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Abstract.Let d = k2 + 4 for some integer k ≥ 2. In this work, we first determined the

set of automorphisms of the Pell form F∆(x, y) = x2
− dy2 of discriminant ∆ = 4d.

Later, we deduced the set of all integer solutions of the Pell equations F∆(x, y) = ±1

and F∆(x, y) = ±k2.
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1. Introduction

A real binary quadratic form F is a polynomial in two variables x and y of the
type

F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrim-
inant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ).
F is an integral form if and only if a, b, c ∈ Z; F is primitive if and only if
gcd(a, b, c) = 1; F is indefinite if ∆ > 0 and F is positive definite if and only if
a, c > 0 and ∆ < 0.

∗Corresponding author.
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Let GL(2,Z) be the multiplicative group of 2 × 2 matrices g =

[
r s
t u

]

such

that r, s, t, u ∈ Z and det(g) = ±1. Gauss defined the group action of GL(2,Z)
on the set of forms as

gF (x, y) = F (rx + ty, sx+ uy) (1)

for some g =

[
r s
t u

]

∈ GL(2,Z). If there exists a g ∈ GL(2,Z) such that gF = G,

then F and G are called equivalent. If det(g) = 1, then F and G are called prop-
erly equivalent and if det(g) = −1, then F and G are called improperly equiv-
alent. An element g ∈ GL(2,Z) is called an automorphism of F if gF = F . If
det(g) = 1, then g is called a proper automorphism of F and if det(g) = −1, then
g is called an improper automorphism of F . The set of proper automorphisms of
F is denoted by Aut+(F ) and the set of improper automorphisms of F is denoted
by Aut−(F ). We also set Aut∗(F ) = {g ∈GL(2,Z) : gF = −F, det(g) = −1}
(for further details see [3, 4, 5]).

2. Automorphisms of Pell Forms

In [13], the first author derived some new results on the proper cycles of indefinite
forms and their right neighbors. In [14], the first author considered the cycles of
indefinite quadratic forms and cycles of ideals, in [15], the first author considered
the indefinite quadratic forms and Pell equations involving quadratic ideals and
in [16], the first author derived some new results on base points, bases and
positive definite forms.

In the present paper, we consider the set of automorphisms of Pell forms.
Recall that a Pell form is the form

F∆(x, y) =

{
x2 − ∆

4 y
2 if ∆ ≡ 0(mod4)

x2 + xy − ∆−1
4 y2 if ∆ ≡ 1(mod4)

(2)

for a non-zero discriminant ∆. So the Pell equation is the equation F∆(x, y) =
±1. F∆(x, y) = 1 is called the positive Pell equation and F∆(x, y) = −1 is called
the negative Pell equation. Let Pell(∆) = {(x, y) ∈ Z2 : F∆(x, y) = 1} and
Pell±(∆) = {(x, y) ∈ Z2 : F∆(x, y) = ±1}. Then for any (x, y) ∈ Pell±(∆), we
set

gF (x, y) =







[
x− b

2y ay
−cy x− b

2y

]

if ∆ ≡ 0(mod4)

[
x+ 1−b

2 y ay
−cy x+ 1+b

2 y

]

if ∆ ≡ 1(mod4).

(3)

Then det(gF (x, y)) = F∆(x, y), gF : Pell±(∆) → GL(2,Z) is a group homomor-
phism and gF (x, y) is a proper automorphism of F for all (x, y) ∈ Pell(∆). If F
is primitive, then gF : Pell±(∆) → Aut+(F ) is a group isomorphism.
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Now let d = k2 + 4 for some integer k ≥ 1 and let ∆ = 4d. Then from (2),
we get the Pell form

F∆(x, y) = x2 − dy2. (4)

For the set of automorphisms of (4), we can give the following theorem.

Theorem 2.1. Let F∆ be the Pell form defined in (4). Then we have the following

statements:

(i) If k ≥ 3 is odd, then

Aut+(F∆) = {±(g+F )
t : t ∈ Z}, Aut−(F∆) = {±g−F (g

+
F )

t : t ∈ Z} and

Aut∗(F∆) = {±(g∗F )
2t−1 : t ∈ Z},

where

g+F =

[
k6+6k4+9k2+2

2
k5+4k3+3k

2

k7+8k5+19k3+12k
2

k6+6k4+9k2+2
2

]

,

g−F =

[
k6+6k4+9k2+2

2
k5+4k3+3k

2

−k7+8k5+19k3+12k
2 −k6+6k4+9k2+2

2

]

,

g∗F =

[
k3+3k

2
k2+1

2
k4+5k2+4

2
k3+3k

2

]

.

(ii) If k ≥ 2 is even, then

Aut+(F∆) = {±(g+F )
t : t ∈ Z}, Aut−(F∆) = {±g−F (g

+
F )

t : t ∈ Z} and

Aut∗(F∆) = {},

where

g+F =

[
k2+2

2
k
2

k3+4k
2

k2+2
2

]

and g−F =

[
k2+2

2
k
2

−k3+4k
2 −k2+2

2

]

.

Proof. It is known that (see [7, Corollary 5.7]), if d > 0 is not a perfect square and√
d has continued fraction expansion [a0, a1, a2, · · · , al] of period length l, then

the fundamental solution of x2 − dy2 = 1 is given by (x1, y1) = (Al−1, Bl−1) if l
is even or (A2l−1, B2l−1) if l is odd. Moreover if l is odd, then the fundamental
solution of x2 − dy2 = −1 is given by (x1, y1) = (Al−1, Bl−1), where A−2 =
0, A−1 = 1, Ak = akAk−1 +Ak−2 and B−2 = 1, B−1 = 0, Bk = akBk−1 +Bk−2.

(i) Let k ≥ 3 be an odd integer. Then it is easily seen that the continued
fraction expansion of

√
d is

√

k2 + 4 = k + (
√

k2 + 4− k) = k +
1

k−1
2 + 1

1+ 1

1+ 1
k−1
2

+ 1

2k+(
√

k2+4−k)

.
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So
√
d = [k; k−1

2 , 1, 1, k−1
2 , 2k] with period length 5 and hence the fundamental

solution of F∆(x, y) = 1 is (x1, y1) = (k
6+6k4+9k2+2

2 , k
5+4k3+3k

2 ). Thus from (3),
we deduce that

g+F =

[
k6+6k4+9k2+2

2
k5+4k3+3k

2

k7+8k5+19k3+12k
2

k6+6k4+9k2+2
2

]

is a proper automorphism of F∆. Since det(g−F g
+
F ) = −1 and g−F g

+
FF∆ = F∆,

g−F g
+
F is an improper automorphism of F∆, that is, g

−
F g

+
F ∈ Aut−(F∆) for

g−F =

[
k6+6k4+9k2+2

2
k5+4k3+3k

2

−k7+8k5+19k3+12k
2 −k6+6k4+9k2+2

2

]

.

For any t ∈ Z, g−F (g
+
F )

t is also an improper automorphisms of F∆. Since the

fundamental solution of F∆(x, y) = −1 is (x1, y1) = (k
3+3k
2 , k2+1

2 ), we get

g∗F =

[
k3+3k

2
k2+1

2

k4+5k2+4
2

k3+3k
2

]

with det(g∗F ) = −1 and g∗FF∆ = −F∆. So g∗F ∈ Aut∗(F∆). Since (g∗F )
2 = g+F ,

even powers of g∗F are the proper automorphisms of F∆. Therefore Aut
∗(F∆) =

{±(g∗F )
2t−1 : t ∈ Z}.

(i) Let k ≥ 2 be an even integer. Then
√
d = [k; k

2 , 2k]. So the fundamental

solution of F∆(x, y) = 1 is (x1, y1) = (k
2+2
2 , k

2 ). Thus

g+F =

[
k2+2

2
k
2

k3+4k
2

k2+2
2

]

is a proper automorphism of F∆. For

g−F =

[
k2+2

2
k
2

−k3+4k
2 −k2+2

2

]

,

we get det(g−F g
+
F ) = −1 and since g−F g

+
FF∆ = F∆, g

−
F g

+
F is an improper auto-

morphism of F∆, that is, g
−
F g

+
F ∈ Aut−(F∆). Since the period length is 2 which

is an even number, F∆(x, y) = −1 has no integer solutions. Therefore there
is no a matrix g∗F with det(g∗F ) = −1 such that g∗FF∆ = −F∆. Consequently
Aut∗(F∆) = {}.

3. The Pell Equation F∆(x, y) = ±1

Let F∆ be the Pell form defined in (4). In this section, we consider the set of all
(positive) integer solutions of the Pell equation (see [1, 6, 7])

F∆(x, y) = ±1
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in two cases: k ≥ 3 is odd or k ≥ 2 is even.

3.1. k ≥ 3 Is Odd

Theorem 3.1. Let k ≥ 3 be odd. Then we have the following statements:

(i) For the positive Pell equation F∆(x, y) = 1, we have

(a) the fundamental solution is (x1, y1) = (k
6+6k4+9k2+2

2 , k5+4k3+3k
2 ).

(b) the set of all integer solutions is Ω = {(xn, yn)}, where
[
xn

yn

]

= Mn

[
1
0

]

for n ≥ 1 and

M =





k6+6k4+9k2+2
2

k7+8k5+19k3+12k
2

k5+4k3+3k
2

k6+6k4+9k2+2
2



 . (5)

(c) the integer solutions (xn, yn) satisfy the recurrence relations

xn = (k6 + 6k4 + 9k2 + 1)(xn−1 + xn−2)− xn−3

yn = (k6 + 6k4 + 9k2 + 1)(yn−1 + yn−2)− yn−3

for n ≥ 4.

(d) the nth integer solution (xn, yn) can be given by the aid of continued

fraction expansion, namely,

xn

yn
=









3; 1, 1, 1, 1, 6
︸ ︷︷ ︸

, 1, 1, 2

2n−1 times



 for k = 3






k;

k − 1

2
, 1, 1,

k − 1

2
, 2k

︸ ︷︷ ︸

, k−1
2 , 1, 1, k−1

2

2n−1 times







for k ≥ 5

for n ≥ 1.

(ii) For the negative Pell equation F∆(x, y) = −1, we have

(a) the fundamental solution is (x1, y1) = (k
3+3k
2 , k

2+1
2 ).

(b) the set of all integer solutions is Ω = {(x2n−1, y2n−1)}, where
[
x2n−1

y2n−1

]

= M2n−1

[
1
0

]

for n ≥ 1 and

M =

[
k3+3k

2
k4+5k2+4

2

k2+1
2

k3+3k
2

]

.
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(c) the integer solutions (x2n−1, y2n−1) satisfy the recurrence relations

x2n−1 = (k6 + 6k4 + 9k2 + 1)(x2n−3 + x2n−5)− x2n−7

y2n−1 = (k6 + 6k4 + 9k2 + 1)(y2n−3 + y2n−5)− y2n−7

for n ≥ 4.

(d) the (2n− 1)st integer solution (x2n−1, y2n−1) can be given by the aid

of continued fraction expansion, namely,

x2n−1

y2n−1
=









3; 1, 1, 1, 1, 6
︸ ︷︷ ︸

, 1, 1, 2

2n−2 times



 for k = 3






k;

k − 1

2
, 1, 1,

k − 1

2
, 2k

︸ ︷︷ ︸

, k−1
2 , 1, 1, k−1

2

2n−2 times







for k ≥ 5

for n ≥ 1.

Proof. (i)(a) It can be easily seen that (x1, y1) = (k
6+6k4+9k2+2

2 , k5+4k3+3k
2 ) is

the fundamental solution by (1) of Theorem 2.1.

(i)(b) We prove it by induction. Let n = 1. Then

[
x1

y1

]

=

[
k6+6k4+9k2+2

2
k5+4k3+3k

2

]

which is true. Assume that it is satisfied for n− 1, that is,

[
xn−1

yn−1

]

=

[
k6+6k4+9k2+2

2
k7+8k5+19k3+12k

2

k5+4k3+3k
2

k6+6k4+9k2+2
2

]n−1 [
1
0

]

.

Then

[
xn

yn

]

=

[
k6+6k4+9k2+2

2
k7+8k5+19k3+12k

2

k5+4k3+3k
2

k6+6k4+9k2+2
2

]n [
1
0

]

=

[
k6+6k4+9k2+2

2
k7+8k5+19k3+12k

2

k5+4k3+3k
2

k6+6k4+9k2+2
2

]

×
[

k6+6k4+9k2+2
2

k7+8k5+19k3+12k
2

k5+4k3+3k
2

k6+6k4+9k2+2
2

]n−1 [
1
0

]

=

[
k6+6k4+9k2+2

2
k7+8k5+19k3+12k

2

k5+4k3+3k
2

k6+6k4+9k2+2
2

][
xn−1

yn−1

]

=

[

(k
6+6k4+9k2+2

2 )xn−1 + (k
7+8k5+19k3+12k

2 )yn−1

(k
5+4k3+3k

2 )xn−1 + (k
6+6k4+9k2+2

2 )yn−1

]

.
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So

xn = (
k6 + 6k4 + 9k2 + 2

2
)xn−1 + (

k7 + 8k5 + 19k3 + 12k

2
)yn−1

and

yn = (
k5 + 4k3 + 3k

2
)xn−1 + (

k6 + 6k4 + 9k2 + 2

2
)yn−1.

Thus we conclude that

x2
n − dy2n =

[

(
k6 + 6k4 + 9k2 + 2

2
)xn−1 + (

k7 + 8k5 + 19k3 + 12k

2
)yn−1

]2

− (k2 + 4)

[

(
k5 + 4k3 + 3k

2
)xn−1 + (

k6 + 6k4 + 9k2 + 2

2
)yn−1

]2

= x2
n−1 − (k2 + 4)y2n−1

= 1.

So it is true for every n ≥ 1.

(i)(c) For x1 = k6+6k4+9k2+2
2 and y1 = k5+4k3+3k

2 , we set α = x1 + y1
√
d and

β = x1− y1
√
d. Then it is known that xn = αn+βn

2 and yn = αn−βn

2
√
d

. Hence we

deduce that

(k6 + 6k4 + 9k2 + 1)(xn−1 + xn−2)− xn−3

=(k6 + 6k4 + 9k2 + 1)(
αn−1 + βn−1

2
+

αn−2 + βn−2

2
)− αn−3 + βn−3

2

=
αn

2

[
(k6 + 6k4 + 9k2 + 1)α2 + (k6 + 6k4 + 9k2 + 1)α− 1

α3

]

+
βn

2

[
(k6 + 6k4 + 9k2 + 1)β2 + (k6 + 6k4 + 9k2 + 1)β − 1

β3

]

=
αn + βn

2
=xn

since (k6 + 6k4 + 9k2 + 1)α2 + (k6 + 6k4 + 9k2 + 1)α− 1 = α3 and (k6 + 6k4 +
9k2 + 1)β2 + (k6 + 6k4 + 9k2 + 1)β − 1 = β3. Similarly it can be shown that
yn = (k6 + 6k4 + 9k2 + 1)(yn−1 + yn−2) − yn−3 for n ≥ 4. The other cases can
be proved similarly.

In order to determine the set of all integer solutions (xn, yn) of F∆(x, y) = ±1,
we need the nth power of M defined in (5) which is given below.
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Theorem 3.2. The nth power of M defined in (5) is Mn =

[
R S
T U

]

, where

R =

n

2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di = U, S =

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di+1,

T =

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di

for even n ≥ 2 or

R =

n−1
2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di = U, S =

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di+1,

T =

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di

for odd n ≥ 1, where x1 = k6+6k4+9k2+2
2 and y1 = k5+4k3+3k

2 .

Proof. It can be proved by induction on n.

From Theorems 3.1 and 3.2, we deduce that

Theorem 3.3. Let k ≥ 3 be odd. Then the following statements hold:

(i) For x1 = k6+6k4+9k2+2
2 and y1 = k5+4k3+3k

2 , the set of all integer solutions

of F∆(x, y) = 1 is Ω = {(xn, yn)}, where

(xn, yn) =





n

2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di,

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di





for even n ≥ 2 or

(xn, yn) =





n−1
2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di,

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di





for odd n ≥ 1.

(ii) For x1 = k3+3k
2 and y1 = k2+1

2 , the set of all integer solutions of F∆(x, y) =
−1 is Ω = {(x2n−1, y2n−1)}, where

x2n−1 =

2n−1
2∑

i=0

(
2n− 1

2i

)

x2n−1−2i
1 y2i1 di and

y2n−1 =

2n−1
2∑

i=0

(
2n− 1

2i+ 1

)

x2n−2−2i
1 y2i+1

1 di
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for n ≥ 1.

3.2. k ≥ 2 Is Even

Theorem 3.4. Let k ≥ 2 be even. Then we have the following statements:

(i) For the positive Pell equation F∆(x, y) = 1, we have

(a) the fundamental solution is (x1, y1) = (k
2+2
2 , k

2 ).

(b) the set of all integer solutions is Ω = {(xn, yn)}, where
[
xn

yn

]

= Mn

[
1
0

]

for n ≥ 1 and

M =





k2+2
2

k3+4k
2

k
2

k2+2
2



 . (6)

(c) the integer solutions (xn, yn) satisfy the recurrence relations

xn = (k2 + 1)(xn−1 + xn−2)− xn−3

yn = (k2 + 1)(yn−1 + yn−2)− yn−3

for n ≥ 4.

(d) the nth integer solution (xn, yn) can be given by the aid of continued

fraction expansion, namely,

xn

yn
=









2; 1, 4
︸︷︷︸

, 1, 5

n−2 times



 for k = 2 and n ≥ 2






k;

k

2
, 2k

︸ ︷︷ ︸

, k
2

n−1 times







for k ≥ 4 and n ≥ 1.

(ii) The negative Pell equation F∆(x, y) = −1 has no integer solutions.

Proof. It can be proved as in the same way that Theorem 3.1 was proved.

The nth power of M defined in (6) is given below.
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Theorem 3.5. The nth power of M defined in (6) is Mn =

[
R S
T U

]

, where

R =

n

2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di = U, S =

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di+1,

T =

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di

for even n ≥ 2 or

R =

n−1
2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di = U, S =

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di+1,

T =

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di

for odd n ≥ 1, where x1 = k2+2
2 and y1 = k

2 .

Proof. It can be proved by induction on n.

From Theorems 3.4 and 3.5, we can give the following theorem.

Theorem 3.6. Let x1 = k2+2
2 and y1 = k

2 . Then the set of all integer solutions

of F∆(x, y) = 1 is Ω = {(xn, yn)}, where

(xn, yn) =





n

2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di,

n−2
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di





for even n ≥ 2 or

(xn, yn) =





n−1
2∑

i=0

(
n

2i

)

xn−2i
1 y2i1 di,

n−1
2∑

i=0

(
n

2i+ 1

)

xn−1−2i
1 y2i+1

1 di





for odd n ≥ 1.

Remark 3.7. Here one may wonder why we only consider the case ∆ = 4d. In
fact, when we consider the case ∆ = 1 + 4d, we see that there is no a gen-
eral formula, indeed, for the fundamental solutions of the positive Pell equa-
tion F∆(x, y) = x2 + xy − dy2 = 1, we have (x1, y1) = (22, 7) is the funda-
mental solution for k = 3, (x1, y1) = (5, 1) is the fundamental solution for
k = 5, (x1, y1) = (34, 5) is the fundamental solution for k = 7, (x1, y1) = (131, 15)
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is the fundamental solution for k = 9, (x1, y1) = (38, 3) is the fundamental solu-
tion for k = 13, (x1, y1) = (571, 39) is the fundamental solution for k = 15 and
(x1, y1) = (133, 8) is the fundamental solution for k = 17.

4. The Pell Equation F∆(x, y) = ±k2

In this section we consider the set of all (positive) integer solutions of

F∆(x, y) = ±k2. (7)

Now let ∆ be a non-square discriminant. The ∆-order O∆ is defined to be

the ring O∆ = {x+ yρ∆ : x, y ∈ Z}, where ρ∆ =
√

∆
4 if ∆ ≡ 0(mod 4) or 1+

√
∆

2

if ∆ ≡ 1(mod 4). So O∆ is a subring of Q(
√
∆) ={x + y

√
∆ : x, y ∈ Q}. The

unit group Ou
∆ is defined to be the group of units of the ring O∆.

Let F = (a, b, c) be an indefinite integral quadratic form of discriminant

∆ = b2 − 4ac. Then we can rewrite F (x, y) = ((xa+ y b+
√
∆

2 )(xa+ y b−
√
∆

2 ))/a.

So the module MF of F is MF = {xa+ y b+
√
∆

2 : x, y ∈ Z} ⊂ Q(
√
∆). Therefore

we get (u+ vρ∆)(xa+ y b+
√
∆

2 ) = x′a+ y′ b+
√
∆

2 , where

[x′ y′] =







[x y]

[
u− b

2v av
−cv u+ b

2v

]

if ∆ ≡ 0(mod 4),

[x y]

[
u+ 1−b

2 v av
−cv u+ 1+b

2 v

]

if ∆ ≡ 1(mod 4).

(8)

Let m be any integer and let Ω denote the set of all integer solutions of F (x, y) =
m, that is, Ω = {(x, y) : F (x, y) = m}. Then there is a bijection Ψ : Ω → {γ ∈
MF : N(γ) = am}. The action of Ou

∆,1 = {α ∈ Ou
∆ : N(α) = 1} on the set Ω is

most interesting when ∆ is a positive non-square since Ou
∆,1 is infinite. Therefore

the orbit of each solution will be infinite and so the set Ω is either empty or
infinite. Since Ou

∆,1 can be explicitly determined, the set Ω is satisfactorily
described by the representation of such a list, called a set of representatives of the
orbits. Let ε∆ be the smallest unit of O∆ that is grater than 1 and let τ∆ = ε∆
if N(ε∆) = 1 or ε2∆ if N(ε∆) = −1. Then every Ou

∆,1 orbit of integral solutions
of F (x, y) = m contains a solution (x, y) ∈ Z × Z such that 0 ≤ y ≤ U , where

U =
∣
∣amτ∆

∆

∣
∣
1
2 (1− 1

τ∆
) if am > 0 or U =

∣
∣amτ∆

∆

∣
∣
1
2 (1+ 1

τ∆
) if am < 0. So for finding

a set of representatives of the Ou
∆,1 orbits of integral solutions of F (x, y) = m, we

must find for each integer y0 in the range 0 ≤ y0 ≤ U , whether ∆y20 + 4am is a
perfect square or not since ax2

0+bx0y0+cy20 = m ⇔ ∆y20+4am = (2ax0+by0)
2.

If ∆y20 +4am is a perfect square, then x0 =
−by0±

√
∆y2

0+4am

2a . So there is a set of
representatives Rep = {[x0 y0]}. Thus for the matrixM derived from (8), the set
of all integer solutions of F (x, y) = m is Ω = {±(x, y) : [x y] = [x0 y0]M

n, n ∈
Z}. If ∆y20 + 4am is not a perfect square, then there are no integer solutions.
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4.1. k ≥ 3 Is Odd

Theorem 4.1. Let k ≥ 3 be odd. Then we have the following statements:

(i) For the positive Pell equation F∆(x, y) = k2,

(a) If k ≥ 3 is not a perfect square and #Rep = 4, then the set of repre-

sentatives is Rep = {[±x∗
0 0], [±x∗

1 y∗1 ]}, where

x∗
0 = k, x∗

1 =
k4 − 2k3 + 5k2 − 6k + 4

2
and (9)

y∗1 =
k3 − 2k2 + 3k − 2

2

and the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n−1,
y3n−1), (x3n, y3n)}, where

(x3n+1, y3n+1) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0,

(x3n−1, y3n−1) = (x∗
1R− y∗1S, x

∗
1T − y∗1U) for n ≥ 1,

(x3n, y3n) = (x∗
0R, x∗

0T ) for n ≥ 1.

(b) If k ≥ 9 is a perfect square, say k = t2 for some integer t ≥ 1 and

#Rep = 6, then the set of representatives is

Rep = {[±x∗
0 0], [±x∗∗

1 y∗∗1 ], [±x∗
1 y∗1 ]},

where x∗
0, x

∗
1, y

∗
1 is defined in (9), x∗∗

1 = t5−t3+2t
2 , y∗∗1 = t3−t

2 and

the set of all integer solutions is Ω = {(x5n+1, y5n+1), (x5n+2, y5n+2),
(x5n−2, y5n−2), (x5n−1, y5n−1), (x5n, y5n)}, where

(x5n+1, y5n+1) = (x∗∗
1 R+ y∗∗1 S, x∗∗

1 T + y∗∗1 U) for n ≥ 0,

(x5n+2, y5n+2) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0,

(x5n−2, y5n−2) = (x∗
1R− y∗1S, x

∗
1T − y∗1U) for n ≥ 1,

(x5n−1, y5n−1) = (x∗∗
1 R− y∗∗1 S, x∗∗

1 T − y∗∗1 U) for n ≥ 1,

(x5n, y5n) = (x∗
0R, x∗

0T ) for n ≥ 1.

(ii) For the negative Pell equation F∆(x, y) = −k2,

(a) If k ≥ 3 is not a perfect square and #Rep = 4, then the set of repre-

sentatives is Rep = {[±x∗
0 1], [±x∗

1 y∗1 ]}, where

x∗
0 = 2, x∗

1 =
k4 + 3k2

2
, y∗1 =

k3 + k

2
, (10)

and the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n+2,
y3n+2), (x3n, y3n)}, where

(x3n+1, y3n+1) = (x∗
0R+ S, x∗

0T + U) for n ≥ 0,

(x3n+2, y3n+2) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0,

(x3n, y3n) = (−x∗
0R+ S,−x∗

0T + U) for n ≥ 1.
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(b) If k ≥ 9 is a perfect square, say k = t2 for some integer t ≥ 1 and

#Rep = 6, then the set of representatives is

Rep = {[±x∗
0 1], [±x∗∗

1 y∗∗1 ], [±x∗
1 y∗1 ]},

where x∗
0, x

∗
1, y

∗
1 is defined in (10), x∗∗

1 = t5+t3+2t
2 , y∗∗1 = t3+t

2 and

the set of all integer solutions is Ω = {(x5n+1, y5n+1), (x5n+2, y5n+2),
(x5n+3, y5n+3), (x5n−1, y5n−1), (x5n, y5n)}, where

(x5n+1, y5n+1) = (x∗
0R+ S, x∗

0T + U) for n ≥ 0

(x5n+2, y5n+2) = (x∗∗
1 R+ y∗∗1 S, x∗∗

1 T + y∗∗1 U) for n ≥ 0

(x5n+3, y5n+3) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x5n−1, y5n−1) = (−x∗∗
1 R + y∗∗1 S,−x∗∗

1 T + y∗∗1 U) for n ≥ 1

(x5n, y5n) = (−x∗
0R + S,−x∗

0T + U) for n ≥ 1.

In all cases R,S, T, U is defined in Theorem 3.2.

Proof. (i)(a) For the positive Pell equation F∆(x, y) = k2, we have F = (1, 0,−d)
of discriminant ∆ = 4d. Since the fundamental solution is (x1, y1) = ((k6+6k4+

9k2 + 2)/2, (k5 + 4k3 + 3k)/2), we get τ∆ = k6+6k4+9k2+2+(k5+4k3+3k)
√
k2+4

2 . In
this case, the set of representatives is Rep = {[±x∗

0 0], [±x∗
1 y∗1 ]}, where

x∗
0 = k, x∗

1 =
k4 − 2k3 + 5k2 − 6k + 4

2
and y∗1 =

k3 − 2k2 + 3k − 2

2
.

Here [x∗
0 0]Hn generates all integer solutions (x3n, y3n) for n ≥ 1, [x∗

1 y∗1 ]H
n

generates all integer solutions (x3n+1, y3n+1) for n ≥ 0 and [x∗
1 −y∗1 ]H

n generates
all integer solutions (x3n−1, y3n−1) for n ≥ 1, where

H =





k6+6k4+9k2+2
2

k5+4k3+3k
2

k7+8k5+19k3+12k
2

k6+6k4+9k2+2
2





which is the transpose of M defined in (5). Thus the set of all integer solutions
of F∆(x, y) = k2 is Ω = {(x3n+1, y3n+1), (x3n−1, y3n−1), (x3n, y3n)}, where

(x3n+1, y3n+1) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x3n−1, y3n−1) = (x∗
1R− y∗1S, x

∗
1T − y∗1U) for n ≥ 1

(x3n, y3n) = (x∗
0R, x∗

0T ) for n ≥ 1.

Indeed, we only prove (x3n+1, y3n+1) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0. Let

n ≥ 0 be even. For n = 0, we have R = 1, S = 0, T = 0 and U = 1. So (x1, y1) =
(x∗

1, y
∗
1) and hence

x2
1 − dy21 = (

k4 − 2k3 + 5k2 − 6k + 4

2
)2 − (k2 + 4)(

k3 − 2k2 + 3k − 2

2
)2 = 1.
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So it is true for n = 0. Assume that it is satisfied for n − 2, that is, x3n−5 =
x∗
1R+ y∗1S and y3n−5 = x∗

1T + y∗1U, where

R =

n−2
2∑

i=0

(
n− 2

2i

)

xn−2−2i
1 y2i1 di = U, S =

n−4
2∑

i=0

(
n− 2

2i+ 1

)

xn−3−2i
1 y2i+1

1 di+1,

T =

n−4
2∑

i=0

(
n− 2

2i+ 1

)

xn−3−2i
1 y2i+1

1 di.

Then x3n+1 = x3n−5(R
2 + TS) + y3n−5(SR + US) and y3n+1 = x3n−5(RT +

TU) + y3n−5(ST + U2) and clearly,

x2
3n+1 − dy23n+1 = [x3n−5(R

2 + TS) + y3n−5(SR+ US)]2

− d[x3n−5(RT + TU) + y3n−5(ST + U2)]2

= x2
3n−5[(R

2 + TS)2 − d(RT + TU)2]

+ 2x3n−5y3n−5[(R
2 + TS)(SR+ US)

− d(RT + TU)(ST + U2)]

+ y23n−5[(SR+ US)2 − d(ST + U2)2]

= x2
3n−5 − dy23n−5

= k2

since (R2+TS)2−d(RT +TU)2 = 1, (R2+TS)(SR+US)−d(RT+TU)(ST +
U2) = 0 and (SR + US)2 − d(ST + U2)2 = −d. The other cases can be proved
similarly.

4.2. k ≥ 2 Is Even

Theorem 4.2. Let k ≥ 2 be even. Then we have the following statements:

(i) For the positive Pell equation F∆(x, y) = k2,

(a) If k = 2, then the set of representatives is Rep = {[±2 0]} and the

set of all integer solutions is Ω = {(xn, yn)}, where xn = 2Cn and

yn = 2Bn for n ≥ 1 (Here Bn is the nth balancing number and Cn is

the nth Lucas-balancing number).

(b) If k = 4, then the set of representatives is Rep = {[±4 0], [±6 1]} and

the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n−1, y3n−1),
(x3n, y3n)}, where

(x3n+1, y3n+1) = (6R+ S, 6T + U) for n ≥ 0

(x3n−1, y3n−1) = (6R− S, 6T − U) for n ≥ 1

(x3n, y3n) = (4R, 4T ) for n ≥ 1.
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(c) If k ≥ 6 is not a perfect square and #Rep = 4, then the set of repre-

sentatives is Rep = {[±x∗
0 0], [±x∗

1 y∗1 ]}, where

x∗
0 = k, x∗

1 =
k2 − 2k + 4

2
, y∗1 =

k − 2

2
, (11)

and the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n−1,
y3n−1), (x3n, y3n)}, where

(x3n+1, y3n+1) = (x∗
1R + y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x3n−1, y3n−1) = (x∗
1R − y∗1S, x

∗
1T − y∗1U) for n ≥ 1

(x3n, y3n) = (x∗
0R, x∗

0T ) for n ≥ 1.

(d) If k ≥ 16 is a perfect square, say k = t2 for some integer t ≥ 1 and

#Rep = 6, then the set of representatives is

Rep = {[±x∗
0 0], [±x∗∗

1 y∗∗1 ], [±x∗
1 y∗1 ]},

where x∗
0, x

∗
1, y

∗
1 is defined in (11), x∗∗

1 = t3+2t
2 , y∗∗1 = t

2 , and the set

of all integer solutions is Ω = {(x5n+1, y5n+1), (x5n+2, y5n+2), (x5n−2,
y5n−2), (x5n−1, y5n−1), (x5n, y5n)}, where

(x5n+1, y5n+1) = (x∗∗
1 R + y∗∗1 S, x∗∗

1 T + y∗∗1 U) for n ≥ 0

(x5n+2, y5n+2) = (x∗
1R + y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x5n−2, y5n−2) = (x∗
1R − y∗1S, x

∗
1T − y∗1U) for n ≥ 1

(x5n−1, y5n−1) = (x∗∗
1 R − y∗∗1 S, x∗∗

1 T − y∗∗1 U) for n ≥ 1

(x5n, y5n) = (x∗
0R, x∗

0T ) for n ≥ 1.

(ii) For the negative Pell equation F∆(x, y) = −k2,

(a) If k = 2, then the set of representatives is Rep = {[±2 1]}, and the

set of all integer solutions is Ω = {(xn, yn)}, where xn = 2cn and

yn = P2n−1 for n ≥ 1 (Here cn is the nth Lucas-cobalancing number

and Pn is the nth Pell number).

(b) If k = 4, then the set of representatives is Rep = {[±2 1], [±8 2]},
and the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n+2,
y3n+2), (x3n, y3n)}, where

(x3n+1, y3n+1) = (2R+ S, 2T + U) for n ≥ 0

(x3n+2, y3n+2) = (8R+ 2S, 8T + 2U) for n ≥ 0

(x3n, y3n) = (−2R+ S,−2T + U) for n ≥ 1.

(c) If k ≥ 6 is not a perfect square and #Rep = 4, then the set of repre-

sentatives is Rep = {[±x∗
0 1], [±x∗

1 y∗1 ]}, where

x∗
0 = 2, x∗

1 =
k2

2
, y∗1 =

k

2
, (12)
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and the set of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n+2,
y3n+2), (x3n, y3n)}, where

(x3n+1, y3n+1) = (x∗
0R+ S, x∗

0T + U) for n ≥ 0

(x3n+2, y3n+2) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x3n, y3n) = (−x∗
0R+ S,−x∗

0T + U) for n ≥ 1.

(d) If k ≥ 16 is a perfect square, say k = t2 for some integer t ≥ 1 and

#Rep = 6, then the set of representatives is

Rep = {[±x∗
0 1], [±x∗∗

1 y∗∗1 ], [±x∗
1 y∗1 ]},

where x∗
0, x

∗
1, y

∗
1 is defined in (12), x∗∗

1 = t3−2t
2 , y∗∗1 = t

2 and the set

of all integer solutions is Ω = {(x5n+1, y5n+1), (x5n+2, y5n+2), (x5n+3,
y5n+3), (x5n−1, y5n−1), (x5n, y5n)}, where

(x5n+1, y5n+1) = (x∗
0R+ S, x∗

0T + U) for n ≥ 0

(x5n+2, y5n+2) = (x∗∗
1 R+ y∗∗1 S, x∗∗

1 T + y∗∗1 U) for n ≥ 0

(x5n+3, y5n+3) = (x∗
1R+ y∗1S, x

∗
1T + y∗1U) for n ≥ 0

(x5n−1, y5n−1) = (−x∗∗
1 R + y∗∗1 S,−x∗∗

1 T + y∗∗1 U) for n ≥ 1

(x5n, y5n) = (−x∗
0R + S,−x∗

0T + U) for n ≥ 1.

In all cases R,S, T, U is defined in Theorem 3.5.

Proof. (i)(a) Let k = 2. The the set of representatives is Rep = {[±2 0]} for
the Pell equation x2 − 8y2 = 4. Here [2 0]Mn generates all integer solutions

(xn, yn) for n ≥ 1 and M =

[
3 1
8 3

]

.

Behera and Panda [2] introduced balancing numbers n ∈ Z+ as solutions of
the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (13)

for some positive integer r which is called balancer. If n is a balancing number
with balancer r, then from (13) one has

r =
−2n− 1 +

√
8n2 + 1

2
. (14)

Let Bn denote the nth balancing number. Then from (14), we note that Bn is
a balancing number if and only if 8B2

n + 1 is a perfect square. Thus
√

8B2
n + 1

is an integer which is called nth Lucas-balancing number and is denoted by Cn,
that is, Cn =

√

8B2
n + 1 (for further details see also [8, 9, 10, 12]). It can be

easily seen that the nth power of M =

[
3 1
8 3

]

is Mn =

[
Cn Bn

8Bn Cn

]

. Thus the
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set of all integer solutions is Ω = {(xn, yn)}, where xn = 2Cn and yn = 2Bn for
n ≥ 1.

(i)(b) If k = 4, then the set of representatives is Rep = {[±4 0], [±6 1]} and

M =

[
9 2
40 9

]

. In this case [4 0]Mn generates all integer solutions (x3n, y3n)

for n ≥ 1, [6 1]Mn generates all integer solutions (x3n+1, y3n+1) for n ≥ 0 and
[6 − 1]Mn generates all integer solutions (x3n−1, y3n−1) for n ≥ 1. So the set
of all integer solutions is Ω = {(x3n+1, y3n+1), (x3n−1, y3n−1), (x3n, y3n)}, where
(x3n+1, y3n+1) = (6R+S, 6T +U) for n ≥ 0, (x3n−1, y3n−1) = (6R−S, 6T −U)
for n ≥ 1 and (x3n, y3n) = (4R, 4T ) for n ≥ 1. The other two cases can be proved
similarly.

(ii)(a) Let k = 2. The the set of representatives is Rep = {[±2 1]} and

M =

[
3 1
8 3

]

. Here [−2 1]Mn generates all integer solutions (xn, yn) for n ≥ 1.

Panda and Ray [11] defined that a positive integer n is called a cobalancing
number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (15)

holds for some positive integer r which is called cobalancer corresponding to n.
If n is a cobalancing number with cobalancer r, then from (15), we get

r =
−2n− 1 +

√
8n2 + 8n+ 1

2
. (16)

Let bn denote the nth cobalancing number. Then from (16), bn is a cobalancing
number if and only if 8b2n + 8bn + 1 is a perfect square. Thus

√

8b2n + 8bn + 1 is
an integer which is called nth Lucas-cobalancing number and is denoted by cn,
that is, cn =

√

8b2n + 8bn + 1. Recall that Pell numbers are the numbers given
by P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2 for n ≥ 2. Since

[−2 1]

[
Cn Bn

8Bn Cn

]

= [−2Cn + 8Bn − 2Bn + Cn]

and since −Cn + 4Bn = cn and −2Bn + Cn = P2n−1, the set of all integer
solutions is Ω = {(xn, yn)}, where xn = 2cn and yn = P2n−1 for n ≥ 1.

(ii)(b) Let k = 4. Then the set of representatives is Rep = {[±2 1], [±8 2]}
and M =

[
9 2
40 9

]

. Here [2 1]Mn generates all integer solutions (x3n+1, y3n+1)

for n ≥ 0, [−2 1]Mn generates all integer solutions (x3n, y3n) for n ≥ 1 and
[8 2]Mn generates all integer solutions (x3n+2, y3n+2) for n ≥ 0 ([−8 2]Mn

generates all integer solutions (x3n−1, y3n−1) for n ≥ 1). Thus the set of
all integer solutions is Ω = {(x3n+1, y3n+1), (x3n+2, y3n+2), (x3n, y3n)}, where
(x3n+1, y3n+1) = (2R+S, 2T+U) for n ≥ 0, (x3n+2, y3n+2) = (8R+2S, 8T+2U)
for n ≥ 0 and (x3n, y3n) = (−2R+S,−2T+U) for n ≥ 1. The others are similar.
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[16] A. Tekcan and Ş. Kutlu, Base points, bases and positive definite forms, Asian-Eur
J. Math. 11 (2) (2018), 1850017-1/1850017-18.


