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Abstract.Let d = k? + 4 for some integer k > 2. In this work, we first determined the
set of automorphisms of the Pell form Fa(z,y) = 2® — dy® of discriminant A = 4d.
Later, we deduced the set of all integer solutions of the Pell equations Fa(z,y) = +1
and Fa(z,y) = k%
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1. Introduction

A real binary quadratic form F' is a polynomial in two variables x and y of the
type
F = F(x,y) = az® + bry + cy?

with real coefficients a,b,c. We denote F briefly by F' = (a,b,¢). The discrim-
inant of F is defined by the formula b? — 4ac and is denoted by A = A(F).
F is an integral form if and only if a,b,c € Z; F is primitive if and only if
ged(a, b, ¢) = 1; F is indefinite if A > 0 and F' is positive definite if and only if
a,c>0and A <0.

*Corresponding author.
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Let GL(2,Z) be the multiplicative group of 2 x 2 matrices g = {: Z} such

that 7, s, t,u € Z and det(g) = £1. Gauss defined the group action of GL(2, Z)
on the set of forms as

gF(z,y) = F(rz +ty, sv + uy) (1)

r S
tu
then F' and G are called equivalent. If det(g) = 1, then F' and G are called prop-
erly equivalent and if det(g) = —1, then F' and G are called improperly equiv-
alent. An element g € GL(2,2Z) is called an automorphism of F if gF = F. If
det(g) = 1, then g is called a proper automorphism of F' and if det(g) = —1, then
g is called an improper automorphism of F'. The set of proper automorphisms of
F is denoted by Aut™(F) and the set of improper automorphisms of F' is denoted
by Aut™(F). We also set Aut*(F) = {g €GL(2,Z) : gF = —F, det(g) = —1}
(for further details see [3, 4, 5]).

for some g = } € GL(2,7Z). If there exists a g € GL(2,Z) such that gF = G,

2. Automorphisms of Pell Forms

In [13], the first author derived some new results on the proper cycles of indefinite
forms and their right neighbors. In [14], the first author considered the cycles of
indefinite quadratic forms and cycles of ideals, in [15], the first author considered
the indefinite quadratic forms and Pell equations involving quadratic ideals and
in [16], the first author derived some new results on base points, bases and
positive definite forms.

In the present paper, we consider the set of automorphisms of Pell forms.
Recall that a Pell form is the form

2?2 — %yz if A =0(mod4)

2
? +ay— A7 y% if A =1(mod4) ®

Fa(z,y) = {

for a non-zero discriminant A. So the Pell equation is the equation Fa(z,y) =
+1. Fa(z,y) = 1is called the positive Pell equation and Fa(x,y) = —1 is called
the negative Pell equation. Let Pell(A) = {(x,y) € Z? : Fa(z,y) = 1} and
Pell*(A) = {(z,y) € Z? : Fa(z,y) = +1}. Then for any (z,y) € Pell*(A), we
set

_b
{x 2Y ayb } if A =0(mod4)
—cy x— 3By
gr(z,y) = b (3)

{x""Ty ay_y] if A =1(mod4).

Then det(gr(z,y)) = Fa(x,y), gr : Pell*(A) — GL(2,7Z) is a group homomor-
phism and gg(z,y) is a proper automorphism of F' for all (z,y) € Pell(A). If F
is primitive, then gz : Pell (A) — Aut™(F) is a group isomorphism.
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Now let d = k? + 4 for some integer k > 1 and let A = 4d. Then from (2),
we get the Pell form
Fa(z,y) = 2* — dy*. (4)

For the set of automorphisms of (4), we can give the following theorem.

Theorem 2.1. Let Fa be the Pell form defined in (4). Then we have the following
statements:

(i) If k > 3 is odd, then

Autt(Fp) = {£(g})" 1 t € Z}, Aut™ (Fa) = {£gp(9})" : t € Z} and
Aut*(Fa) = {£(g3)* 1 1 t € 7},

where
I kS+6k*+9k242 k5 4+4k3 43k
+ 2 2
9p = 7 5 3 6 4 2 ’
ET+8k°+19k3+12k kS +6k*49K2+2
L 2 2
r ES+6k*+9k%242 k°+4k3 43k
- 2 2
9r = 7 5 3 6 4 2
KT H8KSH+19K3 412k kS4+6k*+9k%+2
L 2 2
K5 +3k k241
ko 2 2
9F = | k'45k%+4 K313k
L 2 2

(ii) If k > 2 is even, then

Autt(Fa) = {£(gf) 1 t € Z}, Aut™ (Fa) = {*gp(gt)' : t € Z} and
Aut™(Fa) = {},

K242k k242 k
+ 2 2 - 2 2
= and = .
Ir [ : 1 Ir [ K44k k242
2

2

where

Proof. Tt is known that (see [7, Corollary 5.7]), if d > 0 is not a perfect square and
V/d has continued fraction expansion [ag, @y, a2, -, a;] of period length I, then
the fundamental solution of 22 — dy? = 1 is given by (z1,%1) = (4;_1, Bi_1) if |
is even or (Ag_1, Boj—1) if I is odd. Moreover if [ is odd, then the fundamental
solution of 22 — dy? = —1 is given by (x1,y1) = (4;_1,Bi_1), where A_5 =
0,A_1 =1, Ay = arAx_1+Ar_oand B_.o =1,B_1 =0,B;, = apBi_1 + Br_o.

(i) Let & > 3 be an odd integer. Then it is easily seen that the continued
fraction expansion of V/d is

1
VE2+4=k+(VE+4—k)=k+ T
-+ T
1+1+k—1 L

i
[ B
2 okt (VK2 44—k)
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So Vd = [k; %, 1,1, %, 2k] with period length 5 and hence the fundamental
solution of Fa(x,y) = 1is (z1,y1) = (k6+6k42+9k2+2, k5+4§3+3k). Thus from (3),
we deduce that

E®+6k*+9k% 42 E® +4k5+3k
g+ _ 2 2
k7 +8K°+19k3 412k ES+6k*+9k%+2
2 2
is a proper automorphism of Fa. Since det(9pg7) = —1 and gpgfFa = Fa,

g;g}r is an improper automorphism of Fa, that is, g;g}r € Aut™(Fp) for

E®4+6k*4+9K%42 k®4+4k3 43k
_ 2 2
9r = [

_ K48k +19k3 412k KS46k14+9k% 42
2 2

For any t € Z, g (gj;)t is also an improper automorphisms of Fa. Since the
fundamental solution of Fa(z,y) = —1is (x1,y1) = (’ﬁ%gk, %), we get

k3 43k k241
_— 2 2
gr =

E*45K%24+4 k343K
2 2

with det(g}) = —1 and g5 FA = —Fa. So g € Aut*(Fa). Since (¢5)% = g},
even powers of g}. are the proper automorphisms of Fa. Therefore Aut*(Fa) =
{£(gp)* "' 1t € Z}.

(i) Let k > 2 be an even integer. Then v/d = [k; &,2k]. So the fundamental
solution of Fa(x,y) =11is (z1,y1) = (#, k). Thus

E+2
+ _ 2 2
9dr =

B4k k242
2 2

is a proper automorphism of Fa. For

k242 k
2 2

K344k K242
2 2

9p =

we get det(g}g}) = —1 and since g;g}'FA = Fhp, g;gF is an improper auto-
morphism of Fa, that is, grgf € Aut™(Fa). Since the period length is 2 which
is an even number, Fa(z,y) = —1 has no integer solutions. Therefore there
is no a matrix g3 with det(gj) = —1 such that gFa = —Fa. Consequently
Aut*(Fa) = {}. ]

3. The Pell Equation Fa (z,y) = £1

Let Fa be the Pell form defined in (4). In this section, we consider the set of all
(positive) integer solutions of the Pell equation (see [1, 6, 7])

Fa(z,y) = +1
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in two cases: k£ > 3 1is odd or k > 2 is even.

3.1. k> 31s 0dd

Theorem 3.1. Let k > 3 be odd. Then we have the following statements:
(i) For the positive Pell equation Fa(x,y) =1, we have
kS46k*+Ok>+2 k5+4k3+3k)
2 J 2 :

(a) the fundamental solution is (x1,y1) = (
(b) the set of all integer solutions is Q = {(xn,yn)}, where

ERH

K46k 49k242 kT4+8k%+19k3 412k
2 2

M = : (5)
k®4+4k3 43k kS 46k 49K242
2 2

forn >1 and

(¢c) the integer solutions (xn,yn) satisfy the recurrence relations
Tp = (kﬁ + 6k4 + 9k2 + 1)(1‘71—1 + xn—Q) — Tn-3
Yn = (K + 6K + 9% + 1) (yn—1 + Yn—2) — Un—3

forn > 4.
(d) the nth integer solution (z,,y,) can be given by the aid of continued
fraction expansion, namely,

3:1,1,1,1,6,1,1,2 fork=3
——
2n—1 times
In o
Yn ) .
—1 —1 k-1 k—1
k;T’l’l’T’2k’T’1’17T fOTkZ5
2n—1 times
forn > 1.

(ii) For the negative Pell equation Fa(z,y) = —1, we have

(a) the fundamental solution is (x1,y1) = (’“3%3]“, @)
(b) the set of all integer solutions is Q = {(ran—1,Y2n—-1)}, where

|:372n—1:| _ M2n—1 [1]
Yon—1 0

k3 43k E*45K%+4
2 2
M = .
k241 k3 43k
2 2

forn>1 and
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(¢c) the integer solutions (xon—1,Yan—1) satisfy the recurrence relations

Top_1 = (k% 4+ 6k + 9K% + 1) (223 + Ton_5) — Ton_7
Yon—1 = (K + 6k + 9k + 1) (y2n_3 + Y2n—_5) — Yon_7
forn > 4.

(d) the (2n — 1)% integer solution (Tan—_1,Yan—1) can be given by the aid
of continued fraction expansion, namely,

3;171’17156715172 fork::?)
——
Ton—1 L 2n—2 times
Y2n—1 N E—1 E—1
. k-1 k—1
k, 9 ,171, 9 ,2k,—§—,1,1,—§— jb7'k > 5
L 2n—2 times
forn > 1.

K6k +9k%+2 K°+4k3 43k .
5 , 5 ) is

Proof. (i)(a) It can be easily seen that (z1,y1) = (
the fundamental solution by (1) of Theorem 2.1.

- [ KS+6k*+9k2+2
(i)(b) We prove it by induction. Let n = 1. Then {yl } = k54405 4 3k
L 2
which is true. Assume that it is satisfied for n — 1, that is,
KOr6k1ok242  kTaskS410k3+12k 7T ¢
Tn—1 | _ 2 2 1
Yn—1 k5 +4k> 4+ 3k ES+6k* +9k2 42 0"
2 2 -

Then

KO4+6k*+9k2+2 k7+8K°+19K3+12k 1"

Un K +4k%+3k kS +6k*+9K24+2 0
2 2

l ES+6k*+9k%+2 k7T+8k°+19K%+12k ]
2 2

k5 4+4k> 43k kS 46k +9k%2 42
2 2
KO +6k1FOk% 42 kT48K5+10k3 412k 771
2 2 1
K5 +4k3+3k kS +6k*+9K2+2 0
2 2

Yn—1

kS 46k +9k%24+2 k74+8k%4+19k% 412k
2 2 Tn—1
k5 4+4k3 43k kS 46k +9k%2 42
2 2

6 4 2 7 5 3
l(k +6k*+9k +2)$n—1 + (k +8k°+219k +12k)
n—1

k5+24k3+3k kS 46k 49K242 Yt :
() p o + (R )y
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So
kS + 6k* 4+ 9k% + 2 E” 4+ 8k® 4+ 19k3 + 12k
Tp = ( ){En,1 + ( )ynfl
2 2
and
kS + 4k3 + 3k kS + 6k* + 9k? + 2
= () o+ . -1,

Thus we conclude that

kS £ 6kt + 9k +2 k7 4+ 8k5 + 19K + 12k 2
e : -
k5 4 4k3 + 3k kS + 6k* +9k2 + 2 2
Sy [, st s, ]
=22 — (K +4)y2_,

=1

So it is true for every n > 1.

(i)(c) For z; = 7]“64'6]“4;9’“24'2 and y; = 7’“5‘*4’;34'3]“, we set @ = 1 +y1V/d and
B =x1— ylﬂ. Then it is known that z,, = angﬁn and y, = a;—\_/gn. Hence we
deduce that

(kG + 6k4 + 9k2 + 1)(3377,—1 + xn—Q) — Tn-3

:(kﬁ N 6k4 N 9k2 N 1)(an,—1 _;ﬁn—l N an—Q _; ﬁn—Q) B an—B _; ﬁn—S
o [(KS +6k* + 9k + 1)a? + (K® 4 6k* + 9k* + 1) — 1
T2 { a3 }
B [ (kS +6k* +9k? +1)3% + (k® + 6k* + 9k> + 1)3 — 1

) [ EE ]
_a
=—
=z,

since (kS + 6k* + 9k + 1)a? + (k® + 6k* + 9k + 1)a — 1 = o3 and (kS + 6k* +
9k% + 1)82% + (k® + 6k* + 9k? + 1) — 1 = (3. Similarly it can be shown that
Yn = (k% + 6k* + 952 + 1)(yp_1 + Yn_2) — Yn_3 for n > 4. The other cases can
be proved similarly. m

In order to determine the set of all integer solutions (z,,, y,) of Fa(z,y) = £1,
we need the n*® power of M defined in (5) which is given below.
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RS

Theorem 3.2. The n'* power of M defined in (5) is M™ = {T U

] , where

n—2

: N\ n—2i 2 5 - n n—1-2i_ 2i+1 ji+1
R—;(%)xl yi'd' =0, S_i:() (2i—|—1)x1 yidT

-— n n—1—2i_ 2i+1 i
=% (2¢+1>"”1 2+

0
for evenn > 2 or

n—1 n—1

2N\ o 2 - n n—1-2i, 2i+1 ji
e Z(zz‘)xl ad St S Z<2¢+ 1>x1 T
i=0 =0
n—1
T — 22: n 120y 20 i
—=\2i+1)"" !

6 4 2 5 3
for odd n > 1, where v = B AW L2 gpq gy = b Ak 43k

Proof. Tt can be proved by induction on n. ]
From Theorems 3.1 and 3.2, we deduce that

Theorem 3.3. Let k > 3 be odd. Then the following statements hold:
6 4 2 5 3
(i) Forxzq, = % and y; = w, the set of all integer solutions
of Fa(z,y) =1 1is Q = {(xn,yn)}, where

n n—2

2 2

n —2i. 2 7 n —1-2i, 2 '

= (S (2ot 3 (7 Yot
1=0 1=0

for evenn > 2 or

n—1 n—1

n 2 2 i > n 1—2i, 2i+1 ji

_ n—2, 21 71 n—1-—-2¢, 21 7

for oddn > 1.

(ii) For 7y = ’“3%3’“ andy, = @, the set of all integer solutions of Fa(x,y) =
—114s Q = {(x2n—1,Y2n—1)}, where

271271
2n =1\ on_1-2i 2i 4
Top-1 = Z ( 9 )xf 12202800 and

=0
2n—

2 2n—1 P .

.

(=)

i=
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forn > 1.

3.2. £k > 2 1Is Even

Theorem 3.4. Let k > 2 be even. Then we have the following statements:

(i) For the positive Pell equation Fa(x,y) = 1, we have

k242 k)

2 2
(b) the set of all integer solutions is Q = {(xn,yn)}, where

)=o)

) k3 44k
2 2

(a) the fundamental solution is (x1,y1) = (

forn >1 and

k k242
2

2
(¢c) the integer solutions (xn,yn) satisfy the recurrence relations
Tp = (kQ + 1)($n—1 + xn—Q) — Tn-3
Yn = (kQ + 1)(yn71 + yn72) — Yn-3

forn > 4.
(d) the n'" integer solution (x,,yn) can be given by the aid of continued
fraction expansion, namely,

2;1,4,1,5 fork=2andn >2
~—
n—2 times
Ty
Yn L
k; 5,2k,§ for k>4 andn > 1.
——
n—1times
(ii) The negative Pell equation Fa(x,y) = —1 has no integer solutions.
Proof. Tt can be proved as in the same way that Theorem 3.1 was proved. ]

The n*® power of M defined in (6) is given below.
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RS

Theorem 3.5. The n'* power of M defined in (6) is M™ = {T U

] , where

Mr
w) |
M)

R

*Pllﬂm\:

v ©

n n—1—21 2l+1dz+1
<2z+1)x e

[}

1=

<;> 371 —21 21dz U, S =

> n 1-2i 2
T = n— ) 1+1dz
2 (2z+1)x g

for evenn > 2 or

n—

3
[

[

n—

(;) a2y = U, S = (221 1) 120y 20 gitd
i=0

M‘

R

M“\

<.

2 n
T — n—1-—21 z+1dz
B

=0

3
= O

for odd n > 1, where x1 = @ and y; = 2

Proof. It can be proved by induction on n. ]

From Theorems 3.4 and 3.5, we can give the following theorem.

Theorem 3.6. Let x1 = # and y1 = % Then the set of all integer solutions

Of FA(xyy) =1isQ= {(xnyyn)}: where

n—2

wl3

2
_ T\ n—2i 2 5 n n—1—2i_ 2i+1 i
(xnayn) - (2Z> xl yl d 9 ; (27, + 1>{E1 y d

[}

for evenn > 2 or

.

n— n—1

(N i 2 N n n—1-2i_ 2i+1 7i
(xnayn): <2i)$1' Qly%daz<2i+1)xll ! 29%+1d

i= =0

(=)

for oddn > 1.

Remark 3.7. Here one may wonder why we only consider the case A = 4d. In
fact, when we consider the case A = 1 + 4d, we see that there is no a gen-
eral formula, indeed, for the fundamental solutions of the positive Pell equa-
tion Fa(z,y) = 2% + 2y — dy?> = 1, we have (x1,71) = (22,7) is the funda-
mental solution for k¥ = 3, (z1,y1) = (5,1) is the fundamental solution for
k=5, (x1,y1) = (34,5) is the fundamental solution for k = 7, (x1,y1) = (131, 15)
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is the fundamental solution for k =9, (x1,y1) = (38, 3) is the fundamental solu-
tion for k = 13, (z1,y1) = (571,39) is the fundamental solution for k¥ = 15 and
(z1,y1) = (133, 8) is the fundamental solution for k = 17.

4. The Pell Equation Fa(z,y) = +k?

In this section we consider the set of all (positive) integer solutions of

Now let A be a non-square discriminant. The A-order Ox is defined to be
the ring Oa = {x +ypa : x,y € Z}, where pa = \/g if A =0(mod 4) or #
if A = 1(mod 4). So Op is a subring of Q(vA) ={z + yvA : 2,y € Q}. The
unit group O} is defined to be the group of units of the ring O, .

Let F = (a,b,c) be an indefinite integral quadratic form of discriminant
A = b? — 4ac. Then we can rewrite F(x,y) = ((va + yb+‘/_)(xa +y b= \/_))/a

So the module Mp of F is Mp = {za + yb+‘/_ z,y € Z} C Q(v/A). Therefore
/b+\f

we get (u+ vpa)(za + ber‘F) =2'a+ty , where
_b
[z y] [u Civ uj—vbv] if A =0(mod 4),
- 2
[y = ()

[z y] [u—’_—ci v u—l—a%v} if A =1(mod 4).
Let m be any integer and let  denote the set of all integer solutions of F(z,y) =
m, that is, Q@ = {(z,y) : F(z,y) = m}. Then there is a bijection ¥ : Q — {vy €
Mp : N(v) = am}. The action of OA ; = {a € O : N(a) = 1} on the set {2 is
most interesting when A is a positive non-square since Oy ; is infinite. Therefore
the orbit of each solution will be infinite and so the set Q is either empty or
infinite. Since Op ; can be explicitly determined, the set () is satisfactorily
described by the representation of such a list, called a set of representatives of the
orbits. Let ea be the smallest unit of O, that is grater than 1 and let 7o = ea
if N(ea) =1 or €% if N(ea) = —1. Then every OX ; orbit of integral solutions
of F(z,y) = m contains a solution (z,y) € Z X Z such that 0 < y < U, where

1
U= |22 1—7—)1fam>OorU:|%} 1+=L)if am < 0. So for finding
A TA
a set of representatives of the OR ; orbits of integral solutions of F(z,y) =m, we

must find for each integer yo in the range 0 < yo < U, whether Ay2 + 4am is a
perfect square or not since az3 +bxoyo +cys = m & Ayd +4am = (2axo+byo)?.

If Ay2 +4am is a perfect square, then x¢ = “byoty/ Ayptiam Ayo 9™ S there is a set of
representatives Rep = {[zo yo]}. Thus for the matrlx M derived from (8), the set
of all integer solutions of F(z,y) =m is @ = {£(z,y) : [z y] =[ro yo]M™,n €
Z}. If Ay2 + 4am is not a perfect square, then there are no integer solutions.
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4.1. k£ > 31Is Odd

Theorem 4.1. Let k > 3 be odd. Then we have the following statements:
(i) For the positive Pell equation Fa(x,y) = k2,
(a) If k > 3 is not a perfect square and # Rep = 4, then the set of repre-
sentatives is Rep = {[txf 0], [tx] vyi]}, where

k* — 2k 4+ 5k — 6k + 4
x5 =k,2] = * 5 * and 9)

k3 —2k? + 3k — 2
N 2
and the set of all integer solutions is Q@ = {(T3n+1,Y3n+1)s (T3n-1,
Ysn—1)s (T3n, Ysn)}, where

(3n+1,Y3n+1) = (TR + 1S, 21T + y7U) for n >0,
(x3n—1,Y3n-1) = (TR — yi S, 21T — y;U) forn > 1,
(Z3n,Ysn) = (x5 R, 25T) forn > 1.

(b) If k > 9 is a perfect square, say k = t? for some integer t > 1 and
# Rep = 6, then the set of representatives is
Rep = {[xx5 O], [+21" 91"], [£2] w1},

. . 5_.3 3
where zf, 2%, y7 is defined in (9), z}* = LA g = 2t gnd
the set of all integer solutions is Q@ = {(Tsn+1, Ysn+1); (Tsnt2, Ysnt2),

(T5n—2,Y5n—2), (Tsn—1,Ysn—1), (Tsn, Ysn) }, where
(@541, Ysn+1) = (7" R+ y1"S, 27" T + y1*U) for n >0,
(T5n+2, Ysnr2) = (TR + 47 S, 21T + yiU) for n >0,
(T5n—2,Ysn—2) = (TR — 41 S, 21T — y7U) forn > 1,
(T5n—-1,Ysn—1) = (@7"R —y7*S, 27T — y7*U) forn > 1,
(X5n, Ysn) = (2R, 25T for n > 1.

(ii) For the negative Pell equation Fa(x,y) = —k?,

(a) If k > 3 is not a perfect square and # Rep = 4, then the set of repre-
sentatives is Rep = {[xxf 1], [£a] yi]}, where
E*+3k% . K +k
T’ yl - 2 )
and the set of all integer solutions is Q@ = {(T3n+1,Y3n+1)s (T3n+2,

Ysn+2), (Tan, Yan)}, where

(Z3n+1, Yzn+1) = (xgR+ S, 25T + U) for n >0,
(Z3n+2,Ysnt2) = (IR +y1 S, 27T + yiU) for n >0,
(@3n, y3n) = (—xgR+ S, —2gT + U) forn > 1.

Ty =227 = (10)
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(b) If k > 9 is a perfect square, say k = t? for some integer t > 1 and
# Rep = 6, then the set of representatives is

Rep = {[+zy 1], [£27" u17], [F21 wil},

. . 5 3 3
where xj, x5, y; is defined in (10), ai* = LELAZL e — L g
the set of all integer solutions is Q@ = {(Tsn+1, Ysn+1), (Tsnt2, Ysnt2),

(T5n+3, Ysn+3), (Tsn—1, Ysn—1), (Tsn, Ysn) }, where

2o R+ S, 25T +U) forn>0
*R+yi*S, 27*T + y*U) forn >0

Tsn+1, Ysn+1 (
(=]
(2IR+yiS, 27T 4+ yiU) forn >0
(—
(—

( )
($5n+2, y5n+2)
(T5n+3, Y5n+3)
( )

"R+ yi*S, —a7"T + yi*U) forn >1
2R+ S, —apT +U) forn>1.

Ton—1,Ysn—1

(x5n; ySn)
In all cases R, S, T,U is defined in Theorem 3.2.
Proof. (i)(a) For the positive Pell equation Fa(z,y) = k%, we have F' = (1,0, —d)
of discriminant A = 4d. Since the fundamental solution is (z1,y1) = ((k®+6k*+

9k? +2)/2, (k° + 4k> + 3k)/2), we get Ta = k6+6k4+9k2+2+(k5+4k3+3k)\/k2+ n
this case, the set of representatives is Rep = {[£z§ 0], [:I:x1 y7]}, where

. . Kk*—2k3 4+ 5k* — 6k + 4 . K3—2k>43k—2
zo =k, x2] = and y] = .
2 2
Here [z§ O0]H™ generates all integer solutions (zs,,ysn) for n > 1, [2] yi]H™
generates all integer solutions (Z3n+1, Ysn+1) for n > 0 and [z] —y;|H™ generates
all integer solutions (x3,—1, yYsn—1) for n > 1, where

ES46k*4+0k% 42 kS +ak3+3k
2 2
H =

E74+8K°+19k% +12k kS46k*+9K% 12
2 2

which is the transpose of M defined in (5). Thus the set of all integer solutions
of Fa(w,y) = k% is @ = {(23n+1,Y3n+1); (¥30—1,Y3n—1), (T30, Y3n)}, where

(3n+1,Y3n+1) = (T R+ yi S, 21T + yiU) for n >0
(x3n—1,Y3n-1) = (TR —yi S, 21T — y;U) for n > 1
(Z3n,Ysn) = (xR, x{T) for n > 1.

Indeed, we only prove (3n41,¥y3n+1) = (21 R+ yiS, 21T + yiU) for n > 0. Let
n > 0beeven. Forn =0, wehave R=1,5=0,T=0and U = 1. So (z1,y1) =
(%, y7) and hence

k* — 2k3 4+ 5k? — 6k + 4,

) K —2k% +3k -2,
2

5 )

—dy? = ( — (R 4)(
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So it is true for n = 0. Assume that it is satisfied for n — 2, that is, x3,_5 =
iR+ y7S and y3n—5 = 27T + yiU, where

n—2 n—4
= (n 2 >x?_2_2”yfldl =U, S=) (;Lz + 1)%?‘3‘2";/%1“(11“,
i=0 =0
n—4
T — > (n - 2>xn32iy2i+1di
= i 1 1 .
pare 2141

Then 235,41 = Z3n—5(R% + TS) + y3n—5(SR + US) and yzn1 = T3n—5(RT +
TU) + y3n—5(ST + U?) and clearly,

T3t — Wins1 = [@3n—5(R? + TS) + yzn—s5(SR+ US)]”

— d[z3n_5(RT +TU) + y3,,_5(ST + U?))?

=22, [(R*+TS)* —d(RT +TU)?
+ 2230 —5Y3n—s[(R* + TS)(SR+ US)
—d(RT 4+ TU)(ST + U?)]
+ 42, s[(SR+US)? —d(ST + U?)?]

= $§n75 - dy§n75

=k?

since (R2+TS)?—d(RT+TU)? =1, (R*+TS)(SR+US) —d(RT+TU)(ST +

U?)=0and (SR+ US)? — d(ST + U?)? = —d. The other cases can be proved
similarly. ]

4.2. k > 2 Is Even

Theorem 4.2. Let k > 2 be even. Then we have the following statements:

(i) For the positive Pell equation Fa(x,y) = k2,

(a) If k = 2, then the set of representatives is Rep = {[£2 0]} and the
set of all integer solutions is Q@ = {(xn,yn)}, where z, = 2C,, and
Yn = 2B, forn > 1 (Here B, is the n'" balancing number and C,, is
the n™ Lucas-balancing number).

(b) Ifk =4, then the set of representatives is Rep = {[£4 0], [£6 1]} and
the set of all integer solutions is Q@ = {(Z3n+1, Ysn+1)s (T3n—1, Ysn—1),
(£E3n, y3n)}; where

(T3n+1,Y3n11) = (6R+ S,6T + U) for n >0
(x3n—-1,Y3n—-1) = (R — S,6T —U) forn >1
(Z3n,Ysn) = (4R, 4T) forn > 1.
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(¢) If k > 6 is not a perfect square and #Rep = 4, then the set of repre-
sentatives is Rep = {[x£x§ 0], [tz7 i}, where
K2 —2k+4 , k-2

x?]:kvxT: 9 YY1 = 9 (11)

and the set of all integer solutions is Q@ = {(T3n+1,Y3n+1)s (T3n-1,
y3n71); (x?)n; y3n)}7 where
(x3n+17 y3n+1) = (xTR + yTS, xTT + yTU) fO’f‘ n >0
(T3n—1,Y3n—1) = (1R — y1 S, 27T — y7U) forn > 1
(Z3n, Yan) = (xo R, 20T) for n > 1.

(d) If k > 16 is a perfect square, say k = t2 for some integer t > 1 and
# Rep = 6, then the set of representatives is

Rep = {[#ag O], [£a1"  w77) [F21 wil},

where x, x3,y7 is defined in (11), z3* = t342'2t,yf* = L, and the set
of all integer solutions is Q@ = {(Zsn+1, Ysn+1), (Tsn+2, Ysnt2), (Tsn—2,

y5n—2); (33571,—17 y5n—1)7 ($5m y5n)}7 where

'R+ yi* S, x7*T + y1*U) form >0
iR+ yi S, 21T + yiU) forn >0
IR —yiS, 21T —yiU) forn>1
2R —yi*S, 27T — y*U) forn>1
o R, xyT) for n > 1.

Tsn+1, Ysn+1

(
($5n,+2, Ysn+2
(
(

) =(
) =(
Tsn-2,Ysn—2) = (
T5n-1,Ysn—1) = (

) =(

(1‘571,7 Ysn

(ii) For the negative Pell equation Fa(x,y) = —k?,
(a) If k = 2, then the set of representatives is Rep = {[£2 1]}, and the
set of all integer solutions is Q@ = {(zn,yn)}, where x, = 2¢, and

Yn = Pon—1 form > 1 (Here ¢, is the nth Lucas-cobalancing number
and P, is the n'™ Pell number).

(b) If k =4, then the set of representatives is Rep = {[£2 1],[£8 2|},
and the set of all integer solutions is Q@ = {(T3n+1,Y3n+1)s (T3n+2,
93n+2)7 (xSna ?JSn)}v where

(Z3n+1,Y3n+1) = QR+ S,2T+U) forn >0
(T3n12, Y3niz) = (SR +28,8T +2U) forn >0
(3n, Y3n) = (—2R+ S, 2T + U) for n > 1.

(¢) If k > 6 is not a perfect square and #Rep = 4, then the set of repre-
sentatives is Rep = {[xx§ 1], [xx] yi]}, where

k2 k
$3:2,xT :_ayT: 57

. (12)
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and the set of all integer solutions is Q@ = {(T3n+1,Y3n+1)s (T3n+2,
93n+2), (.133", y3n)}, where

(3n+1,Y3n+1) = (2o R+ S, 25T + U) forn >0
(T3n+2, Ysnt2) = (@I R+ 91 S, 21T + yiU) forn >0
(Z3n,Ysn) = (—x{ R+ S, —a{T + U) forn > 1.

(d) If k > 16 is a perfect square, say k = t2 for some integer t > 1 and
# Rep = 6, then the set of representatives is

Rep = {[#ag 1], [£a7"  w1"] [F21 wil},

where x§, x3,y7 is defined in (12), 27* = tSEQt,yi‘* = L and the set
of all integer solutions is Q@ = {(T5n+1, Ysn+1)s (Tsnt2, Ysn+2), (Tsn3,

y5n+3), ($5n—1 ; y5n_1), ($5n, y5n)}, where

T5n+1, Ysn+1 zyR+ S, a{T +U) forn >0

TR+ y"S, 27" T + y{"U) forn >0
IR+ yiS, 27T +yU) forn >0

27 R4y " S, —x1"T + yi"U) forn >1

2R+ S, —a;T +U) forn>1.

T
T

(
($5n+2, Ysn+2
(
(

Ton—1,Ysn—1

(
(
(
(
(

)
)
T5n+3, Ysn+3)
)
)

(x5n; Ysn

In all cases R, S, T,U is defined in Theorem 3.5.

Proof. (i)(a) Let k = 2. The the set of representatives is Rep = {[£2 0]} for
the Pell equation 2% — 8y? = 4. Here [2 0]M"™ generates all integer solutions

3 1
(Tn,yn) forn > 1 and M = [8 3}

Behera and Panda [2] introduced balancing numbers n € Z*1 as solutions of
the Diophantine equation

1424+ (n—-1)=0h+D)+n+2)+---+(n+7r) (13)

for some positive integer r which is called balancer. If n is a balancing number
with balancer r, then from (13) one has

T_—2n—1—|—\/8n2+1
- 5 )

(14)

Let B, denote the n*® balancing number. Then from (14), we note that B, is
a balancing number if and only if 882 + 1 is a perfect square. Thus \/8B2 + 1
is an integer which is called n'" Lucas-balancing number and is denoted by C,,,
that is, C,, = 1/8B2 + 1 (for further details see also [8, 9, 10, 12]). It can be

3 1 C, B
3 th _ : n __ n n
easily seen that the n'* power of M = [8 3] is M™ = [SBT,, C. } . Thus the
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set of all integer solutions is Q = {(xy, yn)}, where z,, = 2C,, and y,, = 2B,, for
n > 1.

(i)(b) If k = 4, then the set of representatives is Rep = {[£4 0],[£6 1]} and

M = 490 3 . In this case [4 0]M™ generates all integer solutions (%3, y3,)
forn>1,[6 1JM™ generates all integer solutions (3,+1,Ysn+1) for n > 0 and
[6 — 1]M™ generates all integer solutions (23,—1,¥ysn—1) for n > 1. So the set

of all integer solutions is Q = {(Z3n+1,Ysn+1)s (T3n—1,Y3n-1), (T3n, Ysn)}, where
(T3n+1,Y3n+1) = (6R+S,6T+U) for n > 0, (z3n—1,Y3n-1) = (6R— 5,67 —U)
forn > 1 and (23, y3n) = (4R,4T) for n > 1. The other two cases can be proved
similarly.
(ii)(a) Let & = 2. The the set of representatives is Rep = {[£2 1]} and
31
!
Panda and Ray [11] defined that a positive integer n is called a cobalancing
number if the Diophantine equation

M . Here [-2 1]M™ generates all integer solutions (z, y,) for n > 1.

1424+ +n=Mn+1)+n+2)+--+(n+7) (15)

holds for some positive integer r which is called cobalancer corresponding to n.
If n is a cobalancing number with cobalancer r, then from (15), we get

. —Mm—14++vV8n2+8n+1
— 5 i

(16)

Let b,, denote the n'" cobalancing number. Then from (16), b, is a cobalancing
number if and only if 862 + 8b,, + 1 is a perfect square. Thus /8b2 + 8b,, + 1 is
an integer which is called n'" Lucas-cobalancing number and is denoted by ¢,
that is, ¢, = /8b2 + 8b,, + 1. Recall that Pell numbers are the numbers given
by Pp=0, P, =1and P, =2P,_1 + P,_5 for n > 2. Since

Cn Bn _
[-2 1] [8Bn C’n,:| =[-2C, +8B, —2B,+ (]
and since —C),, + 4B, = ¢, and —2B,, + C,, = P5,_1, the set of all integer
solutions is 2 = {(xn,yn)}, where x,, = 2¢,, and y,, = Pop_1 for n > 1.

(ii)(b) Let k = 4. Then the set of representatives is Rep = {[£2 1],[+8 2]}
and M = 490 3 . Here [2 1]M™ generates all integer solutions (23,41, Y3n+1)
for n > 0, [-2 1]M™ generates all integer solutions (z3,,ys,) for n > 1 and
[8 2]M™ generates all integer solutions (zgn+2,Ysnt+2) for n > 0 ([-8 2]M™
generates all integer solutions (z3,—1,Ysn—1) for n > 1). Thus the set of
all integer solutions is Q = {(Z3n+1,Y3n+1), (T3n+2,Ysn+2), (T3n, Y3n)}, Where
(T3n+1,Y3n+1) = 2R+ S,2T+4U) for n > 0, (3n+2, Ysn+2) = (8R+2S5,8T+2U)
for n > 0 and (35, Ysn) = (—2R+S, —2T+U) for n > 1. The others are similar.

n
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