
Southeast Asian

Bulletin of

Mathematics
c©SEAMS. 2022

Southeast Asian Bulletin of Mathematics (2022) 46: 737–748

On the Largest Singular Value of a Matrix and

Generalized Inverses

Marek Niezgoda
Institute of Mathematics, Pedagogical University of Cracow, Podchora̧żych 2, 30-084
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Abstract. In this paper we study properties of the largest singular value s1(·) of matrices

viewed as a norm on the space of complex matrices. We give a refinement of the

submultiplicativity inequality characterizing s1(·). In our approach we use the equality

case of the inequality. We introduce a corresponding preorder on the matrix space and

show the monotonicity of a certain functional induced by s1(·). We also provide some

inequalities by using generalized inverses of matrices.
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1. Preliminaries

Throughout Mn denotes the set of all n× n matrices over the field F = R or C,
and Un denotes the set of all n × n unitary matrices. As usual, In stands for
the n× n identity matrix. The symbol (·)∗ means the conjugate transpose of a
matrix. The elements of Fn are viewed as n × 1 column vectors. The norm on
F
n is given by |x| = (x∗x)1/2 for x ∈ F

n.

For a given hermitian matrix A ∈ Mn, the eigenvalues of A stated in decreas-
ing order are denoted by λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).
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By Spectral Decomposition, each hermitian matrix A has the form A =
U(diagλ(A))U∗ for some unitary matrix U of order n, where the symbol diag a
means the diagonal matrix with the entries of the vector a ∈ F

n on the main
diagonal.

For a given matrix A ∈ Mn, by s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) are denoted
the singular values of A arranged in decreasing order. So, si(A) = λi(AA

∗)1/2

for i = 1, 2, . . . , n.

By Singular Value Decomposition, each matrix A ∈ Mn has the form A =
U1diag s(A)U

∗
2 for some unitary matrices U1, U2 of order n.

It is well known that the map s1(·) : X 7→ s1(X) for X ∈ Mn is a norm
on Mn. In addition, s1(·) is unitarily invariant (abbreviated as u.i.), that is,
s1(UXV ) = s1(X) for all X ∈ Mn and U, V ∈ Un (see [1, 2, 4]).

Furthermore, s1(·) is submultiplicative, as follows:

s1(XY ) ≤ s1(X)s1(Y ) for all X,Y ∈ Mn (1)

(see [1, 2]).

As usual, hermitian A,B ∈ Mn are called simultaneously diagonalizable if
there exists n × n unitary matrix U such that A = U(diag λ(A))U∗ and B =
U(diagλ(B))U∗.

In this paper, matrices A,B ∈ Mn are called simultaneously diagonalizable

via singular values, if there exist n × n unitary matrices U1, U2 such that A =
U1(diag s(A))U

∗
2 and B = U1(diag s(B))U∗

2 .

Likewise, matrices A,B ∈ Mn are called semi-simultaneously diagonaliz-

able via singular values, if there exist n × n unitary matrices U1, U2, U3 such
that A = U1(diag s(A))U

∗
2 and B = U3(diag s(B))U∗

2 . In such a case one has
AB∗ = U1(diag (s(A) ◦ s(B)))U∗

3 , where ◦ is the Hadamard product on F
n. In

consequence, s1(AB
∗) = s1(A)s1(B). This is an equality case of inequality (1)

(cf. [1, 2]).

In the present paper, our aim is to derive some refinements of the basic
inequality (1) by using the mentioned equality cases of (1). Some analogous
subadditivity problems have been investigated recently, too (see e.g., [5, 9, 8, 7]).
They are related to Dunkl-Williams and Maligranda’s inequalities and angular
distance of vectors (see e.g., [6, 10, 11]). In the next sections we initiate preparing
a framework for corresponding studies on submultiplicative case.

2. Inequalities for the Largest Singular Value

For given X,Y ∈ Mn, we write Y � X if there exists W ∈ Mn such that

X = YW and s1(X) = s1(Y )s1(W ). (2)

Observe that (2) gives

s1(YW ) = s1(Y )s1(W ), (3)
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which is an equality case of inequality (1).

Example 2.1. Let A ≥ 0 be an n× n (hermitian) positive semidefinite matrix.
Then

A1/2 � A.

In fact, for X = A, Y = W = A1/2 we have X = YW and A =
U(diagλ(A))U∗ and A1/2 = U(diag λ(A1/2))U∗ for some n × n unitary matrix
U . In consequence,

s1(X) = s1(A) = λ1(A) =
(

λ1(A
1/2)

)2

=
(

s1(A
1/2)

)2

= s1(Y )s1(W ),

as wanted.

In the sequel we shall study properties of the relation � on Mn in connection
with the problem of refining the basic inequality (1). To this end we shall utilize
statements of type (3).

Theorem 2.2. The relation � is transitive and reflexive on Mn, and hence � is

a preorder on Mn.

Proof. Assume that X,Y, Z ∈ Mn are such that Z � Y and Y � X . Then there
exist U,W ∈ Mn such that

Y = ZU and X = YW (4)

and
s1(Y ) = s1(Z)s1(U) and s1(X) = s1(Y )s1(W ) (5)

(see (2)). By denoting V = UW we get from (4) that

X = YW = ZUW = ZV. (6)

By (5) we can write

s1(X) = s1(Y )s1(W ) = s1(Z)s1(U)s1(W ). (7)

Simultaneosly, we have

s1(V ) = s1(UW ) ≤ s1(U)s1(W )

by (1). Hence,
s1(Z)s1(V ) ≤ s1(Z)s1(U)s1(W ),

which together with (7) leads to

s1(Z)s1(V ) ≤ s1(X). (8)
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However, due to (6) we obtain

s1(X) = s1(ZV ) ≤ s1(Z)s1(V ). (9)

So, by combining (8) and (9) we establish

s1(X) = s1(Z)s1(V ).

Additionally, in light of (6) we see that X = ZV . Therefore, by (2), we infer
that Z � X . Thus we have proved that � is transitive on Mn.

Finally, it is clear that s1(In) = 1. It now follows that

X = XIn and s1(X) = s1(X)s1(In) for X ∈ Mn.

So, we get X � X for X ∈ Mn. That is, � is reflexive on Mn, as wanted. In
summary, � is transitive and reflexive. So, it is a preorder on Mn.

With the help of the relation �, we now present a refinement of inequality
(1).

Theorem 2.3. If X,Y ∈ Mn and Z ∈ Mn \ {0} are such that Z � Y , then

s1(XY ) ≤ s1(XZ)s1(Z)−1s1(Y ) ≤ s1(X)s1(Y ). (10)

Proof. As Z � Y , we see that

Y = ZW and s1(Y ) = s1(Z)s1(W )

for some W ∈ Mn. Therefore, we get

s1(W ) = s1(Z)−1s1(Y ).

In consequence, by (1),

s1(XY ) = s1(XZW ) ≤ s1(XZ)s1(W ) = s1(XZ)s1(Z)−1s1(Y )

≤ s1(X)s1(Z)s1(Z)−1s1(Y ) = s1(X)s1(Y ).

Thus (10) is proven, as claimed.

In the example below we show that (10) in Theorem 2.3 can be a strict
inequality.

Example 2.4. We choose n = 2 and

X =

(

1 0
0 3

)

, Y =

(

6 0
0 2

)

, Z =

(

2 0
0 1

)

, W =

(

3 0
0 2

)

.
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Then
s1(X) = 3, s1(Y ) = 6, s1(Z) = 2, s1(W ) = 3.

Moreover, Y = ZW and s1(Y ) = s1(Z)s1(W ), which gives Z � Y . In addition,

XY =

(

6 0
0 6

)

, XZ =

(

2 0
0 3

)

and
s1(XY ) = 6, s1(XZ) = 3.

Therefore we have the strict inequalities

s1(XY ) < s1(XZ)s1(Z)−1s1(Y ) < s1(X)s1(Y ). (11)

This shows that (10) is really an improvement of the basic inequality (1).

Remark 2.5. A preliminary version of Theorem 2.3 is as follows.

If X,Y ∈ Mn and Z,W ∈ Mn are such that Y = ZW , then

s1(XY ) ≤ s1(XZ)s1(W ) ≤ s1(X)s1(Y ). (12)

Here we do not assume that s1(Y ) = s1(Z)s1(W ). However, with this assump-
tion, the statements (10) and (12) are the same (for Z 6= 0).

The initial inequality s1(XY ) ≤ s1(X)s1(Y ) is of the form (12) for the de-
composition Y = InY . Because s1(In) = 1 and s1(Y ) = s1(In)s1(Y ), so one has
In � Y , and, consequently, the last scalar inequality is of the form (10).

Example 2.6. Let A,B ≥ 0 be two commuting positive semidefinite matrices
in Mn such that A = U(diag λ(A))U∗ and B = U(diag λ(B))U∗ for some n× n

unitary matrix U . So, A,B are simultaneously diagonalizable.

We obtain

s1(AB) = s1(U(diag λ(A))U∗U(diag (λ(B)))U∗)

= s1(U((diag λ(A))(diag λ(B)))U∗)

= s1(U(diag (λ(A) ◦ λ(B)))U∗)

= s1(U(diag (s(A) ◦ s(B)))U∗)

= s1(diag (s(A) ◦ s(B)))

= s1(A)s1(B).

Therefore A � AB (see (2)). So, according to Theorem 2.3, we conclude that

s1(XAB) ≤ s1(XA)s1(B) ≤ s1(X)s1(AB). (13)

In particular, for any X ∈ Mn and positive semidefinite A, applying (13) to
A1/2 and A1/2 in place of A and B, respectively, we get

s1(XA) ≤ s1(XA1/2)s1(A
1/2) ≤ s1(X)s1(A).
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For given X,Y ∈ Mn, we define the following functional

ϕ(Z) = s1(XZ)s1(Z)−1s1(Y ) for Z ∈ Mn \ {0}, Z � Y . (14)

The last theorem shows a role of the values of functional (14) as refining
numbers in (1). We now demonstrate monotonicity of the functional.

Theorem 2.7. If Y ∈ Mn and Z1, Z2 ∈ Mn \ {0} are such that Z2 � Z1 and

Z1 � Y , then for any X ∈ Mn,

s1(XZ1)s1(Z1)
−1s1(Y ) ≤ s1(XZ2)s1(Z2)

−1s1(Y ). (15)

Proof. Because Z2 � Z1 and Z1 � Y , we get

Z1 = Z2U and Y = Z1W (16)

and
s1(Z1) = s1(Z2)s1(U) and s1(Y ) = s1(Z1)s1(W )

for some U,W ∈ Mn. Hence,

s1(U) = s1(Z2)
−1s1(Z1) and s1(W ) = s1(Z1)

−1s1(Y ). (17)

From (16) we deduce that

s1(XZ1) = s1(XZ2U) ≤ s1(XZ2)s1(U),

and further
s1(XZ1)s1(W ) ≤ s1(XZ2)s1(U)s1(W ). (18)

According to (17) and (18) we obtain

s1(XZ1)s1(Z1)
−1s1(Y ) ≤ s1(XZ2)s1(Z2)

−1s1(Z1)s1(Z1)
−1s1(Y )

= s1(XZ2)s1(Z2)
−1s1(Y ),

which gives (15), as required.

Remark 2.8. Under the hypotheses of Theorem 2.7, it holds that if Z2 � Z1 � Y

then
s1(XY ) ≤s1(XZ1)s1(Z1)

−1s1(Y )

≤s1(XZ2)s1(Z2)
−1s1(Y ) ≤ s1(X)s1(Y ).

(19)

To see this, combine Theorems 2.2, 2.3 and 2.7.

Because s1(In) = 1, one has In � Z2 � Z1 � Y . Then (19) reads as

ϕ(Y ) ≤ ϕ(Z1) ≤ ϕ(Z2) ≤ ϕ(In),

where ϕ is given by (14). This is the announced property of the monotonicity
of the functional ϕ.
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Example 2.9. For i = 1, 2, we assume Ai, Bi ∈ Mn are two matrices simultane-
ously diagonalized via singular values, that is, there exist two unitaries Ui1, Ui2

of size n × n such that Ai = Ui1(diag s(Ai))U
∗
i2 and Bi = Ui1(diag s(Bi))U

∗
i2.

Assume A1B
∗
1 = A2B

∗
2 . It is not hard to show that s1(AiB

∗
i ) = s1(Ai)s1(B

∗
i ).

By taking Y = AiB
∗
i , Zi = Ai and Wi = B∗

i , we see that Y = ZiWi and
s1(Y ) = s1(Zi)s1(Wi). Therefore Zi � Y (see (2)).

According to Theorem 2.7, for any X ∈ Mn we conclude that if Z2 � Z1

then (15) holds.

3. Identities and Inequalities

A map (·)− : Mn → Mn is called a generalized inverse on Mn if

AA−A = A for all A ∈ Mn (20)

(see [12]).

For example, if

A = U1(diag (s1(A), . . . , sn(A)))U
∗
2

is the Singular Value Decomposition of A with unitary U1 and U2 and singular
values s1(A) ≥ . . . ≥ sn(A) ≥ 0, then one can put

A− = U2(diag (σ1(A), . . . , σn(A)))U
∗
1 ,

where σi(A) =
1

si(A) if si(A) 6= 0, and σi(A) = 0 if si(A) = 0.

We introduce a functional Φ by

Φ(A,C,B) =
s1(B

−C)s1(C
−A)

s1(B−A)
(21)

for all A,B,C ∈ Mn such that B−A 6= 0.

Lemma 3.1. Let X,Y, Z,W ∈ Mn with Z−X 6= 0, W−X 6= 0, Z−Y 6= 0. Then

Φ(X,W,Z) Φ(X,Y,W ) = Φ(X,Y, Z) Φ(Y,W,Z). (22)

Proof. By (21) we get

Φ(X,W,Z) Φ(X,Y,W ) =
s1(Z

−W )s1(W
−X)

s1(Z−X)

s1(W
−Y )s1(Y

−X)

s1(W−X)

=
s1(Z

−W )s1(W
−Y )s1(Y

−X)

s1(Z−X)
.
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Similarly, we have

Φ(X,Y, Z) Φ(Y,W,Z) =
s1(Z

−Y )s1(Y
−X)

s1(Z−X)

s1(Z
−W )s1(W

−Y )

s1(Z−Y )

=
s1(Y

−X)s1(Z
−W )s1(W

−Y )

s1(Z−X)
.

Therefore the result follows.

It is also not hard to check that

Φ(Z,X,W ) Φ(X,Y,W ) = Φ(Z,X, Y ) Φ(Z, Y,W ), (23)

Φ(X,W, Y ) Φ(X,Z,W ) = Φ(Z,W, Y ) Φ(X,Z, Y ), (24)

Φ(Y,X,W ) Φ(X,Z,W ) = Φ(Y, Z,W ) Φ(Y,X,Z). (25)

Throughout, for a matrix A ∈ Mn the symbol R(A) stands for the range of
A defined by R(A) = {Ax : x ∈ F

n}.

It follows from (1) that

s1(B
−A) ≤ s1(B

−C)s1(C
−A) for A,B,C ∈ Mn (26)

such that R(A) ⊂ R(C), because we get A = CV for some V ∈ Mn, and next

(B−C)(C−A) = B−(CC−CV ) = B−(CV ) = B−A. (27)

Therefore, in light of (21) and (26),

Φ(A,C,B) ≥ 1 (28)

for A,B,C ∈ Mn such that B−A 6= 0 and R(A) ⊂ R(C).

In the special case when C is invertible (i.e., there exists C−1), we have
C− = C−1, and the condition R(A) ⊂ R(C) is fulfilled automatically.

In the next theorem we present and prove four inequalities of type (1) ex-
pressed in the terms of functional Φ. In doing so, we utilize identity (22). Such
an approach is very useful in deriving refinements of (1) (see the next section).
Each of the forthcoming inequalities (29)-(32) formally involves four matrices,
but in fact it is of the form s1(c) ≤ s1(a)s1(b) for some matrices a, b, c ∈ Mn.
The used inclusions ensure that c = ab by (20) and (27), and, in consequence,
(1) via (28) can be applied in the proof.

Theorem 3.2. Let X,Y, Z,W ∈ Mn be matrices with Z−X 6= 0, W−X 6= 0,
Z−Y 6= 0. Then

R(X) ⊂ R(Y ) implies Φ(X,W,Z) ≤ Φ(X,Y, Z) Φ(Y,W,Z), (29)

R(X) ⊂ R(W ) implies Φ(X,Y,W ) ≤ Φ(X,Y, Z) Φ(Y,W,Z), (30)
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R(Y ) ⊂ R(W ) implies Φ(X,Y, Z) ≤ Φ(X,W,Z) Φ(X,Y,W ), (31)

R(X) ⊂ R(Y ) implies Φ(Y,W,Z) ≤ Φ(X,W,Z) Φ(X,Y,W ). (32)

Proof. If R(X) ⊂ R(Y ) then 1 ≤ Φ(X,Y,W ) by (28), whence

Φ(X,W,Z) ≤ Φ(X,W,Z) Φ(X,Y,W ). (33)

By (22) in Lemma 3.1 we have

Φ(X,W,Z) Φ(X,Y,W ) = Φ(X,Y, Z) Φ(Y,W,Z). (34)

This and (33) give

Φ(X,W,Z) ≤ Φ(X,Y, Z) Φ(Y,W,Z).

Thus statement (29) is proven.

The proofs of (30)-(32) are similar, and therefore omitted.

Remark 3.3. By making use of (23), one can obtain further inequalities of type
(29)-(32), for instance

R(Z) ⊂ R(X) implies Φ(Z,X,W ) ≤ Φ(Z,X, Y ) Φ(Z, Y,W ), (35)

R(X) ⊂ R(Y ) implies Φ(X,Y,W ) ≤ Φ(Z,X, Y ) Φ(Z, Y,W ) (36)

for X,Y, Z,W ∈ Mn with W−Z 6= 0, Y −Z 6= 0, W−X 6= 0.

4. Refining Inequalities of Type Φ(A,C,B) ≥ 1

Let (·)− : Mn → Mn be a generalized inverse map on Mn (see (20)). For
Y, Z ∈ Mn, we introduce the following set

[Z, Y ]s1(·) = {W ∈ Mn : W = ZV1 and Y = WV2 for some V1, V2 ∈ Mn,

and s1(Z
−W )s1(W

−Y ) = s1(Z
−Y )}.

Notice that by (20) we have: if W ∈ [Z, Y ]s1(·) then

(Z−W )(W−Y ) = Z−(WW−WV2) = Z−WV2 = Z−Y.

Example 4.1. Let Z, V1, V2 ∈ Mn be matrices with positive singular values such
that

Z = U1(diag s(Z))U∗
2 , V1 = U2(diag s(V1))U

∗
3 , V2 = U3(diag s(V2))U

∗
4

for some unitaries U1, U2, U3, U4. Evidently, the matrices Z nad V ∗
1 as well as

V1 and V ∗
2 are semi-simultaneously diagonalizable via singular values.
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We introduce W = ZV1 and Y = WV2. Then we have

W = U1(diag (s(Z) ◦ s(V1)))U
∗
3 ,

Y = U1(diag (s(Z) ◦ s(V1) ◦ s(V2)))U
∗
4 ,

V1V2 = U2(diag (s(V1) ◦ s(V2)))U
∗
4 .

As a corollary, we obtain

s1(Z
−1W )s1(W

−1Y ) = s1(V1)s1(V2)

and

s1(Z
−Y ) = s1(Z

−1Y ) = s1(Z
−1WW−1Y ) = s1(V1V2) = s1(V1)s1(V2).

Thus we get s1(Z
−W )s1(W

−Y ) = s1(Z
−Y ).

In conclusion, we obtain W ∈ [Z, Y ]s1(·), as desired.

Theorem 4.2. Let X,Y, Z,W ∈ Mn with Z−Y 6= 0, X−Y 6= 0, X−W 6= 0.
If W ∈ [Z, Y ]s1(·) then the following refinement of the standard inequality 1 ≤
Φ(Y, Z,X) holds:

1 ≤ max{Φ(W,Z,X),Φ(Y,W,X)} ≤ Φ(Y, Z,X). (37)

Proof. It is not hard to check that

Φ(Y,W,Z) Φ(Y, Z,X) = Φ(W,Z,X) Φ(Y,W,X). (38)

Suppose W ∈ [Z, Y ]s1(·). Hence s1(Z
−W )s1(W

−Y ) = s1(Z
−Y ) with

R(W ) ⊂ R(Z) and R(Y ) ⊂ R(W ). So, Φ(Y,W,Z) = 1 and R(Y ) ⊂ R(Z).
Therefore Φ(Y, Z,X) ≥ 1 by (28). For this reason we get

Φ(Y, Z,X) = Φ(Y,W,Z) Φ(Y, Z,X).

On account of (38), this condition is equivalent to

Φ(Y, Z,X) = Φ(W,Z,X) Φ(Y,W,X).

It now follows from this that

Φ(Y, Z,X) =Φ(W,Z,X) Φ(Y,W,X)

≥max{Φ(W,Z,X),Φ(Y,W,X)} ≥ 1,
(39)

because
Φ(Y,W,X) ≥ 1 and Φ(W,Z,X) ≥ 1

by (28), since R(Y ) ⊂ R(W ) and R(W ) ⊂ R(Z) with X−Y 6= 0 and X−W 6= 0.

Finally, (39) yields (37), as wanted.
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Corollary 4.3. Let X,Y, Z,W ∈ Mn with Z−Y 6= 0, X−Y 6= 0, X−W 6= 0. If

W ∈ [Z, Y ]s1(·) then

s1(X
−Y ) ≤ s1(X

−W )s1(W
−Y ) ≤ s1(X

−Z)s1(Z
−Y ). (40)

Proof. Assume that W ∈ [Z, Y ]s1(·). Then R(W ) ⊂ R(Z) and R(Y ) ⊂ R(W ).
Therefore Φ(Y,W,X) ≥ 1 by (28).

By employing (37) we find that

Φ(Y,W,X) ≤ Φ(Y, Z,X).

Hence, by (21), we have

1 ≤
s1(X

−W )s1(W
−Y )

s1(X−Y )
≤

s1(X
−Z)s1(Z

−Y )

s1(X−Y )
. (41)

In other words, we obtain

s1(X
−Y ) ≤ s1(X

−W )s1(W
−Y ) ≤ s1(X

−Z)s1(Z
−Y ), (42)

which gives (40), as claimed.
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