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fusion frames for operators and error operator with its upper bound. Also, the approx-

imation operator for these frames will be introduced and we study some results about

them specially, a new identity about the norm of these frames is presented.
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1. Introduction and Preliminaries

Frames have a significant role in both pure and applied mathematics, so that
these are a fundamental research area in mathematics, computer science and
quantum information and several new applications have been developed, e.g.
besides traditional application as signal processing, image processing, data com-
pression and sampling theory. After introducing Frames by Duffin and Scheaffer
[12], there have been many generalizations such as c-frame [16], g-frame [25], fu-
sion frame [7, 20], K-frame [15], controlled frames [4] and also the combination
of each two of them, lead to c-fusion frames [13], c-g-frames [18], g-fusion frames
[23] and etc.

Frames for operators or K-frames have been introduced by Găvruţa in [15] to
study the nature of atomic systems for a separable Hilbert space with respect to



772 V. Sadri

a bounded linear operator K and presented some another kind of these frames
e.g. [2, 3, 21, 22, 26]. It is a well-known fact that K-frames are more general than
the classical frames and due to higher generality of K-frames, many properties
of frames may not hold for K-frames like the frame operator in all kind of K-
frames is not invertible. Recently, Sadri et al. presented K-g-fusion frames (and
g-fusion frames) in [23, 24].

Robustness of Parseval fusion frames under erasure have been employed by
Bodmann et al. in [5] for optimal transmission of quantum states and packet
encoding. After, Kutyniok et al. in [19] were able to present fusion frames
which are optimally resilient against noise and erasure for random signals and
further, Casazza and Kutyniok in [8] have studied this topic and they presented
sufficient conditions on the robustness of a fusion frame with respect to erasures
of subspaces. In this paper, we focus on the study of those topics on K-g-fusion
frames and we will show some new results about these frames.

Throughout this paper, H and Hj are separable Hilbert spaces for each j ∈ J

where J is a subset of Z and B(H1, H2) is the collection of all the bounded linear
operators of H1 into H2. If H1 = H2 = H , then B(H,H) will be denoted by
B(H). Also, πV is the orthogonal projection from H onto a closed subspace
V ⊂ H and K ∈ B(H).

If an operator U has closed range, then there exists a right-inverse operator
U † (pseudo-inverse of U) in the following senses.

Lemma 1.1. [11] Let U ∈ B(H1, H2) be a bounded operator with closed range

R(U). Then there exists a bounded operator U † ∈ B(H2, H1) for which

UU †x = x, x ∈ R(U).

In this part, we review notations of K-frames and K-g-fusion frames from
[15, 24]. We notice that the operators in frames and K-frames are similar.

Definition 1.2. [15] Let {fj}j∈J be a sequence of members of H and K ∈ B(H).
We say that {fj}j∈J is a K-frame for H if there exist 0 < A ≤ B < ∞ such that

for each f ∈ H,

A‖K∗f‖2 ≤
∑

j∈J

|〈f, fj〉|
2 ≤ B‖f‖2. (1)

The constants A and B are called K-frame bounds. If the right hand of (1)
holds, we say that {fj}j∈J is a Bessel sequence with bound B. The set {fj}j∈J

is called a Parseval K-frame if

∑

j∈J

|〈f, fj〉|
2 = ‖K∗f‖2.
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If {fj}j∈J is a Bessel sequence, then the synthesis and the analysis operators of
frames are defined by

T :`2(N) → H, T ∗ : H → `2(N),

T {cj}j∈J =
∑

j∈J

cjfj , T ∗f = {〈f, fj〉}j∈J.

Now, the frame operator is defined by S = TT ∗.

Definition 1.3. [3] Let K ∈ B(H). A sequence {Λj ∈ B(H,Hj)}j∈J is called a

K-g-frame for H with respect to {Hj}j∈J if there exist 0 < A ≤ B < ∞ such

that for each f ∈ H,

A‖K∗f‖2 ≤
∑

j∈J

‖Λjf‖
2 ≤ B‖f‖2. (2)

Definition 1.4. [24] Let W = {Wj}j∈J be a collection of closed subspaces of H,

{vj}j∈J be a family of weights, i.e. vj > 0, Λj ∈ B(H,Hj) for each j ∈ J and

K ∈ B(H). We say Λ := (Wj ,Λj , vj)j is a K-g- fusion frame for H if there

exist 0 < A ≤ B < ∞ such that for each f ∈ H,

A‖K∗f‖2 ≤
∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ B‖f‖2. (3)

Throughout this paper, Λ will be a triple (Wj ,Λj , vj)j with j ∈ J unless
otherwise noted. If the right hand of (3) holds, we say that Λ is a g-fusion
Bessel sequence with the bound B. If A = B, then we say Λ is a tight K-g-
fusion frame and we say Λ is a Parseval K-g-fusion frame whenever A = B = 1
and we get ∑

j∈J

v2j ‖ΛjπWj
f‖2 = ‖K∗f‖2.

If Λ is a g-fusion Bessel sequence, then the synthesis and the analysis operators
of the g-fusion frames are defined by ([24, 23])

TΛ : H2 −→ H,

TΛ({fj}j∈J) =
∑

j∈J

vjπWj
Λ∗
jfj,

T ∗
Λ : H −→ H2,

T ∗
Λ(f) = {vjΛjπWj

f}j∈J,

where H2 =
{
{fj}j∈J : fj ∈ Hj ,

∑
j∈J

‖fj‖
2 < ∞

}
, with the inner product

defined by 〈{fj}, {gj}〉 =
∑

j∈J
〈fj , gj〉. It is clear that H2 is a Hilbert space with
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pointwise operations. Thus, the g-fusion frame operator is given by

SΛf = TΛT
∗
Λf =

∑

j∈J

v2jπWj
Λ∗
jΛjπWj

f

and so, we can get

〈SΛf, f〉 =
∑

j∈J

v2j ‖ΛjπWj
f‖2, (4)

for all f ∈ H . The following shows an interesting property between TΛ and T ∗
Θ

for two g-fusion Bessel sequences.

Theorem 1.5. Let |J| < ∞, also Λ = (Wj ,Λj , vj)j and Θ = (Wj ,Θj, wj)j be

two g-fusion Bessel sequences for H, where Λj,Θj ∈ B(H,Hj). Let φ := TΛT
∗
Θ.

Then φ is a trace class operator.

Proof. Suppose that φ = u|φ| is a polar decomposition of the operator φ, where
u ∈ B(H) is a partial isometry, therefore |φ| = u∗TΛT

∗
Θ. Assume that {ej}j∈J is

an orthonormal basis for H . Then

tr(|φ|) =
∑

j∈J

〈|φ|ej , ej〉 =
∑

j∈J

〈T ∗
Θej, T

∗
Λuej〉

=
∑

j∈J

〈
{wkΘkπWk

ej}k∈J, {vkΛkπWk
uej}k∈J

〉

=
∑

j∈J

∑

k∈J

〈wkΘkπWk
ej, vkΛkπWk

uej〉

≤
∑

j∈J

∑

k∈J

‖wkΘkπWk
ej‖.‖vkΛkπWk

uej‖

≤
∑

j∈J

(∑

k∈J

‖wkΘkπWk
ej‖

2
) 1

2

(∑

k∈J

‖vkΛkπWk
uej‖

2
) 1

2

≤
∑

j∈J

√
BΛBΘ‖uej‖

=
√
BΛBΘ ‖u‖|J| < ∞.

In next Theorem, we show a relation between K-frames with K-g-fusion
frames which is a generalized of Theorem 3.2 in [7].

Theorem 1.6. For each j ∈ J let Λj ∈ B(H,Hj) and vj > 0. Let {fij}i∈Ij

be a K-frame for Hj with bounds Aj and Bj. Define a sequence of subspaces

Wj = span{Λ∗
jfij}i∈Ij for each j ∈ J and suppose that

0 < A := inf
j∈J

Aj ≤ B := sup
j∈J

Bj < ∞.

The following assertions are equivalent:
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(i) {vjΛ
∗
jfij}j∈J,i∈Ij is a K-frame for H.

(ii) Λj(Wj) are closed subspaces of Hj for every j ∈ J and {eij}j∈J,i∈Ij are

orthonormal bases for them such that {vjπWj
Λ∗
jeij}j∈J,i∈Ij is a K-frame

for H.

(iii) Λ = (Wj ,Λj, vj)j∈J is a K-g-fusion frame for H.

Proof. First, we prove that (i) and (iii) are equivalent. Suppose that
{vjΛ

∗
jfij}j∈J,i∈Ij is a K-frame for H with frame bounds C and D. For each

f ∈ H , we have

A
∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤

∑

j∈J

Ajv
2
j ‖ΛjπWj

f‖2

≤
∑

j∈J

∑

i∈Ij

|〈vjΛjπWj
f, fij〉|

2

=
∑

j∈J

∑

i∈Ij

|〈πWj
f, vjΛ

∗
jfij〉|

2

=
∑

j∈J

∑

i∈Ij

|〈f, vjΛ
∗
jfij〉|

2

≤ D‖f‖2.

This means that Λ is a g-fusion Bessel sequence for H with a bound D
A
. With

same method, we can show that C
B

is a lower K-frame bound for Λ. For the
opposite case, assume that Λ is a K-g-fusion frame with bounds C and D. For
each f ∈ H we have

∑

j∈J

∑

i∈Ij

|〈f, vjΛ
∗
jfij〉|

2 =
∑

j∈J

∑

i∈Ij

|〈πWj
f, vjΛ

∗
jfij〉|

2

=
∑

j∈J

∑

i∈Ij

v2j |〈ΛjπWj
f, fij〉|

2

≥
∑

j∈J

Ajv
2
j ‖ΛjπWj

f‖2

≥ AC‖K∗f‖2,

and it is easy to check that BD is a lower frame bound.

Now, according to the following:

v2j ‖ΛjπWj
f‖2 = v2j

∥∥∥
∑

i∈Ij

〈ΛjπWj
f, eij〉eij

∥∥∥
2

=
∑

i∈Ij

|〈f, vjπWj
Λ∗
jeij〉|

2,

we aim that (ii) and (iii) are equivalent.

2. Main Results
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Suppose that {Wj}j∈J and {Zj}j∈J are two closed subspaces of H and {vj}j∈J

is a set of weights. Also, Λj and Θj are bounded operators in B(H,Hj). We
define the approximation operator with respect to Λ and Θ := (Zj ,Θj, vj)j∈J as
follows:

Ψ : H −→ H,

Ψf =
∑

j∈J

vjπZj
Θ∗

j (vjΛjπWj
f).

The following can be found in the text of Banach spaces:

Lemma 2.1. Let (X, ‖.‖) be a Banach space and U : X → X be a bounded

operator such that ‖I − U‖ < 1. Then U is invertible and

U−1 =
n∑

k=0

(I − U)k.

Moreover

‖U−1‖ ≤
1

1− ‖I − U‖
.

Theorem 2.2. Let C1, C2 > 0 and 0 ≤ γ < 1 be real numbers such that for each

f ∈ H and {fj}∈J ∈ H2 the following assertions holds:

(i)
∑

j∈J
v2j ‖ΛjπWj

f‖2 ≤ C1‖f‖
2;

(ii) ‖
∑

∈J
vjπZj

Θ∗
jfj‖

2 ≤ C2‖{fj}‖
2
2;

(iii) ‖f −Ψf‖2 ≤ γ‖f‖2.

Then Λ is a K-g-fusion frame for H with bounds C−1
2 (1− γ)2 and C1. Also,

Θ is a K-g-fusion frame for H with bounds C−1
1 (1− γ)2 and C2.

Proof. Assume that f ∈ H , with items (i) and (ii) we get

‖Ψf‖2 ≤ C2‖{vjΛjπWj
f}‖22 = C2

∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ C2C1‖f‖

2.

Hence, Ψ is a bounded operator. By Lemma 2.1, Ψ is invertible and ‖Ψ−1‖ ≤
(1− γ)−1. Thus,

‖K‖−2‖K∗f‖2 ≤ ‖f‖2

= ‖Ψ−1Ψf‖2

≤ (1− γ)−2‖Ψf‖2

≤ C2(1 − γ)−2
∑

j∈J

v2j ‖ΛjπWj
f‖2

≤ C2C1(1− γ)−2‖f‖2.
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So, we conclude that

C−1
2 (1 − γ)2‖K‖−2‖K∗f‖2 ≤

∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ C1‖f‖

2,

and the first part is proved. Next, we verify two inequalities which are dual to
(i) and (ii) for Θ. Let f ∈ H . Then we have

(∑

j∈J

v2j ‖ΘjπZj
f‖2

)2
=

(
〈
∑

j∈J

vjπZj
Θ∗

jΘjπZj
f, f〉

)2

≤ ‖
∑

j∈J

vjπZj
Θ∗

jΘjπZj
f‖2‖f‖2

≤ C2‖f‖
2
∑

j∈J

v2j ‖ΘjπZj
f‖2.

Therefore, ∑

j∈J

v2j ‖ΘjπZj
f‖2 ≤ C2‖f‖

2.

For second inequality, for {fj}j∈J ∈ H2, we can write

‖
∑

j∈J

vjπWj
Λ∗
jfj‖

2 =
(

sup
‖f‖=1

∣∣〈∑

j∈J

vjπWj
Λ∗
jfj, f

〉∣∣
)2

≤
(

sup
‖f‖=1

∣∣∑

j∈J

〈
fj, vjΛjπWj

f
〉∣∣
)2

≤ ‖{fj}‖
2
2

(
sup

‖f‖=1

∑

j∈J

v2j ‖ΛjπWj
f‖2

)

≤ C1‖{fj}‖
2
2.

Now by similar argument and applying an approximation operator of the form

Ψ∗f =
∑

j∈J

vjπWj
Λ∗
j (vjΘjπZj

f),

we can establish Θ has required properties.

The next result is a generalization of Theorem 3.2 from [8] for K-g-fusion
frames.

Theorem 2.3. Let K be closed range and Λ be a K-g-fusion frame for H with

bounds A and B and I ⊂ J. Then the following statements hold:

(i) If {Λj}j∈I is a K-g-frame for H with the lower frame bound B, also⋂
j∈I

Wj ⊆ R(K) and vj > ‖K†‖ for each j ∈ I, then

⋂

j∈I

Wj = {0}.
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(ii) If {Λj}j∈I is a tight K-g-frame for H with the lower frame bound B and

‖K†‖ ≤ 1, also
⋂

j∈I
Wj ⊆ R(K) and we have vj = 1 for each j ∈ I, then

⋂

j∈I

Wj ⊥ span{Wj}j∈J\I.

(iii) If C :=
∑

j∈I
v2j ‖Λj‖

2 < A, then (Wj ,Λj , vj)j∈J\I is a K-g-fusion frame

for R(K) with bounds A− C‖K†‖ and B.

Proof. (i). For every f ∈
⋂

j∈I
Wj and j ∈ I we have πWj

f = f . So,

B‖f‖2 ≤ B‖K†‖2‖K∗f‖2

<
∑

j∈I

v2j ‖Λjf‖
2

=
∑

j∈I

v2j ‖ΛjπWj
f‖2

≤
∑

j∈J

v2j ‖ΛjπWj
f‖2

≤ B‖f‖2.

Thus, f = 0.

(ii). For each f ∈
⋂

j∈I
Wj , we have

B‖K∗f‖2 =
∑

j∈I

v2j ‖ΛjπWj
f‖2

≤
∑

j∈I

v2j ‖ΛjπWj
f‖2 +

∑

j∈J\I

v2j ‖ΛjπWj
f‖2

≤ B‖f‖2

≤ B‖K†‖2‖K∗f‖2

≤ B‖K∗f‖2.

Therefore,
∑

j∈J\I v
2
j ‖ΛjπWj

f‖2 = 0 and it shows that f ⊥ span{Wj}j∈J\I.

(iii) The upper bound is evident. For the lower bound, if f ∈ R(K) we get

∑

j∈J\I

v2j ‖ΛjπWj
f‖2 =

∑

j∈J

v2j ‖ΛjπWj
f‖2 −

∑

j∈I

v2j ‖ΛjπWj
f‖2

≥ A‖K∗f‖2 −
∑

j∈I

v2j ‖Λj‖
2‖f‖2

≥ (A− C‖K†‖2)‖K∗f‖2.

When the set I which is introduced in Theorem 2.3 is singleton, then we can
get the following result.
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Corollary 2.4. Let K be closed range and Λ be a K-g-fusion frame for H

with bounds A and B. If there exists j0 ∈ J such that v2j0‖Λj0‖
2 < A, then

(Wj ,Λj, vj)j 6=j0 is a K-g-fusion frame for R(K) with bounds A−v2j0‖Λj0‖
2‖K†‖2

and B.

The following corallary is a generalized of Corollary 3.4 from [8].

Corollary 2.5. Let K be closed range and Λ be a tight K-g-fusion frame for H

with bound A and j0 ∈ J. Then the following assertions are equivalent:

(i) v2j0‖Λj0πWj0
‖2 < A.

(ii) (Wj ,Λj , vj)j 6=j0 is a K-g-fusion frame for R(K).

Proof. The proof of (i)⇒(ii) is clear from Corollary 2.4. For the opposite, assume
that C is a lower frame bound of (Wj ,Λj , vj)j 6=j0 . For each 0 6= f ∈ R(K) we
have

C‖K∗f‖2 ≤
∑

j 6=j0

v2j ‖ΛjπWj
f‖2

=
∑

j∈J

v2j ‖ΛjπWj
f‖2 − v2j0‖Λj0πWj0

f‖2

= (A‖f‖2 − v2j0‖Λj0πWj0
f‖2).

Hence,

0 < C
‖K∗f‖2

‖f‖2
≤ A− v2j0

‖Λj0πWj0
f‖2

‖f‖2
.

Therefore A− v2j0‖Λj0πWj0
‖2 > 0.

In next result, we provide a new K-g-fusion frame for the space H with by
deleting a number of members of a Parseval frame for Hj .

Theorem 2.6. Let Λ be a K-g-fusion frame for H with bounds A and B. For

each j ∈ J, let {fij}i∈Ij ∈ Λj(Wj) be a Parseval frame for Hj which {fij}i∈Ij\Lj

is a frame for Hj with the lower frame bound Cj for each finite subset Lj ⊂ Ij

and all j ∈ J. If W̃j := span{Λ∗
jfij}i∈Ij\Lj

, then (W̃j ,Λj , vj)j∈J is a K-g-fusion

frame for H with bounds (minj∈J Cj)A and B.

Proof. It is clear that W̃j are closed subspaces of H for each j ∈ J and B is a
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upper frame bound of (W̃j ,Λj , vj)j∈J. For each f ∈ H we have

∑

j∈J

v2j ‖ΛjπW̃j
f‖2 =

∑

j∈J

v2j

∑

i∈Ij

|〈ΛjπW̃j
f, fij〉|

2

≥
∑

j∈J

v2j

∑

i∈Ij\Lj

|〈π
W̃j

f,Λ∗
jfij〉|

2

=
∑

j∈J

v2j

∑

i∈Ij\Lj

|〈ΛjπWj
f, fij〉|

2

≥
∑

j∈J

v2jCj‖ΛjπWj
f‖2

≥ (min
j∈J

Cj)
∑

j∈J

v2j ‖ΛjπWj
f‖2

≥ (min
j∈J

Cj)A‖K
∗f‖2.

3. Error Operator for Parseval K-g-Fusion Frames

Now, we aim to study the approximation Ψ in finite case similar to the view
presented in [8]. Suppose that J = {1, 2, · · · ,m} is finite and Λ is a Parseval
K-g-fusion frame for H where dimH < ∞. For every j0 ∈ J, we consider the
following operator:

Dj0 : H2 −→ H2,

Dj0{fj}j∈J = δj,j0fj0 .

We define the associated 1-erasure reconstruction error E1(Λ) to be

E1(Λ) = max
j∈J

‖TΛDjT
∗
Λ‖.

Since

‖TΛDjT
∗
Λ‖ = sup

‖f‖=1

‖TΛDjT
∗
Λf‖ = v2j sup

‖f‖=1

‖πWj
Λ∗
jΛjπWj

f‖ ≤ v2j ‖Λj‖
2,

therefore,

E1(Λ) = max
j∈J

v2j ‖Λj‖
2.

Theorem 3.1. Let {fj}j∈J be a Parseval K-frame for H and {λj}
n
j=1 the eigen-

values for the frame operator S where n = dimH. Then

∑

j∈J

‖fj‖
2 = n‖K‖2.
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Proof. First, it is clear that the equality

n∑

j=1

λj =
∑

j∈J

‖fj‖
2 (5)

which is presented in [11] for ordinary frames, is also true for K-frames. Suppose
that f ∈ H . Since 〈Sf, f〉 = ‖K∗f‖2, so S = KK∗. Assume that λj is an
eigenvalue of S for arbitrary j. Therefore, ‖K∗f‖2 = λj‖f‖

2 and we conclude
that ‖K∗‖2 = λj for each j = 1, 2, · · · , n. By (5), this completes the proof.

Theorem 3.2. Let Λj(Wj) be closed subspaces, J = {1, 2, · · · ,m} and Λ be a

Parseval g-fusion frame for H where dimH = n and also |Hj | < ∞ for each

j ∈ J. Then the following conditions are equivalent:

(i) Λ satisfies E1(Λ) = minj∈J E1(W̃j ,Λj , ṽj)j∈J, where (W̃j ,Λj, ṽj)j∈J is a

Parseval K-g-fusion frame for H with dim W̃j = dimWj for each j ∈ J.

(ii) For each j ∈ J we have

v2j ‖Λj‖
2 =

n‖K‖2

m. dimWj

.

Proof. Assume that {eij}i∈Ij is a orthonormal basis for Λj(Wj) for each j ∈ J.

Via Theorem 1.6, the sequence {vjπWj
Λ∗
jeij}

m, dimΛj(Wj)
j=1,i=1 is a Parseval K-

frame for H . By Theorem 3.1, we can get

n‖K‖2 =

m∑

j=1

dimΛj(Wj)∑

i=1

v2j ‖πWj
Λ∗
jeij‖

2 ≤

m∑

j=1

dimΛj(Wj)v
2
j ‖Λj‖

2.

So, there exists j such that

n‖K‖2 ≤ m. dimΛj(Wj)v
2
j ‖Λj‖

2.

Since the dimensions as well as the number of subspaces are fixed, we conclude
that E1(Λ) is minimal if and only if n‖K‖2 = m. dimΛj(Wj)v

2
j ‖Λj‖

2 for all
j ∈ J.
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