb{D}}^{n+1}$ and $\mathfrak{z} \notin \mathbb{G}$ and there exist some i such that $z_{i}=0$. Then $\mathfrak{z} \notin M_{\mathcal{A}_{\mathfrak{S}}}$.

Proof. Without loss of generality, assume that $\mathfrak{z}=\left(z_{0}, 0, z_{2}, \cdots, z_{n}\right)$ with $z_{0} \neq 0$. Suppose on the contrary that $\mathfrak{z} \in M_{\mathcal{A}_{s}}$, choose a function $f_{0}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=$ $x_{0}^{m_{0}} x_{1}^{m_{1}}$, where $m_{0}>0, m_{1}<0$ and $m_{0}+a_{1} m_{1}>0$. Then $f_{0} \in \mathcal{A}_{\mathbb{S}}$. Put $g_{0}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=x_{1}^{-m_{1}}$. Then we have that

$$
z_{0}^{m_{0}}=\mathfrak{z}\left(f_{0} g_{0}\right)=\mathfrak{z}\left(f_{0}\right) \mathfrak{z}\left(g_{0}\right)=0
$$

which is a contradiction since $z_{0}^{m_{0}} \neq 0$.
Corollary 2.7. Suppose that $\mathfrak{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in \overline{\mathbb{D}}^{n+1}, \mathfrak{z} \notin \mathbb{G}$ and $z_{i} \neq 0$ for all $0 \leq i \leq n$. Then there exist $m_{0}, m_{1}, \cdots, m_{n}$ such that $m_{0}+a_{1} m_{1}+\cdots+a_{n} m_{n} \geq 0$ and the function $g\left(x_{0}, x_{1}, \cdots, x_{n}\right)=x_{0}^{m_{0}} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ satisfies $|g(\mathfrak{z})|>1$.

Proof. Since $\mathfrak{z} \notin \mathbb{G}$, there exists i such that $\left|z_{0}\right|_{i}^{a} \neq\left|z_{i}\right|$. By [5, p. 12], if $m_{0}+a_{i} m_{i}>0$, the function $f\left(x_{0}, x_{1}, \cdots, x_{n}\right)=x_{0}^{m_{0}} x_{i}^{m_{i}}$ satisfies that $|f(\mathfrak{z})|>1$, which implies that $\mathfrak{z} \notin M_{\mathcal{A}_{s}}$.

Corollary 2.8. $M_{\mathcal{A}_{\mathbb{S}}}=\mathbb{G}$.
Proof. It follows from Theorem 2.6 and Corollary 2.7 that $M_{\mathcal{A}_{S}} \subset \mathbb{G}$. Therefore, $\mathbb{G}=M_{\mathcal{A}_{\mathbb{S}}}$.

3. Classifications of the Gelfand Space of \mathcal{A}_{α}

In this section, let α be a positive irrational number, we will classify the Gelfand space M_{α} of \mathcal{A}_{α}.

At first, we will define the equivalent relation in the Gelfand space $M_{\mathcal{A}}$ of the uniform algebra \mathcal{A}.

Definition 3.1. Let \mathcal{A} be a uniform algebra and $\phi, \theta \in M_{\mathcal{A}}$. We say that $\phi \sim \psi$ if exist $c>0$ such that

$$
\frac{1}{c}<\frac{\mu(\theta)}{\mu(\phi)}<c
$$

for all $\mu \in \operatorname{Re}(\mathcal{A})$ with $\mu>0$. The relation \sim is a equivalent relation, and the equivalent classes induced by \sim are called parts (see [1, p. 142]).

Remark 3.2. It follows from [6, p. 89] that $\{0\}$ is a singleton part.

Theorem 3.3. Let $\theta=\left(z_{0}, z_{0}^{\alpha}\right), \phi=\left(w_{0}, w_{0}^{\alpha}\right) \in M_{\alpha}$. Suppose that $0<z_{0}<w_{0}<$ 1 and $\frac{2 w_{0}}{3-w_{0}}<z_{0}<w_{0}$. Then we have that $\theta \sim \phi$.

Proof. Let $f(x)=\sum_{j=0}^{k} c_{j} x_{0}^{m_{j}^{0}} x_{1}^{m_{j}^{1}}$ be such that $\operatorname{Re} f>0$ and $m_{j}^{0}+\alpha m_{j}^{1} \geq 0$ for any $j=0,1, \cdots, k$. By Theorem 2.2, for any $\varepsilon>0$, there exist $\tilde{z}, \tilde{w}, q, p$ such that
(a) the maximum common factor of p, q is 1 ,
(b) $0<\alpha-\frac{p}{q}<\varepsilon$,
(c) $\left|\tilde{z}^{q}-z_{0}\right|+\left|\tilde{z}^{p}-z_{1}\right|<\varepsilon$,
(d) $\left|\tilde{w}^{q}-w_{0}\right|+\left|\tilde{w}^{p}-w_{1}\right|<\varepsilon$.

Note that \tilde{z}, \tilde{w} are the q th roots of z, w, respectively. Choose m_{j}^{0} and m_{j}^{1} such that $m_{j}^{0} q+m_{j}^{1} p \geq 0$ for all $j=0,1,2, \cdots, k$. Then one can derive that $g(t):=f\left(t^{q}, t^{p}\right)$ is a polynomial with respect to t. Let $u(t)=\operatorname{Re} g(t)$. Then we have

$$
\frac{\operatorname{Re} f\left(\tilde{z}^{q}, \tilde{z}^{p}\right)}{\operatorname{Re} f\left(\tilde{w}^{q}, \tilde{w}^{p}\right)}=\frac{\operatorname{Re} g(\tilde{z})}{\operatorname{Re} g(\tilde{w})}=\frac{u(\tilde{z})}{u(\tilde{w})}
$$

Since $t^{\frac{1}{n}-1}$ converge to t^{-1} uniformly on $\left[z_{0}, w_{0}\right]$, there exists q such that $t^{\frac{1}{q}-1}<$ $\frac{2}{z_{0}}$ for all $t \in\left[z_{0}, w_{0}\right]$, which implies that

$$
\tilde{w}-\tilde{z}=w_{0}^{\frac{1}{q}}-z_{0}^{\frac{1}{q}}=\left(w_{0}-z_{0}\right) \frac{1}{q} \tilde{t}^{\frac{1}{q}-1}<\left(w_{0}-z_{0}\right) \frac{2}{q z_{0}}
$$

where $z_{0}<\tilde{t}<w_{0}$. Note that $\frac{2 w 0}{3-w_{0}} \leq z_{0}<w_{0}$, we have that

$$
\tilde{w}-\tilde{z}<\frac{2 w_{0}}{q z_{0}}-\frac{2}{q} \leq \frac{3-w_{0}}{q}-\frac{2}{q}=\frac{1}{q}\left(1-w_{0}\right)
$$

and we also have

$$
1-\tilde{w}>\frac{1}{q}\left(1-w_{0}\right) .
$$

Since $u(t)$ is harmonic on plane and positive on \mathbb{D}, by Harnack Inequality (see [7, Theorem 11.11]), one can derive that

$$
\frac{\frac{1-w_{0}}{q}-(\tilde{w}-\tilde{z})}{\frac{1-w_{0}}{q}+\tilde{w}-\tilde{z}} u(\tilde{w}) \leq u(\tilde{z}) \leq \frac{\frac{1-w_{0}}{q}+\tilde{w}-\tilde{z}}{\frac{1-w_{0}}{q}-(\tilde{w}-\tilde{z})} u(\tilde{w})
$$

It follows from $\tilde{w}-\tilde{z}<\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)<\frac{1}{q}\left(1-w_{0}\right)$ that

$$
\frac{1-w_{0}-\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)}{1-w_{0}+\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)} u(\tilde{w}) \leq u(\tilde{z}) \leq \frac{1-w_{0}+\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)}{1-w_{0}-\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)} u(\tilde{w})
$$

Let

$$
c=\frac{1-w_{0}-\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)}{1-w_{0}+\frac{2}{z_{0}}\left(w_{0}-z_{0}\right)} .
$$

Then one can derive that

$$
c \leq \frac{f\left(\tilde{z}^{q}, \tilde{z}^{p}\right)}{f\left(\tilde{w}^{q}, \tilde{w}^{p}\right)} \leq \frac{1}{c}
$$

Let $q \rightarrow \infty$. We have that $c \leq \frac{f\left(z_{0}, z_{1}\right)}{f\left(w_{0}, w_{1}\right)} \leq \frac{1}{c}$.
For the general $g \in \operatorname{Re} \mathcal{A}_{\alpha}$ with $g>0$, the Cesaro means g_{n} converges uniformly to g. Since for $n \in \mathbb{N}$, g_{n} satisfies that

$$
c \leq \frac{g_{n}\left(z_{0}, z_{1}\right)}{g_{n}\left(w_{0}, w_{1}\right)} \leq \frac{1}{c}
$$

one can derive that g satisfies that.

$$
c \leq \frac{g\left(z_{0}, z_{1}\right)}{g\left(w_{0}, w_{1}\right)} \leq \frac{1}{c}
$$

Corollary 3.4. Suppose that $\theta=\left(z_{0}, z_{0}^{\alpha}\right), \phi=\left(w_{0}, w_{0}^{\alpha}\right)$ are two elements in M_{α} such that $0<z_{0}<w_{0}<1$. Then $\theta \sim \phi$.

Proof. By Theorem 3.3, if $0<x<y<1$ such that $\frac{2 y}{3-y}<x \leq y$, then $\left(x, x^{\alpha}\right) \sim\left(y, y^{\alpha}\right)$. For the function defined by

$$
\lambda(t)=t-\frac{2 t}{3-t}=\frac{t-t^{2}}{3-t} \quad \forall t \in[0,1]
$$

$\lambda(t)$ has a positive minimum δ on $\left[\frac{z_{0}}{2}, \frac{1-w_{0}}{2}\right]$. It follows from the transitivity of \sim that $\theta \sim \phi$.

References

[1] T.W. Gamelin, Uniform Algebras, AMS Chelsea Publishing Series 311, Amer. Math. Soc., Provindence, RI, 2005.
[2] L. Grafakos, Classical Fourier Analysis, 3rd Ed., Springer, New York, 2014.
[3] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2002.
[4] J.R. Peters and P. Sanyatit, Isomorphism of uniform algebras on the 2-torus, Math. Proc. Camb. Phil. Soc. 167 (2019) 89-106.
[5] P. Sanyatit, Isomorphism of Uniform Algebras on the 2-Torus, Ph.D. Thesis, Iowa State University, 2016.
[6] J. Wermer, Banach algebras and analytic functions, Adv. Math. 1 (1) (1961) 51102.
[7] W. Rudin, Real and Complex Analysis, Journal of the Royal Statistical Society, 1987.

[^0]: *This work is supported partially by NSF of China (Grant Nos. 11671314 and 12171251).
 ${ }^{\dagger}$ Corresponding author.

