On the Largest Singular Value of a Matrix and Generalized Inverses

Marek Niezgoda
Institute of Mathematics, Pedagogical University of Cracow, Podchorążych 2, 30-084
Kraków, Poland
Email: bniezgoda@wp.pl

Received 20 March 2021
Accepted 17 March 2022

Communicated by Pan Shun Lau
Dedicated to the memory of Professor Ky Fan (1914-2010)

AMS Mathematics Subject Classification(2020): 15A60, 39B42, 26D15, 06F20

Abstract

In this paper we study properties of the largest singular value $s_{1}(\cdot)$ of matrices viewed as a norm on the space of complex matrices. We give a refinement of the submultiplicativity inequality characterizing $s_{1}(\cdot)$. In our approach we use the equality case of the inequality. We introduce a corresponding preorder on the matrix space and show the monotonicity of a certain functional induced by $s_{1}(\cdot)$. We also provide some inequalities by using generalized inverses of matrices.

Keywords: Complex (real) matrix; Largest singular value; Monotone functional; Generalized inverse of matrix.

1. Preliminaries

Throughout \mathbb{M}_{n} denotes the set of all $n \times n$ matrices over the field $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, and \mathbb{U}_{n} denotes the set of all $n \times n$ unitary matrices. As usual, I_{n} stands for the $n \times n$ identity matrix. The symbol $(\cdot)^{*}$ means the conjugate transpose of a matrix. The elements of \mathbb{F}^{n} are viewed as $n \times 1$ column vectors. The norm on \mathbb{F}^{n} is given by $|x|=\left(x^{*} x\right)^{1 / 2}$ for $x \in \mathbb{F}^{n}$.

For a given hermitian matrix $A \in \mathbb{M}_{n}$, the eigenvalues of A stated in decreasing order are denoted by $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \ldots \geq \lambda_{n}(A)$.

By Spectral Decomposition, each hermitian matrix A has the form $A=$ $U(\operatorname{diag} \lambda(A)) U^{*}$ for some unitary matrix U of order n, where the symbol $\operatorname{diag} a$ means the diagonal matrix with the entries of the vector $a \in \mathbb{F}^{n}$ on the main diagonal.

For a given matrix $A \in \mathbb{M}_{n}$, by $s_{1}(A) \geq s_{2}(A) \geq \ldots \geq s_{n}(A)$ are denoted the singular values of A arranged in decreasing order. So, $s_{i}(A)=\lambda_{i}\left(A A^{*}\right)^{1 / 2}$ for $i=1,2, \ldots, n$.

By Singular Value Decomposition, each matrix $A \in \mathbb{M}_{n}$ has the form $A=$ $U_{1} \operatorname{diag} s(A) U_{2}^{*}$ for some unitary matrices U_{1}, U_{2} of order n.

It is well known that the map $s_{1}(\cdot): X \mapsto s_{1}(X)$ for $X \in \mathbb{M}_{n}$ is a norm on \mathbb{M}_{n}. In addition, $s_{1}(\cdot)$ is unitarily invariant (abbreviated as u.i.), that is, $s_{1}(U X V)=s_{1}(X)$ for all $X \in \mathbb{M}_{n}$ and $U, V \in \mathbb{U}_{n}$ (see [1, 2, 4]).

Furthermore, $s_{1}(\cdot)$ is submultiplicative, as follows:

$$
\begin{equation*}
s_{1}(X Y) \leq s_{1}(X) s_{1}(Y) \quad \text { for all } X, Y \in \mathbb{M}_{n} \tag{1}
\end{equation*}
$$

(see $[1,2]$).
As usual, hermitian $A, B \in \mathbb{M}_{n}$ are called simultaneously diagonalizable if there exists $n \times n$ unitary matrix U such that $A=U(\operatorname{diag} \lambda(A)) U^{*}$ and $B=$ $U(\operatorname{diag} \lambda(B)) U^{*}$.

In this paper, matrices $A, B \in \mathbb{M}_{n}$ are called simultaneously diagonalizable via singular values, if there exist $n \times n$ unitary matrices U_{1}, U_{2} such that $A=$ $U_{1}(\operatorname{diag} s(A)) U_{2}^{*}$ and $B=U_{1}(\operatorname{diag} s(B)) U_{2}^{*}$.

Likewise, matrices $A, B \in \mathbb{M}_{n}$ are called semi-simultaneously diagonalizable via singular values, if there exist $n \times n$ unitary matrices U_{1}, U_{2}, U_{3} such that $A=U_{1}(\operatorname{diag} s(A)) U_{2}^{*}$ and $B=U_{3}(\operatorname{diag} s(B)) U_{2}^{*}$. In such a case one has $A B^{*}=U_{1}(\operatorname{diag}(s(A) \circ s(B))) U_{3}^{*}$, where \circ is the Hadamard product on \mathbb{F}^{n}. In consequence, $s_{1}\left(A B^{*}\right)=s_{1}(A) s_{1}(B)$. This is an equality case of inequality (1) (cf. [1, 2]).

In the present paper, our aim is to derive some refinements of the basic inequality (1) by using the mentioned equality cases of (1). Some analogous subadditivity problems have been investigated recently, too (see e.g., $[5,9,8,7]$). They are related to Dunkl-Williams and Maligranda's inequalities and angular distance of vectors (see e.g., $[6,10,11]$). In the next sections we initiate preparing a framework for corresponding studies on submultiplicative case.

2. Inequalities for the Largest Singular Value

For given $X, Y \in \mathbb{M}_{n}$, we write $Y \preceq X$ if there exists $W \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
X=Y W \quad \text { and } \quad s_{1}(X)=s_{1}(Y) s_{1}(W) \tag{2}
\end{equation*}
$$

Observe that (2) gives

$$
\begin{equation*}
s_{1}(Y W)=s_{1}(Y) s_{1}(W) \tag{3}
\end{equation*}
$$

which is an equality case of inequality (1).

Example 2.1. Let $A \geq 0$ be an $n \times n$ (hermitian) positive semidefinite matrix. Then

$$
A^{1 / 2} \preceq A .
$$

In fact, for $X=A, Y=W=A^{1 / 2}$ we have $X=Y W$ and $A=$ $U(\operatorname{diag} \lambda(A)) U^{*}$ and $A^{1 / 2}=U\left(\operatorname{diag} \lambda\left(A^{1 / 2}\right)\right) U^{*}$ for some $n \times n$ unitary matrix U. In consequence,

$$
s_{1}(X)=s_{1}(A)=\lambda_{1}(A)=\left(\lambda_{1}\left(A^{1 / 2}\right)\right)^{2}=\left(s_{1}\left(A^{1 / 2}\right)\right)^{2}=s_{1}(Y) s_{1}(W)
$$

as wanted.

In the sequel we shall study properties of the relation \preceq on \mathbb{M}_{n} in connection with the problem of refining the basic inequality (1). To this end we shall utilize statements of type (3).

Theorem 2.2. The relation \preceq is transitive and reflexive on \mathbb{M}_{n}, and hence \preceq is a preorder on \mathbb{M}_{n}.

Proof. Assume that $X, Y, Z \in \mathbb{M}_{n}$ are such that $Z \preceq Y$ and $Y \preceq X$. Then there exist $U, W \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
Y=Z U \quad \text { and } \quad X=Y W \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}(Y)=s_{1}(Z) s_{1}(U) \quad \text { and } \quad s_{1}(X)=s_{1}(Y) s_{1}(W) \tag{5}
\end{equation*}
$$

(see (2)). By denoting $V=U W$ we get from (4) that

$$
\begin{equation*}
X=Y W=Z U W=Z V \tag{6}
\end{equation*}
$$

By (5) we can write

$$
\begin{equation*}
s_{1}(X)=s_{1}(Y) s_{1}(W)=s_{1}(Z) s_{1}(U) s_{1}(W) \tag{7}
\end{equation*}
$$

Simultaneosly, we have

$$
s_{1}(V)=s_{1}(U W) \leq s_{1}(U) s_{1}(W)
$$

by (1). Hence,

$$
s_{1}(Z) s_{1}(V) \leq s_{1}(Z) s_{1}(U) s_{1}(W)
$$

which together with (7) leads to

$$
\begin{equation*}
s_{1}(Z) s_{1}(V) \leq s_{1}(X) \tag{8}
\end{equation*}
$$

However, due to (6) we obtain

$$
\begin{equation*}
s_{1}(X)=s_{1}(Z V) \leq s_{1}(Z) s_{1}(V) \tag{9}
\end{equation*}
$$

So, by combining (8) and (9) we establish

$$
s_{1}(X)=s_{1}(Z) s_{1}(V)
$$

Additionally, in light of (6) we see that $X=Z V$. Therefore, by (2), we infer that $Z \preceq X$. Thus we have proved that \preceq is transitive on \mathbb{M}_{n}.

Finally, it is clear that $s_{1}\left(I_{n}\right)=1$. It now follows that

$$
X=X I_{n} \quad \text { and } \quad s_{1}(X)=s_{1}(X) s_{1}\left(I_{n}\right) \quad \text { for } X \in \mathbb{M}_{n}
$$

So, we get $X \preceq X$ for $X \in \mathbb{M}_{n}$. That is, \preceq is reflexive on \mathbb{M}_{n}, as wanted. In summary, \preceq is transitive and reflexive. So, it is a preorder on \mathbb{M}_{n}.

With the help of the relation \preceq, we now present a refinement of inequality (1).

Theorem 2.3. If $X, Y \in \mathbb{M}_{n}$ and $Z \in \mathbb{M}_{n} \backslash\{0\}$ are such that $Z \preceq Y$, then

$$
\begin{equation*}
s_{1}(X Y) \leq s_{1}(X Z) s_{1}(Z)^{-1} s_{1}(Y) \leq s_{1}(X) s_{1}(Y) \tag{10}
\end{equation*}
$$

Proof. As $Z \preceq Y$, we see that

$$
Y=Z W \quad \text { and } \quad s_{1}(Y)=s_{1}(Z) s_{1}(W)
$$

for some $W \in \mathbb{M}_{n}$. Therefore, we get

$$
s_{1}(W)=s_{1}(Z)^{-1} s_{1}(Y)
$$

In consequence, by (1),

$$
\begin{aligned}
s_{1}(X Y)= & s_{1}(X Z W) \leq s_{1}(X Z) s_{1}(W)=s_{1}(X Z) s_{1}(Z)^{-1} s_{1}(Y) \\
& \leq s_{1}(X) s_{1}(Z) s_{1}(Z)^{-1} s_{1}(Y)=s_{1}(X) s_{1}(Y)
\end{aligned}
$$

Thus (10) is proven, as claimed.

In the example below we show that (10) in Theorem 2.3 can be a strict inequality.

Example 2.4. We choose $n=2$ and

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad Y=\left(\begin{array}{ll}
6 & 0 \\
0 & 2
\end{array}\right), \quad Z=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad W=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

Then

$$
s_{1}(X)=3, \quad s_{1}(Y)=6, \quad s_{1}(Z)=2, \quad s_{1}(W)=3
$$

Moreover, $Y=Z W$ and $s_{1}(Y)=s_{1}(Z) s_{1}(W)$, which gives $Z \preceq Y$. In addition,

$$
X Y=\left(\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right), \quad X Z=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

and

$$
s_{1}(X Y)=6, \quad s_{1}(X Z)=3
$$

Therefore we have the strict inequalities

$$
\begin{equation*}
s_{1}(X Y)<s_{1}(X Z) s_{1}(Z)^{-1} s_{1}(Y)<s_{1}(X) s_{1}(Y) \tag{11}
\end{equation*}
$$

This shows that (10) is really an improvement of the basic inequality (1).

Remark 2.5. A preliminary version of Theorem 2.3 is as follows.
If $X, Y \in \mathbb{M}_{n}$ and $Z, W \in \mathbb{M}_{n}$ are such that $Y=Z W$, then

$$
\begin{equation*}
s_{1}(X Y) \leq s_{1}(X Z) s_{1}(W) \leq s_{1}(X) s_{1}(Y) \tag{12}
\end{equation*}
$$

Here we do not assume that $s_{1}(Y)=s_{1}(Z) s_{1}(W)$. However, with this assumption, the statements (10) and (12) are the same (for $Z \neq 0$).

The initial inequality $s_{1}(X Y) \leq s_{1}(X) s_{1}(Y)$ is of the form (12) for the decomposition $Y=I_{n} Y$. Because $s_{1}\left(I_{n}\right)=1$ and $s_{1}(Y)=s_{1}\left(I_{n}\right) s_{1}(Y)$, so one has $I_{n} \preceq Y$, and, consequently, the last scalar inequality is of the form (10).

Example 2.6. Let $A, B \geq 0$ be two commuting positive semidefinite matrices in \mathbb{M}_{n} such that $A=U(\operatorname{diag} \lambda(A)) U^{*}$ and $B=U(\operatorname{diag} \lambda(B)) U^{*}$ for some $n \times n$ unitary matrix U. So, A, B are simultaneously diagonalizable.

We obtain

$$
\begin{aligned}
s_{1}(A B) & =s_{1}\left(U(\operatorname{diag} \lambda(A)) U^{*} U(\operatorname{diag}(\lambda(B))) U^{*}\right) \\
& =s_{1}\left(U((\operatorname{diag} \lambda(A))(\operatorname{diag} \lambda(B))) U^{*}\right) \\
& =s_{1}\left(U(\operatorname{diag}(\lambda(A) \circ \lambda(B))) U^{*}\right) \\
& =s_{1}\left(U(\operatorname{diag}(s(A) \circ s(B))) U^{*}\right) \\
& =s_{1}(\operatorname{diag}(s(A) \circ s(B))) \\
& =s_{1}(A) s_{1}(B)
\end{aligned}
$$

Therefore $A \preceq A B$ (see (2)). So, according to Theorem 2.3, we conclude that

$$
\begin{equation*}
s_{1}(X A B) \leq s_{1}(X A) s_{1}(B) \leq s_{1}(X) s_{1}(A B) \tag{13}
\end{equation*}
$$

In particular, for any $X \in \mathbb{M}_{n}$ and positive semidefinite A, applying (13) to $A^{1 / 2}$ and $A^{1 / 2}$ in place of A and B, respectively, we get

$$
s_{1}(X A) \leq s_{1}\left(X A^{1 / 2}\right) s_{1}\left(A^{1 / 2}\right) \leq s_{1}(X) s_{1}(A)
$$

For given $X, Y \in \mathbb{M}_{n}$, we define the following functional

$$
\begin{equation*}
\varphi(Z)=s_{1}(X Z) s_{1}(Z)^{-1} s_{1}(Y) \text { for } Z \in \mathbb{M}_{n} \backslash\{0\}, Z \preceq Y . \tag{14}
\end{equation*}
$$

The last theorem shows a role of the values of functional (14) as refining numbers in (1). We now demonstrate monotonicity of the functional.

Theorem 2.7. If $Y \in \mathbb{M}_{n}$ and $Z_{1}, Z_{2} \in \mathbb{M}_{n} \backslash\{0\}$ are such that $Z_{2} \preceq Z_{1}$ and $Z_{1} \preceq Y$, then for any $X \in \mathbb{M}_{n}$,

$$
\begin{equation*}
s_{1}\left(X Z_{1}\right) s_{1}\left(Z_{1}\right)^{-1} s_{1}(Y) \leq s_{1}\left(X Z_{2}\right) s_{1}\left(Z_{2}\right)^{-1} s_{1}(Y) . \tag{15}
\end{equation*}
$$

Proof. Because $Z_{2} \preceq Z_{1}$ and $Z_{1} \preceq Y$, we get

$$
\begin{equation*}
Z_{1}=Z_{2} U \quad \text { and } \quad Y=Z_{1} W \tag{16}
\end{equation*}
$$

and

$$
s_{1}\left(Z_{1}\right)=s_{1}\left(Z_{2}\right) s_{1}(U) \text { and } s_{1}(Y)=s_{1}\left(Z_{1}\right) s_{1}(W)
$$

for some $U, W \in \mathbb{M}_{n}$. Hence,

$$
\begin{equation*}
s_{1}(U)=s_{1}\left(Z_{2}\right)^{-1} s_{1}\left(Z_{1}\right) \quad \text { and } \quad s_{1}(W)=s_{1}\left(Z_{1}\right)^{-1} s_{1}(Y) . \tag{17}
\end{equation*}
$$

From (16) we deduce that

$$
s_{1}\left(X Z_{1}\right)=s_{1}\left(X Z_{2} U\right) \leq s_{1}\left(X Z_{2}\right) s_{1}(U),
$$

and further

$$
\begin{equation*}
s_{1}\left(X Z_{1}\right) s_{1}(W) \leq s_{1}\left(X Z_{2}\right) s_{1}(U) s_{1}(W) . \tag{18}
\end{equation*}
$$

According to (17) and (18) we obtain

$$
\begin{aligned}
s_{1}\left(X Z_{1}\right) s_{1}\left(Z_{1}\right)^{-1} s_{1}(Y) & \leq s_{1}\left(X Z_{2}\right) s_{1}\left(Z_{2}\right)^{-1} s_{1}\left(Z_{1}\right) s_{1}\left(Z_{1}\right)^{-1} s_{1}(Y) \\
& =s_{1}\left(X Z_{2}\right) s_{1}\left(Z_{2}\right)^{-1} s_{1}(Y),
\end{aligned}
$$

which gives (15), as required.
Remark 2.8. Under the hypotheses of Theorem 2.7, it holds that if $Z_{2} \preceq Z_{1} \preceq Y$ then

$$
\begin{align*}
s_{1}(X Y) & \leq s_{1}\left(X Z_{1}\right) s_{1}\left(Z_{1}\right)^{-1} s_{1}(Y) \\
& \leq s_{1}\left(X Z_{2}\right) s_{1}\left(Z_{2}\right)^{-1} s_{1}(Y) \leq s_{1}(X) s_{1}(Y) . \tag{19}
\end{align*}
$$

To see this, combine Theorems 2.2, 2.3 and 2.7.
Because $s_{1}\left(I_{n}\right)=1$, one has $I_{n} \preceq Z_{2} \preceq Z_{1} \preceq Y$. Then (19) reads as

$$
\varphi(Y) \leq \varphi\left(Z_{1}\right) \leq \varphi\left(Z_{2}\right) \leq \varphi\left(I_{n}\right),
$$

where φ is given by (14). This is the announced property of the monotonicity of the functional φ.

Example 2.9. For $i=1,2$, we assume $A_{i}, B_{i} \in \mathbb{M}_{n}$ are two matrices simultaneously diagonalized via singular values, that is, there exist two unitaries $U_{i 1}, U_{i 2}$ of size $n \times n$ such that $A_{i}=U_{i 1}\left(\operatorname{diag} s\left(A_{i}\right)\right) U_{i 2}^{*}$ and $B_{i}=U_{i 1}\left(\operatorname{diag} s\left(B_{i}\right)\right) U_{i 2}^{*}$. Assume $A_{1} B_{1}^{*}=A_{2} B_{2}^{*}$. It is not hard to show that $s_{1}\left(A_{i} B_{i}^{*}\right)=s_{1}\left(A_{i}\right) s_{1}\left(B_{i}^{*}\right)$.

By taking $Y=A_{i} B_{i}^{*}, Z_{i}=A_{i}$ and $W_{i}=B_{i}^{*}$, we see that $Y=Z_{i} W_{i}$ and $s_{1}(Y)=s_{1}\left(Z_{i}\right) s_{1}\left(W_{i}\right)$. Therefore $Z_{i} \preceq Y$ (see (2)).

According to Theorem 2.7, for any $X \in \mathbb{M}_{n}$ we conclude that if $Z_{2} \preceq Z_{1}$ then (15) holds.

3. Identities and Inequalities

A map $(\cdot)^{-}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is called a generalized inverse on \mathbb{M}_{n} if

$$
\begin{equation*}
A A^{-} A=A \quad \text { for all } A \in \mathbb{M}_{n} \tag{20}
\end{equation*}
$$

(see [12]).
For example, if

$$
A=U_{1}\left(\operatorname{diag}\left(s_{1}(A), \ldots, s_{n}(A)\right)\right) U_{2}^{*}
$$

is the Singular Value Decomposition of A with unitary U_{1} and U_{2} and singular values $s_{1}(A) \geq \ldots \geq s_{n}(A) \geq 0$, then one can put

$$
A^{-}=U_{2}\left(\operatorname{diag}\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right)\right) U_{1}^{*}
$$

where $\sigma_{i}(A)=\frac{1}{s_{i}(A)}$ if $s_{i}(A) \neq 0$, and $\sigma_{i}(A)=0$ if $s_{i}(A)=0$.
We introduce a functional Φ by

$$
\begin{equation*}
\Phi(A, C, B)=\frac{s_{1}\left(B^{-} C\right) s_{1}\left(C^{-} A\right)}{s_{1}\left(B^{-} A\right)} \tag{21}
\end{equation*}
$$

for all $A, B, C \in \mathbb{M}_{n}$ such that $B^{-} A \neq 0$.

Lemma 3.1. Let $X, Y, Z, W \in \mathbb{M}_{n}$ with $Z^{-} X \neq 0, W^{-} X \neq 0, Z^{-} Y \neq 0$. Then

$$
\begin{equation*}
\Phi(X, W, Z) \Phi(X, Y, W)=\Phi(X, Y, Z) \Phi(Y, W, Z) \tag{22}
\end{equation*}
$$

Proof. By (21) we get

$$
\begin{aligned}
\Phi(X, W, Z) \Phi(X, Y, W) & =\frac{s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} X\right)}{s_{1}\left(Z^{-} X\right)} \frac{s_{1}\left(W^{-} Y\right) s_{1}\left(Y^{-} X\right)}{s_{1}\left(W^{-} X\right)} \\
& =\frac{s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right) s_{1}\left(Y^{-} X\right)}{s_{1}\left(Z^{-} X\right)}
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\Phi(X, Y, Z) \Phi(Y, W, Z) & =\frac{s_{1}\left(Z^{-} Y\right) s_{1}\left(Y^{-} X\right)}{s_{1}\left(Z^{-} X\right)} \frac{s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right)}{s_{1}\left(Z^{-} Y\right)} \\
& =\frac{s_{1}\left(Y^{-} X\right) s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right)}{s_{1}\left(Z^{-} X\right)}
\end{aligned}
$$

Therefore the result follows.

It is also not hard to check that

$$
\begin{align*}
& \Phi(Z, X, W) \Phi(X, Y, W)=\Phi(Z, X, Y) \Phi(Z, Y, W) \tag{23}\\
& \Phi(X, W, Y) \Phi(X, Z, W)=\Phi(Z, W, Y) \Phi(X, Z, Y) \tag{24}\\
& \Phi(Y, X, W) \Phi(X, Z, W)=\Phi(Y, Z, W) \Phi(Y, X, Z) \tag{25}
\end{align*}
$$

Throughout, for a matrix $A \in \mathbb{M}_{n}$ the symbol $R(A)$ stands for the range of A defined by $R(A)=\left\{A x: x \in \mathbb{F}^{n}\right\}$.

It follows from (1) that

$$
\begin{equation*}
s_{1}\left(B^{-} A\right) \leq s_{1}\left(B^{-} C\right) s_{1}\left(C^{-} A\right) \text { for } A, B, C \in \mathbb{M}_{n} \tag{26}
\end{equation*}
$$

such that $R(A) \subset R(C)$, because we get $A=C V$ for some $V \in \mathbb{M}_{n}$, and next

$$
\begin{equation*}
\left(B^{-} C\right)\left(C^{-} A\right)=B^{-}\left(C C^{-} C V\right)=B^{-}(C V)=B^{-} A \tag{27}
\end{equation*}
$$

Therefore, in light of (21) and (26),

$$
\begin{equation*}
\Phi(A, C, B) \geq 1 \tag{28}
\end{equation*}
$$

for $A, B, C \in \mathbb{M}_{n}$ such that $B^{-} A \neq 0$ and $R(A) \subset R(C)$.
In the special case when C is invertible (i.e., there exists C^{-1}), we have $C^{-}=C^{-1}$, and the condition $R(A) \subset R(C)$ is fulfilled automatically.

In the next theorem we present and prove four inequalities of type (1) expressed in the terms of functional Φ. In doing so, we utilize identity (22). Such an approach is very useful in deriving refinements of (1) (see the next section). Each of the forthcoming inequalities (29)-(32) formally involves four matrices, but in fact it is of the form $s_{1}(c) \leq s_{1}(a) s_{1}(b)$ for some matrices $a, b, c \in \mathbb{M}_{n}$. The used inclusions ensure that $c=a b$ by (20) and (27), and, in consequence, (1) via (28) can be applied in the proof.

Theorem 3.2. Let $X, Y, Z, W \in \mathbb{M}_{n}$ be matrices with $Z^{-} X \neq 0, W^{-} X \neq 0$, $Z^{-} Y \neq 0$. Then

$$
\begin{align*}
& R(X) \subset R(Y) \quad \text { implies } \quad \Phi(X, W, Z) \leq \Phi(X, Y, Z) \Phi(Y, W, Z) \tag{29}\\
& R(X) \subset R(W) \quad \text { implies } \quad \Phi(X, Y, W) \leq \Phi(X, Y, Z) \Phi(Y, W, Z) \tag{30}
\end{align*}
$$

$$
\begin{align*}
& R(Y) \subset R(W) \quad \text { implies } \quad \Phi(X, Y, Z) \leq \Phi(X, W, Z) \Phi(X, Y, W) \tag{31}\\
& R(X) \subset R(Y) \quad \text { implies } \quad \Phi(Y, W, Z) \leq \Phi(X, W, Z) \Phi(X, Y, W) \tag{32}
\end{align*}
$$

Proof. If $R(X) \subset R(Y)$ then $1 \leq \Phi(X, Y, W)$ by (28), whence

$$
\begin{equation*}
\Phi(X, W, Z) \leq \Phi(X, W, Z) \Phi(X, Y, W) \tag{33}
\end{equation*}
$$

By (22) in Lemma 3.1 we have

$$
\begin{equation*}
\Phi(X, W, Z) \Phi(X, Y, W)=\Phi(X, Y, Z) \Phi(Y, W, Z) \tag{34}
\end{equation*}
$$

This and (33) give

$$
\Phi(X, W, Z) \leq \Phi(X, Y, Z) \Phi(Y, W, Z)
$$

Thus statement (29) is proven.
The proofs of (30)-(32) are similar, and therefore omitted.

Remark 3.3. By making use of (23), one can obtain further inequalities of type (29)-(32), for instance

$$
\begin{align*}
& R(Z) \subset R(X) \quad \text { implies } \quad \Phi(Z, X, W) \leq \Phi(Z, X, Y) \Phi(Z, Y, W) \tag{35}\\
& R(X) \subset R(Y) \quad \text { implies } \quad \Phi(X, Y, W) \leq \Phi(Z, X, Y) \Phi(Z, Y, W) \tag{36}
\end{align*}
$$

for $X, Y, Z, W \in \mathbb{M}_{n}$ with $W^{-} Z \neq 0, Y^{-} Z \neq 0, W^{-} X \neq 0$.

4. Refining Inequalities of Type $\Phi(A, C, B) \geq 1$

Let $(\cdot)^{-}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ be a generalized inverse map on \mathbb{M}_{n} (see (20)). For $Y, Z \in \mathbb{M}_{n}$, we introduce the following set

$$
\begin{aligned}
{[Z, Y]_{s_{1}(\cdot)}=} & \left\{W \in \mathbb{M}_{n}: W=Z V_{1} \text { and } Y=W V_{2} \text { for some } V_{1}, V_{2} \in \mathbb{M}_{n}\right. \\
& \text { and } \left.s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right)=s_{1}\left(Z^{-} Y\right)\right\}
\end{aligned}
$$

Notice that by (20) we have: if $W \in[Z, Y]_{s_{1}(\cdot)}$ then

$$
\left(Z^{-} W\right)\left(W^{-} Y\right)=Z^{-}\left(W W^{-} W V_{2}\right)=Z^{-} W V_{2}=Z^{-} Y
$$

Example 4.1. Let $Z, V_{1}, V_{2} \in \mathbb{M}_{n}$ be matrices with positive singular values such that

$$
Z=U_{1}(\operatorname{diag} s(Z)) U_{2}^{*}, \quad V_{1}=U_{2}\left(\operatorname{diag} s\left(V_{1}\right)\right) U_{3}^{*}, \quad V_{2}=U_{3}\left(\operatorname{diag} s\left(V_{2}\right)\right) U_{4}^{*}
$$

for some unitaries $U_{1}, U_{2}, U_{3}, U_{4}$. Evidently, the matrices $Z \operatorname{nad} V_{1}^{*}$ as well as V_{1} and V_{2}^{*} are semi-simultaneously diagonalizable via singular values.

We introduce $W=Z V_{1}$ and $Y=W V_{2}$. Then we have

$$
\begin{aligned}
W & =U_{1}\left(\operatorname{diag}\left(s(Z) \circ s\left(V_{1}\right)\right)\right) U_{3}^{*} \\
Y & =U_{1}\left(\operatorname{diag}\left(s(Z) \circ s\left(V_{1}\right) \circ s\left(V_{2}\right)\right)\right) U_{4}^{*} \\
V_{1} V_{2} & =U_{2}\left(\operatorname{diag}\left(s\left(V_{1}\right) \circ s\left(V_{2}\right)\right)\right) U_{4}^{*}
\end{aligned}
$$

As a corollary, we obtain

$$
s_{1}\left(Z^{-1} W\right) s_{1}\left(W^{-1} Y\right)=s_{1}\left(V_{1}\right) s_{1}\left(V_{2}\right)
$$

and

$$
s_{1}\left(Z^{-} Y\right)=s_{1}\left(Z^{-1} Y\right)=s_{1}\left(Z^{-1} W W^{-1} Y\right)=s_{1}\left(V_{1} V_{2}\right)=s_{1}\left(V_{1}\right) s_{1}\left(V_{2}\right)
$$

Thus we get $s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right)=s_{1}\left(Z^{-} Y\right)$.
In conclusion, we obtain $W \in[Z, Y]_{s_{1}(\cdot)}$, as desired.
Theorem 4.2. Let $X, Y, Z, W \in \mathbb{M}_{n}$ with $Z^{-} Y \neq 0, X^{-} Y \neq 0, X^{-} W \neq 0$. If $W \in[Z, Y]_{s_{1}(\cdot)}$ then the following refinement of the standard inequality $1 \leq$ $\Phi(Y, Z, X)$ holds:

$$
\begin{equation*}
1 \leq \max \{\Phi(W, Z, X), \Phi(Y, W, X)\} \leq \Phi(Y, Z, X) \tag{37}
\end{equation*}
$$

Proof. It is not hard to check that

$$
\begin{equation*}
\Phi(Y, W, Z) \Phi(Y, Z, X)=\Phi(W, Z, X) \Phi(Y, W, X) \tag{38}
\end{equation*}
$$

Suppose $W \in[Z, Y]_{s_{1}(\cdot)}$. Hence $s_{1}\left(Z^{-} W\right) s_{1}\left(W^{-} Y\right)=s_{1}\left(Z^{-} Y\right)$ with $R(W) \subset R(Z)$ and $R(Y) \subset R(W)$. So, $\Phi(Y, W, Z)=1$ and $R(Y) \subset R(Z)$. Therefore $\Phi(Y, Z, X) \geq 1$ by (28). For this reason we get

$$
\Phi(Y, Z, X)=\Phi(Y, W, Z) \Phi(Y, Z, X)
$$

On account of (38), this condition is equivalent to

$$
\Phi(Y, Z, X)=\Phi(W, Z, X) \Phi(Y, W, X)
$$

It now follows from this that

$$
\begin{align*}
\Phi(Y, Z, X) & =\Phi(W, Z, X) \Phi(Y, W, X) \\
& \geq \max \{\Phi(W, Z, X), \Phi(Y, W, X)\} \geq 1 \tag{39}
\end{align*}
$$

because
$\Phi(Y, W, X) \geq 1 \quad$ and $\quad \Phi(W, Z, X) \geq 1$
by (28), since $R(Y) \subset R(W)$ and $R(W) \subset R(Z)$ with $X^{-} Y \neq 0$ and $X^{-} W \neq 0$.
Finally, (39) yields (37), as wanted.

Corollary 4.3. Let $X, Y, Z, W \in \mathbb{M}_{n}$ with $Z^{-} Y \neq 0, X^{-} Y \neq 0, X^{-} W \neq 0$. If $W \in[Z, Y]_{s_{1}(\cdot)}$ then

$$
\begin{equation*}
s_{1}\left(X^{-} Y\right) \leq s_{1}\left(X^{-} W\right) s_{1}\left(W^{-} Y\right) \leq s_{1}\left(X^{-} Z\right) s_{1}\left(Z^{-} Y\right) \tag{40}
\end{equation*}
$$

Proof. Assume that $W \in[Z, Y]_{s_{1}(\cdot)}$. Then $R(W) \subset R(Z)$ and $R(Y) \subset R(W)$. Therefore $\Phi(Y, W, X) \geq 1$ by (28).

By employing (37) we find that

$$
\Phi(Y, W, X) \leq \Phi(Y, Z, X)
$$

Hence, by (21), we have

$$
\begin{equation*}
1 \leq \frac{s_{1}\left(X^{-} W\right) s_{1}\left(W^{-} Y\right)}{s_{1}\left(X^{-} Y\right)} \leq \frac{s_{1}\left(X^{-} Z\right) s_{1}\left(Z^{-} Y\right)}{s_{1}\left(X^{-} Y\right)} \tag{41}
\end{equation*}
$$

In other words, we obtain

$$
\begin{equation*}
s_{1}\left(X^{-} Y\right) \leq s_{1}\left(X^{-} W\right) s_{1}\left(W^{-} Y\right) \leq s_{1}\left(X^{-} Z\right) s_{1}\left(Z^{-} Y\right) \tag{42}
\end{equation*}
$$

which gives (40), as claimed.

Acknowledgement. The author wishes to thank anonymous referee for giving valuable comments.

References

[1] J.-T. Chan, C.-K. Li, Unitarily invariant matrix norms on operators, arXiv:2112.13656v1 [mathFA] 17 Dec 2021.
[2] W. Ding, C.-K. Li, Y. Li, A note on unitarily invariant matrix norms, Linear Algebra Appl. 607 (2020) 341-346.
[3] C.F. Dunkl, K.S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964) 53-54.
[4] C.-K. Li, N.-K. Tsing, On unitarily invariant norms and related results, Linear Multilinear Algebra 20 (1987) 107-119.
[5] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006) 256260.
[6] P.R. Mercer, The Dunkl-Williams inequality in an inner product space, Math. Inequal. Appl. 10 (2007) 447-450.
[7] M. Niezgoda, On triangle inequality for Miranda-Thompson's majorization and gradients of increasing functions, Adv. Oper. Theory 5 (2020) 647-656. https://doi.org/10.1007/s43036-019-00023-y
[8] M. Niezgoda, Refinements of triangle like inequalities in Lie's framework, Bull. Malays. Math. Sci. Soc. 44 (2021) 243-250. doi: 10.1007/s40840-020-00955-2
[9] M. Niezgoda, On Maligranda like inequalities for G-majorization, Linear Multilinear Algebra 70 (2022) 264-279.
[10] J. Pečarić, R. Rajić, The Dunkl-Williams inequality with n-elements in normed linear spaces, Math. Inequal. Appl. 10 (2007) 461-470.
[11] J. Pečarić, R. Rajić, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal. 4 (2010) 1-10.
[12] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley and Sons, New York 1971.
[13] G. Strang, Linear Algebra and Learning from Data, Welleslley-Cambridge Press, 2019.

