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Abstract. By method of moving frame, the relativistic integrable nonlinear model for

real, Majorana type spinor fields in 1+1 dimensions is introduced and gauge equivalence

of this model with Papanicolau spin model on one sheet hyperboloid is established. In

terms of the so called double numbers, the model is represented also as hyperbolic

complex relativistic model, in the form similar to the massive Thirring model. By

using Hirota’s bilinear method, the one dissipaton solution of this model is constructed.

We calculate first integrals of motion for this dissipaton and show that it represents

a relativistic particle with highly nonlinear mass. Analyzing resonance conditions for

scattering of two relativistic dissipatons, we find a solution describing resonant property

of the dissipatons.
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1. Introduction

The exponentially decaying and finite energy solutions of nonlinear partial dif-
ferential equations are known as solitons, and they become indispensable part
of integrable systems like KdV and NLS equations, possesing elastic collision
property of soliton interaction. Another type of solutions exists in dissipative
nonlinear equations of reaction-dissusion type, which can grow or decay expo-
nentially. The finite energy solutions of this kind are called the ”dissipatons”
[32], as solutions of integrable system of reaction-diffusion equations, which was
introduced for description of low dimensional gravity model of constant curva-
ture, the Jackiw-Teitelboim (JT) gravity [24]. This system admits arbitrary
N -dissipaton solutions, showing the resonant property under collision of dissipa-
tons, by creating long time living resonances. Dissipaton resonances were related
with black hole solutions of JT gravity and main characteristic of black holes
as existence of the event horizon, intrinsically connected with resonant prop-
erty of dissipatons [25]. Reformulation of the reaction-diffusion model as the
nonlinear Schrödinger equation with de Broglie-Bohm quantum potential term
was proposed 20 years ago in our paper [33], as a result of our joint work be-
tween 1997-2000 in Academia Sinica, Taipei, Taiwan. The equation was coined
as the Resonant Nonlinear Schrödinger equation (RNLS), since envelope soli-
tons of this equation interact by creating resonant soliton states [34]. Then,
different physical and mathematical aspects of the model were studied inten-
sively. The RNLS equation as descriptive in cold plasma physics was proposed
in [19, 20], and applied to kinetic of soliton gas in [4, 8], being subject of exper-
iments in [38]. Since RNLS appeared in both, the gravity theory and in plasma
physics, it inspired also research on studying the analog gravity with black hole
type configurations in plasma physics [49]. Another application is related with
cappilary models of Korteweg types [39, 42, 45]. From mathematical point of
view, wide classes of solutions were derived for RNLS and its different modifi-
cations to higher dimensions and variable coefficients, see for example [48, 22],
for symmetry analysis, loop algebraic structure and integrability see [1] - [5].
In addition, the mapping of the RNLS hierarchy, the second and the third flow
to KP-II equation [35], established link between dissipaton and envelope soli-
ton resonances with planar solitons of KP-II, creating the web type structure in
shallow water [12, 3]. Several modifications of RNLS models, as the derivative
RNLS [34, 16, 18], modified RNLS [17], generic RNLS [36] and related general-
ized equations [37, 21, 41, 27, 28], were studied. However, all these developments
are related with non-relativistic dissipatons and envelope solitons, so it is not
clear if there exist relativistic nonlinear equations with dissipaton solutions and
resonant property of their mutual interaction.

The goal of the present paper is to show that there exist such model and
it admits relativistic dissipaton solution with resonant character of interaction.
The model is derived from σ model in constant external field on the one sheet hy-
perboloid SO(2, 1)/O(1, 1) and represents relativistic, real-valued spinor fields,
satisfying 1+1 dimensional Dirac type equation with Thirring type nonlinearity.
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The real solutions of Dirac type equation are known as Majorana spinors or
fermions [9], and these solutions appeared recently in condensed matter physics
for modeling topological superconductor systems [47]. Another reason to study
Majorana fermions is connected with problem of neutrino mass, which requires,
instead of the Weyl massless equation to use as descriptive the massive Majo-
rana equation. The model we propose here is integrable relativistic equation
with nonlinearity of the Thirring type. The Thirring model is one of the best
known relativistic nonlinear systems, for which many properties like integrability
[26], solvability [15], inverse scattering transform [14, 10, 11] and bilinear repre-
sentation were studied. The proposed model is also integrable system with Lax
pair and bilinear representation. We show that in terms of hyperbolic complex
numbers it can be even rewritten in form very similar to the Thirring model.
But in contrast to Thirring model it admits dissipaton solutions with relativistic
dispersion and leading to resonant character of dissipaton interactions.

The paper is organized as follows. In Section 2 we briefly review a relation
between JT gravity model and flat connection BF gauge theory on the one
sheet hyperboloid. The gauge fixing conditions in the theory are determined by
non-linear σ models on SO(2, 1)/O(1, 1) space and solutions of the models in
tangent space give the Riemannian metric tensor of JT gravity. Several models,
including non-relativistic RNLS and relativistic ones, but of non-local type are
briefly discussed in Section 3. In Section 4 we introduce nonlinear σ model
in this space with constant external field, which is the non-compact version
of the model introduced by Papanicolau [31]. In tangent space this gives us
the real spinor relativistic nonlinear model and corresponding zero curvature
representation. In Section 5 the Hamiltonian structure and first integrals of
motion are studied. In Section 6 we reformulate our model as hyperbolic comlex
or the so called double number Thirring model. The bilinear form for the model
and one dissipaton solution are constructed in Section 7. By calculating first
three integrals of motion in Section 8 we show that our dissipaton represents
relativistic particle type object with highly nonlinear mass. In Section 9, the
analysis of resonance conditions for fusion and fission of scattering dissipatons
with relativistic dispersion shows that dissipatons in the model can interact in
the resonant way. In Section 10 we present our conclusions.

2. SL(2,R) Gauge Group and Dissipative Equations

2.1. Gauge Theory of Jackiw-Teitelboim Gravity

A nontrivial gravity model in 1+1 dimensions introduced by Jackiw and Teitel-
boim is described by the action with Lagrange density

L =
√−gη(R− Λ),

where η is an additional gravitational variable called a world scalar Lagrange
multiplier field, R is the Riemann scalar and Λ is a cosmological constant. This
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model can be reformulated as the BF topological gauge theory with the three-
parameter SO(2, 1) de Sitter or anti-de Sitter groups,

S =

∫

Σ

Tr(ΦF ) = Φa(dea + εabωe
b) + Φ(dω +

Λ

4
eaεabe

b),

where εab and ε
a
b are Levi-Civitta symbols, Φ are zero-form Lagrange multipliers,

eaµ is the Zweibein and ω is the spin connection. Variation of these fields produces
field equations for the curvature two-form

F = dA+A2 = (dea + εabωe
b)Pa + (dω +

Λ

4
eaεabe

b)J = 0,

giving the torsionless and curvature conditions

dea + εabωe
b = 0, dω +

Λ

4
eaεabe

b = 0,

equivalent to the Jackiw-Teitelboim model. The Riemann metric tensor gµν can
be recovered from Zweibein fields according to the relation

gµν = eaµe
b
νηab = − 4

Λ
(q+µ q

−
ν + q+ν q

−
µ ),

where ηab = diag(1,−1) is the flat tangent space metric, the spin connection
and Zweibeins are

Vµ = 2ωµ,

q±µ ≡ uµ ± wµ =
1

2

√

−Λ

2
(e0µ ± e1µ) ≡

1

2

√

−Λ

2
e±µ .

These relations give us possibility of gravitational interpretation for our models,
by considering different integrable nonlinear σ models on the one sheet hyper-
boloid SL(2, R)/O(1, 1). Reformulated in the tangent space, they represent the
gauge fixing conditions for the BF topological gauge theory. The resulting equa-
tions with global O(1, 1) gauge symmetry group represent nonlinear dissipative
equations in real variables.

2.2. Moving Frame for Poincare Gauge Group in 1+1 dimension

Here we briefly review the gauge theoretical treatment of noncompact SO(2, 1)
σ models with Abelian O(1, 1) subgroup [32, 25]. These models are relevant to
the 1+1 dimensional Jackiw-Teitelboim model, where the subgroup plays the
role of Lorentz transformation in the tangent plane. On the other hand, they
lead to the dissipative nonlinear systems, like the reaction-diffusion system. The
relation between these two, at first sight looking different fields is instructive.

We consider the group SL(2, R) with element g, generated by τi (i = 1, 2, 3),
satisfying

τiτj = hij + icijkτk,
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where hij and cijk are the Killing metric and structure constants of SL(2, R).
Explicit realization in terms of Pauli matrices σi is τ1 = −iσ1, τ2 = σ2, τ3 =
−iσ3. We define an orthonormal trihedral set of unit vectors ni in the adjoint
representation of SL(2, R),

(ni, τ) = n
k
i τk = hkln

k
i τ

l = gτig
−1.

The inner and cross products between three-vectors are defined as

(ni,nj) = hij ,

ni ∧ nj = cijknk,

where hij = diag(−1, 1,−1) and

cijk =
1

2
tr(τiτjτk)hkk,

or explicitly in terms of the antisymmetric constant tensor εijk,

cijk = −εijkhkk.

Let ni = ni(x
0, x1) be smooth vector fields that define at each space-time co-

ordinates (x0, x1) a moving frame (orthonormal basis). By the right-invariant
chiral current,

Jµ = g−1∂µg, µ = 0, 1, (1)

the moving frame rotates according to the equation

∂µni = (JR
µ )

(ad)
ik nk.

We decompose matrix Jµ to diagonal and off diagonal parts,

Jµ = J (0)
µ + J (1)

µ ,

parametrized in the following form

J (0)
µ =

i

4
τ3Vµ,

J (1)
µ = iuµτ1 − iwµτ2 =

(

0 uµ − wµ

uµ + wµ 0

)

.

Vector s ≡ n3 satisfies the constraint s2 = (s(x), s(x)) = −s21+s22−s23 = −1 and
belongs to the one sheet hyperboloid S1,1 ∼ SL(2, R)/O(1, 1). The real fields
Vµ, uµ and wµ are recovered by projections,

Vµ = 2(n2, ∂µn1), wµ =
1

2
(s, ∂µn1), uµ =

1

2
(s, ∂µn2).

In the light-cone basis,

n+ = n1 + n2, n− = n1 − n2,
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satisfying following relations

(n+,n+) = 0 = (n−,n−), (n+,n−) = −2,

n+ ∧ s = +n+, n− ∧ s = −n−, n− ∧ n+ = 2s,

we define the real fields

q+µ = uµ + wµ = +
1

2
(s, ∂µn+), q−µ = uµ − wµ = −1

2
(s, ∂µn−).

In terms of these variables the moving frame equations become

D−
µ n+ = −2q+µ s, (2)

D+
µ n− = +2q−µ s, (3)

∂µs = q+µ n− − q−µ n+, (4)

where D±
µ ≡ ∂µ ± (1/2)Vµ is the covariant derivative. This form is explicitly

invariant under the local O(1, 1) gauge transformations,

s → s, n+ → e+α
n+, n− → e−α

n−,

which are just the Lorentz boost rotations in the tangent to the vector s plane.
Finally, consistency conditions of system (2), (3), (4), are equations for fields Vµ
and qµ,

D−
µ q

+
ν = D−

ν q
+
µ , (5)

D+
µ q

−
ν = D+

ν q
−
µ , (6)

∂µVν − ∂νVµ = 4(q+µ q
−
ν − q+ν q

−
µ ), (7)

representing the zero-curvature conditions for current (1), parametrized now as

Jµ =
i

4
Vµτ3 +

(

0 q−µ
q+µ 0

)

. (8)

3. Resonant NLS Equation

For the Heisenberg model on one sheet hyperboloid s ∈ SO(2, 1)/O(1, 1),

∂0s = s ∧ ∂21s

the above described method produces integrable system of reaction-diffusion
equations

∓∂0q± + ∂21q
± − 2q+q−q± = 0 (9)
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for pair of real functions [32]. It can be transformed to the so-called Resonant
NLS equation [33], which includes the de Broigle-Bohm quantum potential

iψt + ψxx + |ψ|2ψ = 2
|ψ|xx
|ψ| ψ.

This equation admits envelope solitons with resonant interaction and besides
application for JT gravity model [32, 24, 25], it was derived also in several
physical models such as cold plasma physics [19, 20] and capillary models [39,
42, 45]. Existence of regular dissipaton solutions for system (9) is crucial for
resonant soliton interactions in RNLS.

3.1. Relativistic Models

Several relativistic models can be derived from the topological magnetic fluid
model, proposed in [23], which can be bilinearized in arbitrary number of di-
mensions. For noncompact spin s ∈ SO(2, 1)/O(1, 1), the similar model can be
formulated as the system of Landau-Lifshitz equations in moving frame with ve-
locity vµ, and relation between vorticity of the flow and topological spin density,
correspondingly,

∂0s+ vµ∂µs = s ∧ ∂µ∂µs, (10)

∂µvν − ∂νvµ = 2s · (∂µs ∧ ∂νs). (11)

The Heisenberg model on one sheet hyperboloid is particular reduction of this
system in 1+1 dimensions, with vanishing velocity field vµ = 0. Due to resonant
character of soliton interactions in that spin model (see [33]) and corresponding
reaction-diffusion equations and RNLS equations, having several applications
to non-relativistic physical systems, it is interesting problem to construct the
relativistic invariant systems, admitting dissipaton solutions with resonant scat-
tering properties.

Example 3.1. Self-dual σ model

For self-dual σ model
∂0s = s ∧ ∂1s

the corresponding equations in tangent space [25] are given by non-linear and
non-local relativistic system of equations for real (Majorana type) fields

−∂−q++ + q++

∫ x

q++q
−
−dx

′ = 0,

∂+q
−
− + q−−

∫ x

q++q
−
−dx

′ = 0.

This system can be solved by substitution

q++ = eR+S , q−− = eR−S ,
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leading to the Liouville equation

∂20R− ∂21R = e2R. (12)

The general solution of Liouville equation is given in terms of arbitrary real
functions A(s) and B(s) of one variable s,

R(x0, x1) =
1

2
ln

A′(x0 + x1)B′(x0 − x1)

(A(x0 + x1) +B(x0 − x1))2
.

Then, for any solution of this equation, function S can be obtained by integration
of linear system

∂0S = ∂1R+

∫ x

e2Rdx′, ∂1S = ∂0R.

Compatibility condition for the last one is just the Liouville equation (12).

Example 3.2. Nonlinear σ model

Another relativistic model is associated with nonlinear σ model

∂+∂−s− (∂+s · ∂−s)s = 0.

The tangent space representation of this equation leads to a more general non-
linear relativistic model [25],

−∂−q++ + q++

∫ x
(

q++q
−
− − U+U−

q++q
−
−

)

dx′ = 0,

∂+q
−
− + q−−

∫ x
(

q++q
−
− − U+U−

q++q
−
−

)

dx′ = 0,

∂+U− = 0, ∂−U+ = 0.

We notice that both models, considered in these two examples, are non-local.
However, in the next section we construct the model with local interaction term
of four fermions type.

3.2. Majorana-Thirring Type Model

More general type of nonlinear σ model corresponds to time independent Landau
- Lifshitz equation (10) in moving frame

vµ∂µs = s ∧ ∂µ∂µs,

with constant vector v = (v0, v1) and psudo-Euclidean metric diag(1,−1). This
corresponds to non-compact one sheet hyperbolic version of model [31]. In terms
of the light cone variables v+ = 1

2 (v
0 + v1), v− = 1

2 (v
0 − v1) we have equation

v+∂+s+ v−∂−s = s ∧ ∂+∂−s,
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where ∂± = ∂0 ± ∂1, producing following constraints

D−
+q

+
− = v+q++ + v−q+−, (13)

D+
+q

−
− = −v+q−+ − v−q−− . (14)

The system (5), (6), (7), with these gauge constraints completely characterizes
the model. Indeed, combining them together we find four equations

D−
−q

+
+ = v+q++ + v−q+−, (15)

D+
+q

−
− = −v−q−− − v+q−+ , (16)

D−
+q

+
− = v−q+− + v+q++ , (17)

D+
−q

−
+ = −v+q−+ − v−q−− , (18)

which provide the conservation law

∂−(v
+q++q

−
+) + ∂+(v

−q+−q
−
−) = 0.

By using this equation and the one in (7) we get the flatness condition

∂−A+ − ∂+A− = 0,

for Abelian vector potential

A+ = V+ − 2

v−
q++q

−
+ , A− = V− − 2

v+
q+−q

−
− . (19)

In terms of the covariant derivatives, D± = ∂ ± 1/2A, Eqs. (15)-(18) become

D−
−q

+
+ − v+q++ − v−q+− − 1

v+
q++q

−
−q

+
− = 0,

D+
+q

−
− + v−q−− + v+q−+ +

1

v−
q++q

−
−q

−
+ = 0,

D−
+q

+
− − v−q+− − v+q++ − 1

v−
q+−q

−
+q

+
+ = 0,

D+
−q

−
+ + v+q−+ + v−q−− +

1

v+
q+−q

−
+q

−
− = 0.

By choosing constant value potentials

A+ = −2v−, A− = −2v+,

rescaling

q++ =
√
v−Q+

+, q
−
+ =

1√
v+
Q−

+, q
+
− =

√
v+Q+

−, q
−
− =

1√
v−

Q−
−,

and restricting velocity
v+v− = 1, (20)
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so that

q±+ =
√
v−Q±

+, q
±
− =

1√
v−

Q±
−, (21)

we obtain the system of nonlinear equations for the real valued analog of Thirring
model

∂−Q
+
+ −Q+

− −Q+
+Q

−
−Q

+
− = 0, (22)

∂+Q
−
− +Q−

+ +Q+
+Q

−
−Q

−
+ = 0, (23)

∂+Q
+
− −Q+

+ −Q+
−Q

−
+Q

+
+ = 0, (24)

∂−Q
−
+ +Q−

− +Q+
−Q

−
+Q

−
− = 0. (25)

The above procedure allows us to derive also the linear problem corresponding
to this model. The current (8) in the light cone variables, after redefining the
Abelian gauge potentials by (19) and using (20) gives the pair

J± =
1

2

(

−v∓ +
1

v∓
q+±q

−
±

)

σ3 +

(

0 q−±
q+± 0

)

.

Then, in terms of the rescaled fields (21) we have the Lax pair (in zero-curvature
condition form) for our model

J+ =
1

2

(

−λ2 +Q+
+Q

−
+

)

σ3 + λ

(

0 Q−
+

Q+
+ 0

)

,

J− =
1

2

(

− 1

λ2
+Q+

−Q
−
−

)

σ3 +
1

λ

(

0 Q−
−

Q+
− 0

)

,

where the spectral parameter λ is v− ≡ λ2.

4. Hamiltonian Structure

It is convenient to change notations

Q+
+ = p+, Q−

+ = p−, Q+
− = q+, Q−

− = q−

and represent system (22) - (25) in the form

−∂−p+ + q+ + q+q−p+ = 0, (26)

∂−p
− + q− + q+q−p− = 0, (27)

−∂+q+ + p+ + p+p−q+ = 0, (28)

∂+q
− + p− + p+p−q− = 0. (29)

This system is Lagrangian, with density

L = −p+∂0p− − q+∂0q
− + p+∂1p

− − q+∂1q
− − p+q− − q+p− − p+p−q+q−,
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and it is the Hamiltonian system with Hamiltonian functional

H =

∫ ∞

−∞
(−p+∂1p− + q+∂1q

− + p+q− + q+p− + p+p−q+q−)dx1. (30)

The corresponding Poisson brackets

{A,B} =

∫ ∞

−∞

(

∂A

∂p+
∂B

∂p−
− ∂A

∂p−
∂B

∂p+
+

∂A

∂q+
∂B

∂q−
− ∂A

∂q−
∂B

∂q+

)

dx1

for canonical variables

{p+(x0, x1), p−(x0, x′1)} = δ(x1 − x′1),

{q+(x0, x1), q−(x0, x′1)} = δ(x1 − x′1),

give Hamiltonian evolution equations

ṗ± = {p±, H} = ± ∂H

∂p∓
, q̇± = {q±, H} = ± ∂H

∂q∓
.

Besides Hamiltonian (30), there exists another integral of motion

M =

∫ ∞

−∞
(p+p− + q+q−) dx1, (31)

which plays role of the mass. In addition, one more conserved quantity, the
momentum integral is

P =

∫ ∞

−∞
(p+∂1p

− + q+∂1q
−) dx1. (32)

These three intergrals are the first ones of an infinite set of integrals of motion,
which can be calculated from the linear problem.

4.1. Dynamical System

For homogeneous configurations ∂1 = 0, we get the four dimensional dynamical
system

Ẋ1 = X3 +X1X3X4,

Ẋ2 = −X4 −X2X3X4,

Ẋ3 = X1 +X3X1X2,

Ẋ4 = −X2 −X4X1X2,

with the first integral

I = X1X2 +X3X4 = const, (33)
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where

X1 ≡ Q+
+, X2 ≡ Q−

+, X3 ≡ Q+
−, X4 ≡ Q−

−.

The system is Hamiltonian, with the canonical pairs

{X1, X2} = 1, {X3, X4} = 1,

and the Hamiltonian function

H = X2X3 +X1X4 +X1X2X3X4.

The Hamiltonian provides the second integral of the motion, and as easy to check
the integrals I and H are in involution, {I,H} = 0. Integral (33) generates the
scaling transformation

δXi = {Xi, I}α = αXi, (i = 1, 3), δXj = {Xj, I}α = −αXj, (j = 2, 4),

or after integration

X ′
1 = eαX1, X

′
2 = e−αX2, X

′
3 = eαX3, X

′
4 = e−αX4.

5. Hyperbolic Complex Thirring Form

Here, by introducing the hyperbolic complex variables or the ”double numbers”
[50], we represent our main system (26) - (29) in form of the hyperbolic complex
Thirring type model. By introducing four real functions

q± = u1 ± v1, p± = u2 ± v2,

the system can be rewritten as

−∂+v1 + u2 + (u22 − v22)u1 = 0, (34)

−∂+u1 + v2 + (u22 − v22)v1 = 0, (35)

−∂−v2 + u1 + (u21 − v21)u2 = 0, (36)

−∂−u2 + v1 + (u21 − v21)v2 = 0. (37)

Now we combine these functions as the hyperbolic complex valued functions (or
double number valued functions)

χ1 = u1 + jv1, χ2 = u2 + jv2,

and corresponding conjugate functions

χ̄1 = u1 − jv1, χ̄2 = u2 − jv2,
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so that

χ̄1χ1 = |χ1|2 = u21 − v21 , χ̄2χ2 = |χ2|2 = u22 − v22 ,

where hyperbolic imaginary unit j satisfies

j2 = 1, j̄ = −j.

In matrix representation this unit can be defined as j = σ1. In terms of these
functions, our model takes the form

−j∂+χ1 + χ2 + |χ2|2χ1 = 0,

−j∂−χ2 + χ1 + |χ1|2χ2 = 0,

of the hyperbolic complex Thirring model. This representation is remarkable
since the equation formally looks similar to the usual Thirring model for complex
functions ψ1, ψ2 and hyperbolic imaginary unit j replaced by usual complex unit
i =

√
−1.

6. Bilinear Form and Dissipaton Solution

The bilinear form for system (26)-(29) can be derived in terms of six real func-
tions, g±, h±, f±, such that

p± =
g±

f∓ =
g±f±

f±f∓ , q± =
h±

f± =
h±f∓

f∓f± .

By representing the system in following form

∓D−(g
± · f±)

f±f∓ ∓ g±

f±
D−(f

± · f∓)

(f∓)2
+
h±f∓

f±f∓ +
h+h−

f+f−
g±

f∓ = 0,

∓D+(h
± · f∓)

f∓f± ∓ h±

f∓
D+(f

∓ · f±)

(f±)2
+
g±f±

f∓f± +
g+g−

f−f+

h±

f± = 0,

it can be split to bilinear system of equations

∓D−(g
± · f±) + h±f∓ = 0,

∓D+(h
± · f∓) + g±f± = 0,

D+(f
+ · f−) + g+g− = 0,

−D−(f
+ · f−) + h+h− = 0.

Let x0 ≡ T , x1 ≡ X be time and space coordinates in laboratory coordinate
systems, and

x =
1

2
(X + T ), t =

1

2
(X − T ),
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are the light-cone coordinates (the characteristics), so that X = x+ t, T = x− t,
and

∂− =
∂

∂x0
− ∂

∂x1
=

∂

∂T
− ∂

∂X
= − ∂

∂t
,

∂+ =
∂

∂x0
+

∂

∂x1
=

∂

∂T
+

∂

∂X
=

∂

∂x
.

By rewriting Hirota derivatives in light-cone coordinates, D− = −Dt, D+ = Dx

the bilinear system becomes

±Dt(g
± · f±) + h±f∓ = 0,

∓Dx(h
± · f∓) + g±f± = 0,

Dx(f
+ · f−) + g+g− = 0,

Dt(f
+ · f−) + h+h− = 0,

so that

q+q−(x, t) = −
(

ln
f+

f−

)

t

, p+p−(x, t) = −
(

ln
f+

f−

)

x

.

By Hirota expansion

g±(x, t) = εg±1 (x, t) + ε3g±3 (x, t) + ...

h±(x, t) = εh±1 (x, t) + ε3h±3 (x, t) + ...

f±(x, t) = 1 + ε2f±
2 (x, t) + ...,

we find exact solution in the form

g±1 = eη
±
1 , h±1 = a±1 e

η
±
1 , f±

2 = b±2 e
η
+

1
+η

−
1 ,

b+2 =
(a+1 )

2a−1
(a+1 − a−1 )

2
, b−2 =

a+1 (a
−
1 )

2

(a+1 − a−1 )
2
,

η±1 = k±1 x+ ω±
1 t+ η±10 , ω

±
1 = ∓a±1 , k±1 = ± 1

a±1
,

parametrized by real constants a±1 , η
±
10
, so that

η±1 = ±
(

1

a±1
x− a±1 t

)

+ η±10 .

This gives dissipative one-soliton solution, which we call the dissipaton, in the
following form

p±(x, t) =
g±

f∓ =
eη

±

1 + b∓2 e
η
+

1
+η

−
1

,

q±(x, t) =
h±

f± =
a±1eη

±

1 + b±2 e
η
+

1
+η

−
1

.
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Components of this solution are decaying and growing exponentially

p±(x, t) =
e±

η
+
1

−η
−
1

2
−α∓

2

2 cosh
η
+

1
+η

−
1
+α∓

2

,

q±(x, t) =
a±1 e

±η
+
1

−η
−
1

2
−α±

2

2 cosh
η+

1
+η−

1
+α±

2

,

where α± = 1
2 ln b

±
2 . But the mutual products are in perfect soliton form

p+p− =
(a+1 − a−1 )

2

a+1 a
−
1

1

2
√

a+1 a
−
1 cosh

(

η+1 + η−1 + α++α−

2

)

+ a+1 + a−1

,

q+q− = (a+1 − a−1 )
2 1

2
√

a+1 a
−
1 cosh

(

η+1 + η−1 + α++α−

2

)

+ a+1 + a−1

.

To have non-singular solution we choose real parameters a+1 > 0, a−1 > 0 and as
follows b±2 > 0. This implies k+1 > 0 and k−1 < 0. By introducing parametriza-
tion

a+1 = λ1 + µ1, a
−
1 = λ1 − µ1,

so that a+1 a
−
1 = λ21 − µ2

1, a
+
1 + a−1 = 2λ1, a

+
1 − a−1 = 2µ1 we have

p+p− =
1

λ21 − µ2
1

2µ2
1

√

λ21 − µ2
1 cosh

(

η+1 + η−1 + α++α−

2

)

+ λ1
,

q+q− =
2µ2

1
√

λ21 − µ2
1 cosh

(

η+1 + η−1 + α++α−

2

)

+ λ1
.

The traveling wave factor in these expressions can be rewritten in the laboratory
coordinates (X,T ) with relativistic Lorentz contraction factor

η+1 + η−1 +
α+ + α−

2
= −2k

X −X0 − vT√
1− v2

,

where velocity of the dissipaton is defined as

v ≡ a+1 a
−
1 − 1

a+1 a
−
1 + 1

=
λ21 − µ2

1 − 1

λ21 − µ2
1 + 1

and it is restricted by the speed of light c = 1: |v| < 1. The initial position is
fixed by

2k√
1− v2

X0 ≡ η+10 + η−10 + ln
1

4k2

√

1 + v

1− v

and

k ≡ µ1

√

1− v

1 + v
.
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In terms of parameters v, k and X0, dissipaton densities become just

p+p− =

√

1− v

1 + v

2k2

cosh
(

2kX−X0−vT√
1−v2

)

+
√
k2 + 1

, (38)

q+q− =

√

1 + v

1− v

2k2

cosh
(

2kX−X0−vT√
1−v2

)

+
√
k2 + 1

. (39)

By expressing

α± = ln

(√
k2 + 1± k

4k2

√

1 + v

1− v

)

,

k
X0±√
1− v2

=
η+10 + η−10

2
+

1

2
α±,

and denoting η+10 − η−10 ≡ ν10 , we finally get dissipaton solution in the form

p± =

(

1− v

1 + v

)
1
4 k

√√
k2 + 1± k

coshk
X−X0∓−vT

√
1−v2

e
±
[√

k2+1√
1−v2

(T−vX)+ν10

]

, (40)

q± =

(

1 + v

1− v

)
1
4 k

√√
k2 + 1± k

coshk
X−X0±−vT

√
1−v2

e
±
[√

k2+1√
1−v2

(T−vX)+ν10

]

. (41)

It is noticed that initial positions are related by the mean value formula

X0 =
1

2
(X0+ +X0−).

7. Relativistic Dissipaton

For physical interpretation of one dissipaton solution (40), (41), we have to cal-
culate the mass (31), momentum (32) and energy integrals (30). By substituting
densities (38), (39) to (31), after integration we get the mass integral as function
of k only,

M = 2 ln

√
k2 + 1 + |k|√
k2 + 1− |k|

.

The momentum integral (32) for one dissipaton solution takes the form

P =
4kv√
1− v2

.
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To calculate the energy, we first rewrite (30) in the form

H =

∫ ∞

−∞
[
1

2
(−p+∂1p− + p−∂1p

+ + q+∂1q
− − q−∂1q

+)

+p+q− + q+p− + p+p−q+q−] dX

=

∫ ∞

−∞
[
1

2
p+p−∂1

(

ln
g+

g−

)

− 1

2
q+q−∂1

(

ln
h+

h−

)

++ p+q− + p−q+ − 1

4
(p+p− − q+q−)2] dX.

Then, for one dissipaton solution it gives

E =
4k√
1− v2

.

Denoting
m0 ≡ 4k

as the rest mass, we find usual expressions for momentum and energy of rela-
tivisitic particle

P =
m0v√
1− v2

, E =
m0√
1− v2

,

with speed of light c = 1. This shows that our one-dissipaton solution describes
a finite energy relativistic particle with the rest mass m0, corresponding to the
rest frame, when v = 0. The dispersion relation for one-dissipaton is in the
relativistic form

E2 − P 2 = m2
0

or

E = ±
√

m2
0 + P 2.

However, the rest mass m0 is connected with first integral M by nonlinear for-
mula

M = 2 ln

√

m2
0 + 16 +m0

√

m2
0 + 16−m0

or

m0 = 4 sinh
M

4
.

It shows that in contrast with known non-relativistic dissipatons of RNLS [33],
our dissipaton is a composite object with properties of relativistic particle.

8. Resonant Interaction

It is well known that non-relativistic dissipatons, related to RNLS and RDNLS
equations show resonant properties under collisions [33, 34]. An interesting point
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is to see if such property is preserved also in the relativistic case. To explore this
possibility, we consider a collision of two dissipatons with masses and velocities
(m1, v1) and (m2, v2), which fuse into a single dissipaton (m, v).The conservation
laws for this process imply following relations

M =M1 +M2, P = P1 + P2, E = E1 + E2.

Substituting to above formulas we have equations for resonant interaction of
dissipatons

√

m2
1 + 16 +m1

√

m2
1 + 16−m1

√

m2
2 + 16 +m2

√

m2
2 + 16−m2

=

√
m2 + 16 +m√
m2 + 16−m

, (42)

m1v1
√

1− v21
+

m2v2
√

1− v22
=

mv√
1− v2

, (43)

m1
√

1− v21
+

m2
√

1− v22
=

m√
1− v2

. (44)

If this system of algebraic equations admits nontrivial solution, then interaction
of our relativistic dissipatons could have resonant character. We postpone the
study of general solution for this system and will consider here only special case,
namely collision of two equal mass dissipatonsm1 = m2, with equal and opposite
velocities v1 = −v2. It implies P1 = −P2 → P1 +P2 = 0 → P = 0. This process
creates a dissipaton with mass m at the rest with v = 0. From (42) and (44) we
have

(

√

m2
1 + 16 +m1

√

m2
1 + 16−m1

)2

=

√
m2 + 16 +m√
m2 + 16−m

,

m =
2m1

√

1− v21
.

Solution of this system is given by relation between velocity and mass of colliding
dissipatons

v1 =
m1

√

m2
1 + 16

,

so that v1 < 1, and the mass of dissipaton at the rest is

m =
1

2
m1

√

m2
1 + 16.

It shows that similar to non-relativistic case, the relativistic dissipatons admit
resonant interaction. Calculations of two dissipaton solution and study of their
mutual resonant interaction for specific choice of parameters would be done in
forthcoming publication.

9. Conclusions
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The hidden solitonic-type integrability aspects of general relativity, notably, in
historic terms, with regard to Ernst-type systems and their admitted Bäcklund
transformations are well-documented. In recent work, integrable connections
between relativistic gasdynamics and the Heisenberg spin equation have been
established in [46]. It is recalled also that Heisenberg spin connections, in spatial
hydrodynamics were originally discovered and the Heisenberg spin connection
was subsequently elaborated upon in [40]. The Heisenberg spin model on one
sheet hyperboloid leads to RNLS [33] with resonant interaction of non-relativistic
envelope solitons.

In present paper we have derived new integrable nonlinear relativistic real
valued spinor model with four fermionic interaction in Thirring type form. As
was shown, the model is gauge equivalent to non-compact version of Papanicolau
model on one sheet hyperboloid and it provides a specific gauge constraint in JT
gravity. By introducing bilinear form of the nonlinear system we calculated one
dissipaton solution and corresponding integrals of motion as mass, momentum
and energy. The obtained dispersion relation shows that dissipaton represents
relativistic particle with highly nonlinear mass term. By analyzing resonans
conditions for dissipaton scattering we found nontrivial solution with resonant
properties. Description of this resonant scattering requires calculation of two
dissipaton solution in a specific range of parameters. Moreover, it is interesting
to calculate one soliton solution of the spin model, corresponding to dissipaton
solution and the metric tensor in JT gravity on existence of relativistic black
holes. This work is in progress now.

One more aspect of resonant soliton equations is linked with connection to
Ermakov-Painleve symmetries and Whitham-Kaup-Broer system of equations.
It would be of research interest to investigate potential hybrid Ermakov- Painleve
II symmetry reduction of multi-component 2+1- dimensional resonant NLS sys-
tems linked to Whitham-Kaup-Broer systems. The Ermakov-Painleve II inte-
grable reduction of basic two-component such resonant systems has recently been
established in [43, 44]. The relativistic aspect of these type symmetries and cor-
responding equations in framework of the present paper is intriguing question
for future research.
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Institute of Mathematics, Academia Sinica, Taipei in the period of 1978–1984.
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