A Sharp Upper-Bound for the Norm of Positive Semi-Definite Block Matrices

Mehmet Gumus*
Department of Mathematics and Statistics, University of Nevada, Reno, Nevada 89557, USA
Email: mgumus@unr.edu
Samir Raouafi
Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA
Email: szr0067@auburn.edu

Received 30 December 2021
Accepted 14 April 2022

Communicated by Tin-Yau Tam
Dedicated to the memory of Professor Ky Fan (1914-2010)

AMS Mathematics Subject Classification(2020): 15A42, 15A60, 15B57.
Abstract. This paper studies the positive semi-definite 2×2 block matrix $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right]$ $\in \mathbb{C}^{2 n \times 2 n}$. A new sharp upper bound for $\|M\|$ is provided under the condition of X being normal, for any unitarily invariant norm $\|\cdot\|$. A special pattern among the eigenvalues of M when $A+B=k I$, for some $k>0$, is explored.

Keywords: Positive semi-definite matrix; Block matrix; Unitarily invariant norm.

1. Introduction

Let $\mathbb{C}^{n \times n}$ denote the space of $n \times n$ complex matrices. The identity matrix of appropriate size shall be denoted by I, and the group of $n \times n$ unitary matrices

[^0]shall be denoted by $\mathbb{U}(n)$. A norm $\|\cdot\|$ over the space of matrices is unitarily invariant if $\|U X V\|=\|X\|$ for all $X \in \mathbb{C}^{n \times n}$ and $U, V \in \mathbb{U}(n)$. Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian. Let $\lambda_{\max }(A)$ and $\lambda_{\min }(A)$ denote the largest eigenvalue and the smallest eigenvalue of A, respectively. We shall write $A \succeq 0(A \succ 0)$ if A is positive semi-definite (definite), and $A \preceq 0$ if A is negative semi-definite. $A \succeq B$ ($A \succ B$) shall indicate that $A-B \succeq 0(A-B \succ 0)$. We shall denote the spectral norm of X by $\|X\|_{\mathrm{sp}}$. Throughout this paper, we assume that M is the positive semi-definite block matrix in the form:
\[

M=\left[$$
\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}
$$\right] \in \mathbb{C}^{2 n \times 2 n}
\]

where $A, B, X \in \mathbb{C}^{n \times n}$.
It was shown in [2] that

$$
\begin{equation*}
\|M\| \leq\|A+B\| \tag{1}
\end{equation*}
$$

for any unitarily invariant norm, when the off-diagonal blocks of M are Hermitian. Note that the norm in the inequality (1) is defined on $\mathbb{C}^{2 n \times 2 n}$. For simplicity, we write $\|A+B\|$ to represent $\|(A+B) \oplus 0\|$.

Recently, in [3], the inequality (1) was extended to the form

$$
\begin{equation*}
\|M\| \leq\|A+B+\omega I\| \tag{2}
\end{equation*}
$$

Here, ω stands for the width of the smallest strip containing the numerical range of the matrix X. It was shown in [3] that the inequality (2) is sharp. When X is normal with collinear eigenvalues, the inequality (2) is reduced to (1) for any unitarily invariant norm since the numerical range of X is a line segment. In particular, (1) is true when A, B, and X are 2×2 complex matrices with X normal. However, in [4], it was shown that the inequality (1) doesn't hold in general for an arbitrary normal or unitary matrix X.

In this paper, we develop a sharp upper bound for $\|M\|$, which outperforms (2) in some cases under the assumption of X being normal. We derive the same eigenvalue relationship of [4, Proposition 2.1] when X commutes with A. This result is used to show that the new norm inequality is sharp. Finally, we provide a partial generalization of [6, Theorem 2.9].

2. Some New Norm Inequalities

We first investigate the eigenvalues of the matrix $M=\left[\begin{array}{cc}A & X \\ X^{*} & k I-A\end{array}\right] \succeq 0$, for some $k>0$, under a special case.

Let us write the eigenvalues of M in increasing order:

$$
\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{2 n-1} \leq \lambda_{2 n}
$$

Theorem 2.1. [4, Proposition 2.1] Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$ be positive semidefinite with $A, B, X \in \mathbb{C}^{n \times n}$, and $A+B=k I$ for some $k>0$. If $X^{*}=\mathrm{e}^{i \theta} X$ for some $\theta \in \mathbb{R}$. Then

$$
\begin{equation*}
\lambda_{j}+\lambda_{2 n+1-j}=k \quad \text { for } \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

We obtain the same eigenvalue relationship when X commutes with A.

Theorem 2.2. Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$ be positive semi-definite with $A, B, X \in \mathbb{C}^{n \times n}$, and $A+B=k I$ for some $k>0$. If $A X=X A$, then

$$
\begin{equation*}
\lambda_{j}+\lambda_{2 n+1-j}=k \quad \text { for } \quad j=1, \ldots, n \tag{4}
\end{equation*}
$$

Proof. We first express M as

$$
\left[\begin{array}{cc}
A & X \\
X^{*} & k I-A
\end{array}\right]=\left[\begin{array}{cc}
A-\frac{k}{2} I & X \\
X^{*} & \frac{k}{2} I-A
\end{array}\right]+\left[\begin{array}{cc}
\frac{k}{2} I & 0 \\
0 & \frac{k}{2} I
\end{array}\right] .
$$

Now we write the eigenvalues of the Hermitian matrix

$$
N=\left[\begin{array}{cc}
A-\frac{k}{2} I & X \\
X^{*} & \frac{k}{2} I-A
\end{array}\right]
$$

in increasing order:

$$
\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{2 n-1} \leq \mu_{2 n}
$$

Clearly, $\lambda_{i}=\mu_{i}+\frac{k}{2}$ for $i=1, \ldots, 2 n$. Therefore, it suffices to show that if μ is a nonzero eigenvalue of N, then so is $-\mu$. In this case, if N has a zero eigenvalue, then it is repeated even number of times since the dimension of N is $2 n \times 2 n$.

Let us simply write $C=A-\frac{k}{2} I$, so that $N=\left[\begin{array}{cc}C & X \\ X^{*} & -C\end{array}\right]$. It follows by assumption that $C X=X C$. Assume that μ is a nonzero eigenvalue of N. By Schur determinant lemma, see [7, p. 4],

$$
\begin{aligned}
\operatorname{det}(N-\mu I) & =\operatorname{det}\left(\left[\begin{array}{cc}
C-\mu I & X \\
X^{*} & -C-\mu I
\end{array}\right]\right) \\
& =\operatorname{det}\left((C-\mu I)(-C-\mu I)-X^{*} X\right) \\
& =\operatorname{det}\left((C+\mu I)(\mu I-C)-X^{*} X\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
C+\mu I & X \\
X^{*} & \mu I-C
\end{array}\right]\right) \\
& =\operatorname{det}(N+\mu I)
\end{aligned}
$$

Therefore, $-\mu$ is also an eigenvalue of N and the result follows.

Next we present a sharp norm inequality involving M with normal offdiagonal blocks. The following lemmas play a key role in establishing our result.

Lemma 2.3. $\left[6\right.$, Proposition 2.3] Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$ be positive semidefinite with $A, B, X \in \mathbb{C}^{n \times n}$. If X^{*} commutes with A or B, then

$$
\|M\| \leq\|A+B\|
$$

for any unitarily invariant norm $\|\cdot\|$.

By celebrated Ky-Fan dominance theorem, we have the following result.

Lemma 2.4. [1, Lemma 2.1] Let $X, Y \in \mathbb{C}^{n \times n}$ Hermitian such that $Y \pm X \succeq 0$. Then $\|X\| \leq\|Y\|$ for any unitarily invariant norm $\|\cdot\|$.

Theorem 2.5. Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$ be positive semi-definite with $A, B, X \in \mathbb{C}^{n \times n}$ and X be normal. Let

$$
\begin{aligned}
& s_{1}=\lambda_{\max }\left(B-X X^{*}\right), \\
& s_{2}=\lambda_{\max }\left(A-X X^{*}\right), \\
& s_{3}=\lambda_{\max }\left(B-X-X^{*}\right), \\
& s_{4}=\lambda_{\max }\left(A-X-X^{*}\right)
\end{aligned}
$$

Then

$$
\begin{align*}
\|M\| \leq \min \{ & \left\|A+X X^{*}+s_{1} I\right\|,\left\|B+X X^{*}+s_{2} I\right\| \\
& \left.\left\|A+X+X^{*}+s_{3} I\right\|,\left\|B+X+X^{*}+s_{4} I\right\|\right\} . \tag{5}
\end{align*}
$$

Proof. First note that

$$
\left[\begin{array}{cc}
A & X \\
X^{*} & X X^{*}+s_{1} I
\end{array}\right] \succeq 0 \text { and }\left[\begin{array}{cc}
A & X \\
X^{*} & X+X^{*}+s_{3} I
\end{array}\right] \succeq 0
$$

because they can be expressed as summations of two positive semi-definite matrices, i.e.,

$$
\left[\begin{array}{cc}
A & X \\
X^{*} & X X^{*}+s_{1} I
\end{array}\right]=\left[\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right]+\left[\begin{array}{lc}
0 & 0 \\
0 & s_{1} I-\left(B-X X^{*}\right)
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
A & X \\
X^{*} & X+X^{*}+s_{3} I
\end{array}\right]=\left[\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right]+\left[\begin{array}{lc}
0 & 0 \\
0 & s_{3} I-\left(B-X-X^{*}\right)
\end{array}\right] .
$$

By Lemma 2.4, we see that

$$
\|M\| \leq\left\|\left[\begin{array}{cc}
A & X \\
X^{*} & X X^{*}+s_{1} I
\end{array}\right]\right\| \text { and }\|M\| \leq\left\|\left[\begin{array}{cc}
A & X \\
X^{*} & X+X^{*}+s_{3} I
\end{array}\right]\right\|
$$

Note from the normality of X that

$$
X\left(X X^{*}+s_{1} I_{n}\right)=X X X^{*}+s_{1} X=X X^{*} X+s_{1} X=\left(X X^{*}+s_{1} I_{n}\right) X
$$

i.e., X commutes with $X X^{*}+s_{1} I$, and
$X\left(X+X^{*}+s_{3} I\right)=X X+X X^{*}+s_{3} X=X X+X^{*} X+s_{3} X=\left(X+X^{*}+s_{3} I\right) X$,
i.e., X commutes with $X+X^{*}+s_{3} I$. Thus, by Lemma 2.3, we get

$$
\left\|\left[\begin{array}{cc}
A & X \\
X^{*} & X X^{*}+s_{1} I
\end{array}\right]\right\| \leq\left\|A+X X^{*}+s_{1} I\right\|
$$

and

$$
\left\|\left[\begin{array}{cc}
A & X \\
X^{*} & X+X^{*}+s_{3} I
\end{array}\right]\right\| \leq\left\|A+X+X^{*}+s_{3} I\right\|
$$

Therefore,

$$
\|M\| \leq\left\|A+X X^{*}+s_{1} I\right\| \text { and }\|M\| \leq\left\|A+X+X^{*}+s_{3} I\right\|
$$

Similarly we can show that

$$
\|M\| \leq\left\|B+X X^{*}+s_{2} I\right\| \text { and }\|M\| \leq\left\|B+X+X^{*}+s_{4} I\right\|
$$

Hence the result follows.

We illustrate with an example that Theorem 2.5 improves (2) for some cases.

Example 2.6. Let $X=\operatorname{diag}(0,1.25, i), A=\left[\begin{array}{cc}1.25 & -0.25 \\ -0.25 & 1.25\end{array}\right] \oplus[2] \succeq 0$ and $B=[1] \oplus\left[\begin{array}{cc}2 & -0.5 \\ -0.5 & 2\end{array}\right] \succeq 0$. We have $s_{1} \approx 1.29, s_{2} \approx 1.29, s_{3} \approx 2.1, s_{4}=2$, and $\omega \approx 0.78$. Taking the spectral norm, we obtain

$$
\begin{aligned}
\left\|A+X X^{*}+s_{1} I\right\|_{\mathrm{sp}} & \approx 4.29 \\
\left\|B+X X^{*}+s_{2} I\right\|_{\mathrm{sp}} & \approx 5.14 \\
\left\|A+X+X^{*}+s_{3} I\right\|_{\mathrm{sp}} & \approx 5.87 \\
\left\|B+X+X^{*}+s_{4} I\right\|_{\mathrm{sp}} & \approx 6.6 \\
\|A+B+\omega I\|_{\mathrm{sp}} & \approx 5.04
\end{aligned}
$$

Therefore, $\|M\|_{\mathrm{sp}} \leq 4.29$.

Now we show that the inequality (5) is sharp. Consider the block matrix in the form:

$$
M_{k}=\left[\begin{array}{cc}
k I-X X^{*} & X \\
X^{*} & X X^{*}+k I
\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}
$$

where X is normal and $k>0$. Observe that M_{k} is positive semi-definite for sufficiently large k. Let us fix k, so that $M_{k} \succeq 0$. Obviously, $k I-X X^{*}$ commutes with X. By Theorem 2.2,

$$
\lambda_{2 n}=2 k-\lambda_{1}
$$

where λ_{1} and $\lambda_{2 n}$ are the smallest and the largest eigenvalues of M_{k}, respectively. Therefore,

$$
M_{k}-\lambda_{1} I=\left[\begin{array}{cc}
\left(k-\lambda_{1}\right) I-X X^{*} & X \\
X^{*} & X X^{*}+\left(k-\lambda_{1}\right) I
\end{array}\right] \succeq 0
$$

and $\left\|M_{k}-\lambda_{1} I\right\|_{\mathrm{sp}}=2 k-2 \lambda_{1}$. Applying Theorem 2.5 for $M_{k}-\lambda_{1} I$, we see that $s_{1}=k-\lambda_{1}$ and

$$
\left\|A+X X^{*}+s_{1} I\right\|_{\mathrm{sp}}=\left\|\left(k-\lambda_{1}\right) I-X X^{*}+X X^{*}+s_{1} I\right\|_{\mathrm{sp}}=2 k-2 \lambda_{1}
$$

One may wonder the conditions under which Theorem 2.5 outperforms (2). Next we present a sufficient condition to address this question.

Remark 2.7. For a given positive semi-definite block matrix M with X normal, the inequality

$$
\begin{align*}
\|M\| \leq & \min \{
\end{align*} \begin{array}{ll}
\left\|A+X X^{*}+s_{1} I\right\|,\left\|B+X X^{*}+s_{2} I\right\| \\
& \left.\left\|A+X+X^{*}+s_{3} I\right\|,\left\|B+X+X^{*}+s_{4} I\right\|\right\} \tag{6}\\
\leq & \|A+B+\omega I\|
\end{array}
$$

holds if

$$
\begin{equation*}
\omega \geq \min \left\{s_{1}-t_{1}, s_{2}-t_{2}, s_{3}-t_{3}, s_{4}-t_{4}\right\} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
t_{1} & =\lambda_{\min }\left(B-X X^{*}\right) \\
t_{2} & =\lambda_{\min }\left(A-X X^{*}\right) \\
t_{3} & =\lambda_{\min }\left(B-X-X^{*}\right), \\
t_{4} & =\lambda_{\min }\left(A-X-X^{*}\right)
\end{aligned}
$$

Here is the explanation: Assume that $s_{1}-t_{1}$ is the minimum of the set in (7). Suppose that $\omega \geq s_{1}-t_{1}$. Then

$$
\omega I \geq s_{1} I-t_{1} I
$$

which leads to

$$
\omega I \geq s_{1} I-\left(B-X X^{*}\right) I
$$

and then

$$
\left.\omega I+A+B \geq s_{1} I+A+X X^{*}\right) I
$$

Thus,

$$
\|M\| \leq\left\|A+X X^{*}+s_{1} I\right\| \leq\|A+B+\omega I\|
$$

Similarly, we can show that (6) holds if the minimum of the set in (7) is a different value.

We conclude this paper with a partial generalization of [6, Theorem 2.9]. Here we do not assume that X is normal.

Theorem 2.8. Let $M=\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$ be positive semi-definite with A, $B, X \in \mathbb{C}^{n \times n}$. If $M-C \succeq 0$ for some Hermitian diagonal block matrix $C=C_{1} \oplus C_{2}$, where $C_{1}, C_{2} \in \mathbb{C}^{n \times n}$. Then we have

$$
\|M\| \leq 2\left\|A+B-\frac{C_{1}+C_{2}}{2}\right\|
$$

for any unitarily invariant norm $\|\cdot\|$.
Proof. Assume that $M-C \succeq 0$ for some Hermitian diagonal block matrix $C=C_{1} \oplus C_{2}$. Let $P=\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right] \in \mathbb{C}^{2 n \times 2 n}$. Then, clearly,

$$
P^{T}(M-C) P=\left[\begin{array}{cc}
B-C_{2} & X^{*} \\
X & A-C_{1}
\end{array}\right] \succeq 0
$$

Thus $M+P^{T}(M-C) P$ is positive partial transpose since $X+X^{*}$ is a Hermitian matrix and $M+P^{T}(M-C) P \succeq 0$. Therefore, by [5, Proposition 2.1],

$$
\begin{aligned}
\left\|M+P^{T}(M-C) P\right\| & =\left\|\left[\begin{array}{cc}
A+B-C_{2} & X+X^{*} \\
X+X^{*} & A+B-C_{1}
\end{array}\right]\right\| \\
& \leq 2\left\|A+B-\frac{C_{1}+C_{2}}{2}\right\|
\end{aligned}
$$

Observe now from Lemma 2.4 that $\|M\| \leq\left\|M+P^{T}(M-C) P\right\|$. Hence,

$$
\|M\| \leq 2\left\|A+B-\frac{C_{1}+C_{2}}{2}\right\|
$$

References

[1] R. Bhatia, F. Kittaneh, The matrix arithmetic-geometric mean inequality revisited, Linear Algebra Appl. 428 (2008) 2177-2191.
[2] J.-C. Bourin, E.-Y. Lee, M. Lin, On a decomposition lemma for positive semidefinite block-matrices, Linear Algebra Appl. 437 (2012) 1906-1912.
[3] J.-C. Bourin, A. Mhanna, Positive block matrices and numerical ranges, C. R. Acad. Sci. Paris 355 (2017) 1077-1081.
[4] M. Gumus, J. Liu, S. Raouafi, T.-Y. Tam, Positive semi-definite 2×2 block matrices and norm inequalities, Linear Algebra Appl. 551 (2018) 83-91.
[5] M. Lin, H. Wolkowicz, Hiroshima's theorem and matrix norm inequalities, Acta Sci. Math. (Szeged) 81 (2015) 45-53.
[6] A. Mhanna, On symmetric norm inequalities and positive definite block-matrices, Math. Inequal. Appl. 21 (2018) 133-138.
[7] F. Zhang (Editor), The Schur Complement and its Applications, Springer, New York, 2005.

[^0]: * Corresponding author.

