# The Set of Automorphisms of Pell Forms and Pell Equations 

Ahmet Tekcan* and Gülşah Biberoğlu<br>Bursa Uludag University, Faculty of Science, Department of Mathematics, Görükle, Bursa, Turkey<br>Email: tekcan@uludag.edu.tr; 502111004@ogr.uludag.edu.tr

Received 27 October 2021
Accepted 9 January 2022
Communicated by Ngai-Ching Wong
Dedicated to the memory of Professor Ky Fan (1914-2010)

AMS Mathematics Subject Classification(2020): 11E18, 11E25, 11D09, 11D45


#### Abstract

Let $d=k^{2}+4$ for some integer $k \geq 2$. In this work, we first determined the set of automorphisms of the Pell form $F_{\Delta}(x, y)=x^{2}-d y^{2}$ of discriminant $\Delta=4 d$. Later, we deduced the set of all integer solutions of the Pell equations $F_{\Delta}(x, y)= \pm 1$ and $F_{\Delta}(x, y)= \pm k^{2}$.


Keywords: Quadratic form; Pell form; Automorphism; Pell equation.

## 1. Introduction

A real binary quadratic form $F$ is a polynomial in two variables $x$ and $y$ of the type

$$
F=F(x, y)=a x^{2}+b x y+c y^{2}
$$

with real coefficients $a, b, c$. We denote $F$ briefly by $F=(a, b, c)$. The discriminant of $F$ is defined by the formula $b^{2}-4 a c$ and is denoted by $\Delta=\Delta(F)$. $F$ is an integral form if and only if $a, b, c \in \mathbb{Z} ; F$ is primitive if and only if $\operatorname{gcd}(a, b, c)=1 ; F$ is indefinite if $\Delta>0$ and $F$ is positive definite if and only if $a, c>0$ and $\Delta<0$.

[^0]Let $\operatorname{GL}(2, \mathbb{Z})$ be the multiplicative group of $2 \times 2$ matrices $g=\left[\begin{array}{ll}r & s \\ t & u\end{array}\right]$ such that $r, s, t, u \in \mathbb{Z}$ and $\operatorname{det}(g)= \pm 1$. Gauss defined the group action of $\operatorname{GL}(2, \mathbb{Z})$ on the set of forms as

$$
\begin{equation*}
g F(x, y)=F(r x+t y, s x+u y) \tag{1}
\end{equation*}
$$

for some $g=\left[\begin{array}{ll}r & s \\ t & u\end{array}\right] \in \mathrm{GL}(2, \mathbb{Z})$. If there exists a $g \in \mathrm{GL}(2, \mathbb{Z})$ such that $g F=G$, then $F$ and $G$ are called equivalent. If $\operatorname{det}(g)=1$, then $F$ and $G$ are called properly equivalent and if $\operatorname{det}(g)=-1$, then $F$ and $G$ are called improperly equivalent. An element $g \in \mathrm{GL}(2, \mathbb{Z})$ is called an automorphism of $F$ if $g F=F$. If $\operatorname{det}(g)=1$, then $g$ is called a proper automorphism of $F$ and if $\operatorname{det}(g)=-1$, then $g$ is called an improper automorphism of $F$. The set of proper automorphisms of $F$ is denoted by $A u t^{+}(F)$ and the set of improper automorphisms of $F$ is denoted by $A u t^{-}(F)$. We also set $A u t^{*}(F)=\{g \in \mathrm{GL}(2, \mathbb{Z}): g F=-F$, $\operatorname{det}(g)=-1\}$ (for further details see $[3,4,5]$ ).

## 2. Automorphisms of Pell Forms

In [13], the first author derived some new results on the proper cycles of indefinite forms and their right neighbors. In [14], the first author considered the cycles of indefinite quadratic forms and cycles of ideals, in [15], the first author considered the indefinite quadratic forms and Pell equations involving quadratic ideals and in [16], the first author derived some new results on base points, bases and positive definite forms.

In the present paper, we consider the set of automorphisms of Pell forms. Recall that a Pell form is the form

$$
F_{\Delta}(x, y)= \begin{cases}x^{2}-\frac{\Delta}{4} y^{2} & \text { if } \Delta \equiv 0(\bmod 4)  \tag{2}\\ x^{2}+x y-\frac{\Delta-1}{4} y^{2} & \text { if } \Delta \equiv 1(\bmod 4)\end{cases}
$$

for a non-zero discriminant $\Delta$. So the Pell equation is the equation $F_{\Delta}(x, y)=$ $\pm 1 . F_{\Delta}(x, y)=1$ is called the positive Pell equation and $F_{\Delta}(x, y)=-1$ is called the negative Pell equation. Let $\operatorname{Pell}(\Delta)=\left\{(x, y) \in \mathbb{Z}^{2}: F_{\Delta}(x, y)=1\right\}$ and $\operatorname{Pell}^{ \pm}(\Delta)=\left\{(x, y) \in \mathbb{Z}^{2}: F_{\Delta}(x, y)= \pm 1\right\}$. Then for any $(x, y) \in \operatorname{Pell}^{ \pm}(\Delta)$, we set

$$
g_{F}(x, y)= \begin{cases}{\left[\begin{array}{cc}
x-\frac{b}{2} y & a y \\
-c y & x-\frac{b}{2} y
\end{array}\right]} & \text { if } \Delta \equiv 0(\bmod 4)  \tag{3}\\
{\left[\begin{array}{cc}
x+\frac{1-b}{2} y & a y \\
-c y & x+\frac{1+b}{2} y
\end{array}\right]} & \text { if } \Delta \equiv 1(\bmod 4)\end{cases}
$$

Then $\operatorname{det}\left(g_{F}(x, y)\right)=F_{\Delta}(x, y), g_{F}: \operatorname{Pell}^{ \pm}(\Delta) \rightarrow \mathrm{GL}(2, \mathbb{Z})$ is a group homomorphism and $g_{F}(x, y)$ is a proper automorphism of $F$ for all $(x, y) \in \operatorname{Pell}(\Delta)$. If $F$ is primitive, then $g_{F}: \operatorname{Pell}^{ \pm}(\Delta) \rightarrow A u t^{+}(F)$ is a group isomorphism.

Now let $d=k^{2}+4$ for some integer $k \geq 1$ and let $\Delta=4 d$. Then from (2), we get the Pell form

$$
\begin{equation*}
F_{\Delta}(x, y)=x^{2}-d y^{2} \tag{4}
\end{equation*}
$$

For the set of automorphisms of (4), we can give the following theorem.

Theorem 2.1. Let $F_{\Delta}$ be the Pell form defined in (4). Then we have the following statements:
(i) If $k \geq 3$ is odd, then

$$
\begin{aligned}
A u t^{+}\left(F_{\Delta}\right) & =\left\{ \pm\left(g_{F}^{+}\right)^{t}: t \in \mathbb{Z}\right\}, A u t^{-}\left(F_{\Delta}\right)=\left\{ \pm g_{F}^{-}\left(g_{F}^{+}\right)^{t}: t \in \mathbb{Z}\right\} \text { and } \\
A u t^{*}\left(F_{\Delta}\right) & =\left\{ \pm\left(g_{F}^{*}\right)^{2 t-1}: t \in \mathbb{Z}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& g_{F}^{+}=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{5}+4 k^{3}+3 k}{2} \\
\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right], \\
& g_{F}^{-}=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{5}+4 k^{3}+3 k}{2} \\
-\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} & -\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right], \\
& g_{F}^{*}=\left[\begin{array}{cc}
\frac{k^{3}+3 k}{2} & \frac{k^{2}+1}{2} \\
\frac{k^{4}+5 k^{2}+4}{2} & \frac{k^{3}+3 k}{2}
\end{array}\right] .
\end{aligned}
$$

(ii) If $k \geq 2$ is even, then

$$
\begin{aligned}
\text { Aut }^{+}\left(F_{\Delta}\right) & =\left\{ \pm\left(g_{F}^{+}\right)^{t}: t \in \mathbb{Z}\right\}, A u t^{-}\left(F_{\Delta}\right)=\left\{ \pm g_{F}^{-}\left(g_{F}^{+}\right)^{t}: t \in \mathbb{Z}\right\} \text { and } \\
\text { Aut }^{*}\left(F_{\Delta}\right) & =\{ \}
\end{aligned}
$$

where

$$
g_{F}^{+}=\left[\begin{array}{cc}
\frac{k^{2}+2}{2} & \frac{k}{2} \\
\frac{k^{3}+4 k}{2} & \frac{k^{2}+2}{2}
\end{array}\right] \text { and } g_{F}^{-}=\left[\begin{array}{cc}
\frac{k^{2}+2}{2} & \frac{k}{2} \\
-\frac{k^{3}+4 k}{2} & -\frac{k^{2}+2}{2}
\end{array}\right] \text {. }
$$

Proof. It is known that (see [7, Corollary 5.7]), if $d>0$ is not a perfect square and $\sqrt{d}$ has continued fraction expansion $\left[a_{0}, \overline{a_{1}, a_{2}, \cdots, a_{l}}\right]$ of period length $l$, then the fundamental solution of $x^{2}-d y^{2}=1$ is given by $\left(x_{1}, y_{1}\right)=\left(A_{l-1}, B_{l-1}\right)$ if $l$ is even or $\left(A_{2 l-1}, B_{2 l-1}\right)$ if $l$ is odd. Moreover if $l$ is odd, then the fundamental solution of $x^{2}-d y^{2}=-1$ is given by $\left(x_{1}, y_{1}\right)=\left(A_{l-1}, B_{l-1}\right)$, where $A_{-2}=$ $0, A_{-1}=1, A_{k}=a_{k} A_{k-1}+A_{k-2}$ and $B_{-2}=1, B_{-1}=0, B_{k}=a_{k} B_{k-1}+B_{k-2}$.
(i) Let $k \geq 3$ be an odd integer. Then it is easily seen that the continued fraction expansion of $\sqrt{d}$ is

$$
\sqrt{k^{2}+4}=k+\left(\sqrt{k^{2}+4}-k\right)=k+\frac{1}{\frac{k-1}{2}+\frac{1}{1+\frac{1}{1+\frac{k-1}{\frac{1}{2}+\frac{1}{2 k+\left(\sqrt{k^{2}+4}-k\right)}}}}} .
$$

So $\sqrt{d}=\left[k ; \overline{\frac{k-1}{2}, 1,1, \frac{k-1}{2}, 2 k}\right]$ with period length 5 and hence the fundamental solution of $F_{\Delta}(x, y)=1$ is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}, \frac{k^{5}+4 k^{3}+3 k}{2}\right)$. Thus from (3), we deduce that

$$
g_{F}^{+}=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{5}+4 k^{3}+3 k}{2} \\
\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]
$$

is a proper automorphism of $F_{\Delta}$. Since $\operatorname{det}\left(g_{F}^{-} g_{F}^{+}\right)=-1$ and $g_{F}^{-} g_{F}^{+} F_{\Delta}=F_{\Delta}$, $g_{F}^{-} g_{F}^{+}$is an improper automorphism of $F_{\Delta}$, that is, $g_{F}^{-} g_{F}^{+} \in A u t^{-}\left(F_{\Delta}\right)$ for

$$
g_{F}^{-}=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{5}+4 k^{3}+3 k}{2} \\
-\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} & -\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right] .
$$

For any $t \in \mathbb{Z}, g_{F}^{-}\left(g_{F}^{+}\right)^{t}$ is also an improper automorphisms of $F_{\Delta}$. Since the fundamental solution of $F_{\Delta}(x, y)=-1$ is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{3}+3 k}{2}, \frac{k^{2}+1}{2}\right)$, we get

$$
g_{F}^{*}=\left[\begin{array}{cc}
\frac{k^{3}+3 k}{2} & \frac{k^{2}+1}{2} \\
\frac{k^{4}+5 k^{2}+4}{2} & \frac{k^{3}+3 k}{2}
\end{array}\right]
$$

with $\operatorname{det}\left(g_{F}^{*}\right)=-1$ and $g_{F}^{*} F_{\Delta}=-F_{\Delta}$. So $g_{F}^{*} \in A u t^{*}\left(F_{\Delta}\right)$. Since $\left(g_{F}^{*}\right)^{2}=g_{F}^{+}$, even powers of $g_{F}^{*}$ are the proper automorphisms of $F_{\Delta}$. Therefore $A u t^{*}\left(F_{\Delta}\right)=$ $\left\{ \pm\left(g_{F}^{*}\right)^{2 t-1}: t \in \mathbb{Z}\right\}$.
(i) Let $k \geq 2$ be an even integer. Then $\sqrt{d}=\left[k ; \overline{\frac{k}{2}, 2 k}\right]$. So the fundamental solution of $F_{\Delta}(x, y)=1$ is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{2}+2}{2}, \frac{k}{2}\right)$. Thus

$$
g_{F}^{+}=\left[\begin{array}{cc}
\frac{k^{2}+2}{2} & \frac{k}{2} \\
\frac{k^{3}+4 k}{2} & \frac{k^{2}+2}{2}
\end{array}\right]
$$

is a proper automorphism of $F_{\Delta}$. For

$$
g_{F}^{-}=\left[\begin{array}{cc}
\frac{k^{2}+2}{2} & \frac{k}{2} \\
-\frac{k^{3}+4 k}{2} & -\frac{k^{2}+2}{2}
\end{array}\right],
$$

we get $\operatorname{det}\left(g_{F}^{-} g_{F}^{+}\right)=-1$ and since $g_{F}^{-} g_{F}^{+} F_{\Delta}=F_{\Delta}, g_{F}^{-} g_{F}^{+}$is an improper automorphism of $F_{\Delta}$, that is, $g_{F}^{-} g_{F}^{+} \in A u t^{-}\left(F_{\Delta}\right)$. Since the period length is 2 which is an even number, $F_{\Delta}(x, y)=-1$ has no integer solutions. Therefore there is no a matrix $g_{F}^{*}$ with $\operatorname{det}\left(g_{F}^{*}\right)=-1$ such that $g_{F}^{*} F_{\Delta}=-F_{\Delta}$. Consequently $A u t^{*}\left(F_{\Delta}\right)=\{ \}$.

## 3. The Pell Equation $F_{\Delta}(x, y)= \pm 1$

Let $F_{\Delta}$ be the Pell form defined in (4). In this section, we consider the set of all (positive) integer solutions of the Pell equation (see $[1,6,7]$ )

$$
F_{\Delta}(x, y)= \pm 1
$$

in two cases: $k \geq 3$ is odd or $k \geq 2$ is even.

## 3.1. $k \geq 3$ Is Odd

Theorem 3.1. Let $k \geq 3$ be odd. Then we have the following statements:
(i) For the positive Pell equation $F_{\Delta}(x, y)=1$, we have
(a) the fundamental solution is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}, \frac{k^{5}+4 k^{3}+3 k}{2}\right)$.
(b) the set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=M^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

for $n \geq 1$ and

$$
M=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2}  \tag{5}\\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right] .
$$

(c) the integer solutions $\left(x_{n}, y_{n}\right)$ satisfy the recurrence relations

$$
\begin{aligned}
& x_{n}=\left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(x_{n-1}+x_{n-2}\right)-x_{n-3} \\
& y_{n}=\left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(y_{n-1}+y_{n-2}\right)-y_{n-3}
\end{aligned}
$$

for $n \geq 4$.
(d) the $n^{\text {th }}$ integer solution $\left(x_{n}, y_{n}\right)$ can be given by the aid of continued fraction expansion, namely,

$$
x_{n}= \begin{cases}{[3 ; \underbrace{y_{n}}_{2 n-1 \text { times }}=\left\{\begin{array}{ll}
{[1,1,1,6,1,1,2]} & \text { for } k=3 \\
{[k ; \underbrace{\frac{k-1}{2}, 1,1, \frac{k-1}{2}, 2 k}_{2 n-1 \text { times }}, \frac{k-1}{2}, 1,1, \frac{k-1}{2}]} & \text { for } k \geq 5
\end{array}\right]}\end{cases}
$$

for $n \geq 1$.
(ii) For the negative Pell equation $F_{\Delta}(x, y)=-1$, we have
(a) the fundamental solution is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{3}+3 k}{2}, \frac{k^{2}+1}{2}\right)$.
(b) the set of all integer solutions is $\Omega=\left\{\left(x_{2 n-1}, y_{2 n-1}\right)\right\}$, where

$$
\left[\begin{array}{l}
x_{2 n-1} \\
y_{2 n-1}
\end{array}\right]=M^{2 n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

for $n \geq 1$ and

$$
M=\left[\begin{array}{cc}
\frac{k^{3}+3 k}{2} & \frac{k^{4}+5 k^{2}+4}{2} \\
\frac{k^{2}+1}{2} & \frac{k^{3}+3 k}{2}
\end{array}\right] .
$$

(c) the integer solutions $\left(x_{2 n-1}, y_{2 n-1}\right)$ satisfy the recurrence relations

$$
\begin{aligned}
x_{2 n-1} & =\left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(x_{2 n-3}+x_{2 n-5}\right)-x_{2 n-7} \\
y_{2 n-1} & =\left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(y_{2 n-3}+y_{2 n-5}\right)-y_{2 n-7}
\end{aligned}
$$

for $n \geq 4$.
(d) the $(2 n-1)^{\text {st }}$ integer solution $\left(x_{2 n-1}, y_{2 n-1}\right)$ can be given by the aid of continued fraction expansion, namely,

$$
\frac{x_{2 n-1}}{y_{2 n-1}}= \begin{cases}{[3 ; \underbrace{1,1,1,1,6}_{2 n-2 \text { times }}, 1,1,2]} & \text { for } k=3 \\ {[k ; \underbrace{\frac{k-1}{2}, 1,1, \frac{k-1}{2}, 2 k}_{2 n-2 \text { times }}, \frac{k-1}{2}, 1,1, \frac{k-1}{2}]} & \text { for } k \geq 5\end{cases}
$$

for $n \geq 1$.
Proof. (i)(a) It can be easily seen that $\left(x_{1}, y_{1}\right)=\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}, \frac{k^{5}+4 k^{3}+3 k}{2}\right)$ is the fundamental solution by (1) of Theorem 2.1.
(i)(b) We prove it by induction. Let $n=1$. Then $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right]$ which is true. Assume that it is satisfied for $n-1$, that is,

$$
\left[\begin{array}{l}
x_{n-1} \\
y_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} \\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]^{n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=} & {\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} \\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} \\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} \\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]^{n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} \\
\frac{k^{5}+4 k^{3}+3 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]\left[\begin{array}{l}
x_{n-1} \\
y_{n-1}
\end{array}\right] } \\
= & {\left[\begin{array}{c}
\left.\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) x_{n-1}+\left(\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2}\right) y_{n-1} \\
\left(\frac{k^{5}+4 k^{3}+3 k}{2}\right) x_{n-1}+\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) y_{n-1}
\end{array}\right] . }
\end{aligned}
$$

So

$$
x_{n}=\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) x_{n-1}+\left(\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2}\right) y_{n-1}
$$

and

$$
y_{n}=\left(\frac{k^{5}+4 k^{3}+3 k}{2}\right) x_{n-1}+\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) y_{n-1} .
$$

Thus we conclude that

$$
\begin{aligned}
x_{n}^{2}-d y_{n}^{2}= & {\left[\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) x_{n-1}+\left(\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2}\right) y_{n-1}\right]^{2} } \\
& -\left(k^{2}+4\right)\left[\left(\frac{k^{5}+4 k^{3}+3 k}{2}\right) x_{n-1}+\left(\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}\right) y_{n-1}\right]^{2} \\
= & x_{n-1}^{2}-\left(k^{2}+4\right) y_{n-1}^{2} \\
= & 1 .
\end{aligned}
$$

So it is true for every $n \geq 1$.
(i)(c) For $x_{1}=\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}$ and $y_{1}=\frac{k^{5}+4 k^{3}+3 k}{n^{2}}$, we set $\alpha=x_{1}+y_{1} \sqrt{d}$ and $\beta=x_{1}-y_{1} \sqrt{d}$. Then it is known that $x_{n}=\frac{\alpha^{2}+\beta^{n}}{2}$ and $y_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{d}}$. Hence we deduce that

$$
\begin{aligned}
& \left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(x_{n-1}+x_{n-2}\right)-x_{n-3} \\
= & \left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(\frac{\alpha^{n-1}+\beta^{n-1}}{2}+\frac{\alpha^{n-2}+\beta^{n-2}}{2}\right)-\frac{\alpha^{n-3}+\beta^{n-3}}{2} \\
= & \frac{\alpha^{n}}{2}\left[\frac{\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \alpha^{2}+\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \alpha-1}{\alpha^{3}}\right] \\
& +\frac{\beta^{n}}{2}\left[\frac{\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \beta^{2}+\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \beta-1}{\beta^{3}}\right] \\
= & \frac{\alpha^{n}+\beta^{n}}{2} \\
= & x_{n}
\end{aligned}
$$

since $\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \alpha^{2}+\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \alpha-1=\alpha^{3}$ and $\left(k^{6}+6 k^{4}+\right.$ $\left.9 k^{2}+1\right) \beta^{2}+\left(k^{6}+6 k^{4}+9 k^{2}+1\right) \beta-1=\beta^{3}$. Similarly it can be shown that $y_{n}=\left(k^{6}+6 k^{4}+9 k^{2}+1\right)\left(y_{n-1}+y_{n-2}\right)-y_{n-3}$ for $n \geq 4$. The other cases can be proved similarly.

In order to determine the set of all integer solutions $\left(x_{n}, y_{n}\right)$ of $F_{\Delta}(x, y)= \pm 1$, we need the $n^{\text {th }}$ power of $M$ defined in (5) which is given below.

Theorem 3.2. The $n^{\text {th }}$ power of $M$ defined in (5) is $M^{n}=\left[\begin{array}{cc}R & S \\ T & U\end{array}\right]$, where

$$
\begin{aligned}
R & =\sum_{i=0}^{\frac{n}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}=U, \quad S=\sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i+1} \\
T & =\sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

for even $n \geq 2$ or

$$
\begin{aligned}
& R=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}=U, \quad S=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i+1} \\
& T=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

for odd $n \geq 1$, where $x_{1}=\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}$ and $y_{1}=\frac{k^{5}+4 k^{3}+3 k}{2}$.
Proof. It can be proved by induction on $n$.

From Theorems 3.1 and 3.2, we deduce that

Theorem 3.3. Let $k \geq 3$ be odd. Then the following statements hold:
(i) For $x_{1}=\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}$ and $y_{1}=\frac{k^{5}+4 k^{3}+3 k}{2}$, the set of all integer solutions of $F_{\Delta}(x, y)=1$ is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where

$$
\left(x_{n}, y_{n}\right)=\left(\sum_{i=0}^{\frac{n}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}, \sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}\right)
$$

for even $n \geq 2$ or

$$
\left(x_{n}, y_{n}\right)=\left(\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}, \sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}\right)
$$

for odd $n \geq 1$.
(ii) For $x_{1}=\frac{k^{3}+3 k}{2}$ and $y_{1}=\frac{k^{2}+1}{2}$, the set of all integer solutions of $F_{\Delta}(x, y)=$ -1 is $\Omega=\left\{\left(x_{2 n-1}, y_{2 n-1}\right)\right\}$, where

$$
\begin{aligned}
& x_{2 n-1}=\sum_{i=0}^{\frac{2 n-1}{2}}\binom{2 n-1}{2 i} x_{1}^{2 n-1-2 i} y_{1}^{2 i} d^{i} \text { and } \\
& y_{2 n-1}=\sum_{i=0}^{\frac{2 n-1}{2}}\binom{2 n-1}{2 i+1} x_{1}^{2 n-2-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

for $n \geq 1$.

## 3.2. $k \geq 2$ Is Even

Theorem 3.4. Let $k \geq 2$ be even. Then we have the following statements:
(i) For the positive Pell equation $F_{\Delta}(x, y)=1$, we have
(a) the fundamental solution is $\left(x_{1}, y_{1}\right)=\left(\frac{k^{2}+2}{2}, \frac{k}{2}\right)$.
(b) the set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=M^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

for $n \geq 1$ and

$$
M=\left[\begin{array}{cc}
\frac{k^{2}+2}{2} & \frac{k^{3}+4 k}{2}  \tag{6}\\
\frac{k}{2} & \frac{k^{2}+2}{2}
\end{array}\right]
$$

(c) the integer solutions $\left(x_{n}, y_{n}\right)$ satisfy the recurrence relations

$$
\begin{aligned}
x_{n} & =\left(k^{2}+1\right)\left(x_{n-1}+x_{n-2}\right)-x_{n-3} \\
y_{n} & =\left(k^{2}+1\right)\left(y_{n-1}+y_{n-2}\right)-y_{n-3}
\end{aligned}
$$

for $n \geq 4$.
(d) the $n^{\text {th }}$ integer solution $\left(x_{n}, y_{n}\right)$ can be given by the aid of continued fraction expansion, namely,

$$
\frac{x_{n}}{y_{n}}= \begin{cases}{[2 ; \underbrace{1,4}_{n-2 \text { times }}, 1,5} \\
{\left[\begin{array}{ll}
k ; \underbrace{\frac{k}{2}, 2 k}_{n-1 \text { times }}, \frac{k}{2}
\end{array}\right]} & \text { for } k=2 \text { and } n \geq 2 \\
{\left[\begin{array}{ll} 
\\
\end{array}\right] \text { and } n \geq 1}\end{cases}
$$

(ii) The negative Pell equation $F_{\Delta}(x, y)=-1$ has no integer solutions.

Proof. It can be proved as in the same way that Theorem 3.1 was proved.

The $n^{\text {th }}$ power of $M$ defined in (6) is given below.

Theorem 3.5. The $n^{\text {th }}$ power of $M$ defined in (6) is $M^{n}=\left[\begin{array}{cc}R & S \\ T & U\end{array}\right]$, where

$$
\begin{aligned}
& R=\sum_{i=0}^{\frac{n}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}=U, \quad S=\sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i+1} \\
& T=\sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

for even $n \geq 2$ or

$$
\begin{aligned}
& R=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}=U, \quad S=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i+1} \\
& T=\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

for odd $n \geq 1$, where $x_{1}=\frac{k^{2}+2}{2}$ and $y_{1}=\frac{k}{2}$.
Proof. It can be proved by induction on $n$.

From Theorems 3.4 and 3.5, we can give the following theorem.

Theorem 3.6. Let $x_{1}=\frac{k^{2}+2}{2}$ and $y_{1}=\frac{k}{2}$. Then the set of all integer solutions of $F_{\Delta}(x, y)=1$ is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where

$$
\left(x_{n}, y_{n}\right)=\left(\sum_{i=0}^{\frac{n}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}, \sum_{i=0}^{\frac{n-2}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}\right)
$$

for even $n \geq 2$ or

$$
\left(x_{n}, y_{n}\right)=\left(\sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i} x_{1}^{n-2 i} y_{1}^{2 i} d^{i}, \sum_{i=0}^{\frac{n-1}{2}}\binom{n}{2 i+1} x_{1}^{n-1-2 i} y_{1}^{2 i+1} d^{i}\right)
$$

for odd $n \geq 1$.

Remark 3.7. Here one may wonder why we only consider the case $\Delta=4 d$. In fact, when we consider the case $\Delta=1+4 d$, we see that there is no a general formula, indeed, for the fundamental solutions of the positive Pell equation $F_{\Delta}(x, y)=x^{2}+x y-d y^{2}=1$, we have $\left(x_{1}, y_{1}\right)=(22,7)$ is the fundamental solution for $k=3,\left(x_{1}, y_{1}\right)=(5,1)$ is the fundamental solution for $k=5,\left(x_{1}, y_{1}\right)=(34,5)$ is the fundamental solution for $k=7,\left(x_{1}, y_{1}\right)=(131,15)$
is the fundamental solution for $k=9,\left(x_{1}, y_{1}\right)=(38,3)$ is the fundamental solution for $k=13,\left(x_{1}, y_{1}\right)=(571,39)$ is the fundamental solution for $k=15$ and $\left(x_{1}, y_{1}\right)=(133,8)$ is the fundamental solution for $k=17$.

## 4. The Pell Equation $F_{\Delta}(x, y)= \pm k^{2}$

In this section we consider the set of all (positive) integer solutions of

$$
\begin{equation*}
F_{\Delta}(x, y)= \pm k^{2} \tag{7}
\end{equation*}
$$

Now let $\Delta$ be a non-square discriminant. The $\Delta$-order $O_{\Delta}$ is defined to be the ring $O_{\Delta}=\left\{x+y \rho_{\Delta}: x, y \in \mathbb{Z}\right\}$, where $\rho_{\Delta}=\sqrt{\frac{\Delta}{4}}$ if $\Delta \equiv 0(\bmod 4)$ or $\frac{1+\sqrt{\Delta}}{2}$ if $\Delta \equiv 1(\bmod 4)$. So $O_{\Delta}$ is a subring of $\mathbb{Q}(\sqrt{\Delta})=\{x+y \sqrt{\Delta}: x, y \in \mathbb{Q}\}$. The unit group $O_{\Delta}^{u}$ is defined to be the group of units of the ring $O_{\Delta}$.

Let $F=(a, b, c)$ be an indefinite integral quadratic form of discriminant $\Delta=b^{2}-4 a c$. Then we can rewrite $F(x, y)=\left(\left(x a+y \frac{b+\sqrt{\Delta}}{2}\right)\left(x a+y \frac{b-\sqrt{\Delta}}{2}\right)\right) / a$. So the module $M_{F}$ of $F$ is $M_{F}=\left\{x a+y \frac{b+\sqrt{\Delta}}{2}: x, y \in \mathbb{Z}\right\} \subset \mathbb{Q}(\sqrt{\Delta})$. Therefore we get $\left(u+v \rho_{\Delta}\right)\left(x a+y \frac{b+\sqrt{\Delta}}{2}\right)=x^{\prime} a+y^{\prime} \frac{b+\sqrt{\Delta}}{2}$, where

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]= \begin{cases}{\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
u-\frac{b}{2} v & a v \\
-c v & u+\frac{b}{2} v
\end{array}\right]} & \text { if } \Delta \equiv 0(\bmod 4)  \tag{8}\\
{\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
u+\frac{1-b}{2} v & a v \\
-c v & u+\frac{1+b}{2} v
\end{array}\right]} & \text { if } \Delta \equiv 1(\bmod 4)\end{cases}
$$

Let $m$ be any integer and let $\Omega$ denote the set of all integer solutions of $F(x, y)=$ $m$, that is, $\Omega=\{(x, y): F(x, y)=m\}$. Then there is a bijection $\Psi: \Omega \rightarrow\{\gamma \in$ $\left.M_{F}: N(\gamma)=a m\right\}$. The action of $O_{\Delta, 1}^{u}=\left\{\alpha \in O_{\Delta}^{u}: N(\alpha)=1\right\}$ on the set $\Omega$ is most interesting when $\Delta$ is a positive non-square since $O_{\Delta, 1}^{u}$ is infinite. Therefore the orbit of each solution will be infinite and so the set $\Omega$ is either empty or infinite. Since $O_{\Delta, 1}^{u}$ can be explicitly determined, the set $\Omega$ is satisfactorily described by the representation of such a list, called a set of representatives of the orbits. Let $\varepsilon_{\Delta}$ be the smallest unit of $O_{\Delta}$ that is grater than 1 and let $\tau_{\Delta}=\varepsilon_{\Delta}$ if $N\left(\varepsilon_{\Delta}\right)=1$ or $\varepsilon_{\Delta}^{2}$ if $N\left(\varepsilon_{\Delta}\right)=-1$. Then every $O_{\Delta, 1}^{u}$ orbit of integral solutions of $F(x, y)=m$ contains a solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $0 \leq y \leq U$, where $U=\left|\frac{a m \tau_{\Delta}}{\Delta}\right|^{\frac{1}{2}}\left(1-\frac{1}{\tau_{\Delta}}\right)$ if $a m>0$ or $U=\left|\frac{a m \tau_{\Delta}}{\Delta}\right|^{\frac{1}{2}}\left(1+\frac{1}{\tau_{\Delta}}\right)$ if $a m<0$. So for finding a set of representatives of the $O_{\Delta, 1}^{u}$ orbits of integral solutions of $F(x, y)=m$, we must find for each integer $y_{0}$ in the range $0 \leq y_{0} \leq U$, whether $\Delta y_{0}^{2}+4 a m$ is a perfect square or not since $a x_{0}^{2}+b x_{0} y_{0}+c y_{0}^{2}=m \Leftrightarrow \Delta y_{0}^{2}+4 a m=\left(2 a x_{0}+b y_{0}\right)^{2}$. If $\Delta y_{0}^{2}+4 a m$ is a perfect square, then $x_{0}=\frac{-b y_{0} \pm \sqrt{\Delta y_{0}^{2}+4 a m}}{2 a}$. So there is a set of representatives Rep $=\left\{\left[\begin{array}{ll}x_{0} & y_{0}\end{array}\right]\right\}$. Thus for the matrix $M$ derived from (8), the set of all integer solutions of $F(x, y)=m$ is $\Omega=\left\{ \pm(x, y):\left[\begin{array}{ll}x & y\end{array}\right]=\left[\begin{array}{ll}x_{0} & y_{0}\end{array}\right] M^{n}, n \in\right.$ $\mathbb{Z}\}$. If $\Delta y_{0}^{2}+4 a m$ is not a perfect square, then there are no integer solutions.

## 4.1. $k \geq 3$ Is Odd

Theorem 4.1. Let $k \geq 3$ be odd. Then we have the following statements:
(i) For the positive Pell equation $F_{\Delta}(x, y)=k^{2}$,
(a) If $k \geq 3$ is not a perfect square and $\#$ Rep $=4$, then the set of representatives is $\operatorname{Rep}=\left\{\left[\begin{array}{ll} \pm x_{0}^{*} & 0\end{array}\right],\left[\begin{array}{ll} \pm x_{1}^{*} & y_{1}^{*}\end{array}\right]\right\}$, where

$$
\begin{align*}
& x_{0}^{*}=k, x_{1}^{*}=\frac{k^{4}-2 k^{3}+5 k^{2}-6 k+4}{2} \text { and }  \tag{9}\\
& y_{1}^{*}=\frac{k^{3}-2 k^{2}+3 k-2}{2}
\end{align*}
$$

and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n-1}\right.\right.$, $\left.\left.y_{3 n-1}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{3 n-1}, y_{3 n-1}\right) & =\left(x_{1}^{*} R-y_{1}^{*} S, x_{1}^{*} T-y_{1}^{*} U\right) \text { for } n \geq 1, \\
\left(x_{3 n}, y_{3 n}\right) & =\left(x_{0}^{*} R, x_{0}^{*} T\right) \text { for } n \geq 1
\end{aligned}
$$

(b) If $k \geq 9$ is a perfect square, say $k=t^{2}$ for some integer $t \geq 1$ and $\# R e p=6$, then the set of representatives is

$$
\operatorname{Rep}=\left\{\left[\begin{array}{ll} 
\pm x_{0}^{*} & 0
\end{array}\right],\left[\begin{array}{ll} 
\pm x_{1}^{* *} & y_{1}^{* *}
\end{array}\right],\left[ \pm x_{1}^{*} \quad y_{1}^{*}\right]\right\}
$$

where $x_{0}^{*}, x_{1}^{*}, y_{1}^{*}$ is defined in (9), $x_{1}^{* *}=\frac{t^{5}-t^{3}+2 t}{2}, y_{1}^{* *}=\frac{t^{3}-t}{2}$ and the set of all integer solutions is $\Omega=\left\{\left(x_{5 n+1}, y_{5 n+1}\right),\left(x_{5 n+2}, y_{5 n+2}\right)\right.$, $\left.\left(x_{5 n-2}, y_{5 n-2}\right),\left(x_{5 n-1}, y_{5 n-1}\right),\left(x_{5 n}, y_{5 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{5 n+1}, y_{5 n+1}\right) & =\left(x_{1}^{* *} R+y_{1}^{* *} S, x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 0 \\
\left(x_{5 n+2}, y_{5 n+2}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{5 n-2}, y_{5 n-2}\right) & =\left(x_{1}^{*} R-y_{1}^{*} S, x_{1}^{*} T-y_{1}^{*} U\right) \text { for } n \geq 1 \\
\left(x_{5 n-1}, y_{5 n-1}\right) & =\left(x_{1}^{* *} R-y_{1}^{* *} S, x_{1}^{* *} T-y_{1}^{* *} U\right) \text { for } n \geq 1, \\
\left(x_{5 n}, y_{5 n}\right) & =\left(x_{0}^{*} R, x_{0}^{*} T\right) \text { for } n \geq 1 .
\end{aligned}
$$

(ii) For the negative Pell equation $F_{\Delta}(x, y)=-k^{2}$,
(a) If $k \geq 3$ is not a perfect square and $\#$ Rep $=4$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm x_{0}^{*} & 1\end{array}\right],\left[\begin{array}{ll} \pm x_{1}^{*} & y_{1}^{*}\end{array}\right]\right\}$, where

$$
\begin{equation*}
x_{0}^{*}=2, x_{1}^{*}=\frac{k^{4}+3 k^{2}}{2}, y_{1}^{*}=\frac{k^{3}+k}{2} \tag{10}
\end{equation*}
$$

and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n+2}\right.\right.$, $\left.\left.y_{3 n+2}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =\left(x_{0}^{*} R+S, x_{0}^{*} T+U\right) \text { for } n \geq 0 \\
\left(x_{3 n+2}, y_{3 n+2}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{3 n}, y_{3 n}\right) & =\left(-x_{0}^{*} R+S,-x_{0}^{*} T+U\right) \text { for } n \geq 1
\end{aligned}
$$

(b) If $k \geq 9$ is a perfect square, say $k=t^{2}$ for some integer $t \geq 1$ and $\#$ Rep $=6$, then the set of representatives is

$$
\operatorname{Rep}=\left\{\left[\begin{array}{ll} 
\pm x_{0}^{*} & 1
\end{array}\right],\left[\begin{array}{ll} 
\pm x_{1}^{* *} & y_{1}^{* *}
\end{array}\right],\left[ \pm x_{1}^{*} \quad y_{1}^{*}\right]\right\}
$$

where $x_{0}^{*}, x_{1}^{*}, y_{1}^{*}$ is defined in (10), $x_{1}^{* *}=\frac{t^{5}+t^{3}+2 t}{2}, y_{1}^{* *}=\frac{t^{3}+t}{2}$ and the set of all integer solutions is $\Omega=\left\{\left(x_{5 n+1}, y_{5 n+1}\right),\left(x_{5 n+2}, y_{5 n+2}\right)\right.$, $\left.\left(x_{5 n+3}, y_{5 n+3}\right),\left(x_{5 n-1}, y_{5 n-1}\right),\left(x_{5 n}, y_{5 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{5 n+1}, y_{5 n+1}\right) & =\left(x_{0}^{*} R+S, x_{0}^{*} T+U\right) \text { for } n \geq 0 \\
\left(x_{5 n+2}, y_{5 n+2}\right) & =\left(x_{1}^{* *} R+y_{1}^{* *} S, x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 0 \\
\left(x_{5 n+3}, y_{5 n+3}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{5 n-1}, y_{5 n-1}\right) & =\left(-x_{1}^{* *} R+y_{1}^{* *} S,-x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 1 \\
\left(x_{5 n}, y_{5 n}\right) & =\left(-x_{0}^{*} R+S,-x_{0}^{*} T+U\right) \text { for } n \geq 1 .
\end{aligned}
$$

In all cases $R, S, T, U$ is defined in Theorem 3.2.
Proof. (i)(a) For the positive Pell equation $F_{\Delta}(x, y)=k^{2}$, we have $F=(1,0,-d)$ of discriminant $\Delta=4 d$. Since the fundamental solution is $\left(x_{1}, y_{1}\right)=\left(\left(k^{6}+6 k^{4}+\right.\right.$ $\left.\left.9 k^{2}+2\right) / 2,\left(k^{5}+4 k^{3}+3 k\right) / 2\right)$, we get $\tau_{\Delta}=\frac{k^{6}+6 k^{4}+9 k^{2}+2+\left(k^{5}+4 k^{3}+3 k\right) \sqrt{k^{2}+4}}{2}$. In this case, the set of representatives is $\operatorname{Rep}=\left\{\left[\begin{array}{ll} \pm x_{0}^{*} & 0\end{array}\right],\left[\begin{array}{ll} \pm x_{1}^{*} & y_{1}^{*}\end{array}\right]\right\}$, where

$$
x_{0}^{*}=k, x_{1}^{*}=\frac{k^{4}-2 k^{3}+5 k^{2}-6 k+4}{2} \text { and } y_{1}^{*}=\frac{k^{3}-2 k^{2}+3 k-2}{2} .
$$

Here $\left[\begin{array}{ll}x_{0}^{*} & 0\end{array}\right] H^{n}$ generates all integer solutions $\left(x_{3 n}, y_{3 n}\right)$ for $n \geq 1,\left[\begin{array}{ll}x_{1}^{*} & y_{1}^{*}\end{array}\right] H^{n}$ generates all integer solutions $\left(x_{3 n+1}, y_{3 n+1}\right)$ for $n \geq 0$ and $\left[x_{1}^{*}-y_{1}^{*}\right] H^{n}$ generates all integer solutions $\left(x_{3 n-1}, y_{3 n-1}\right)$ for $n \geq 1$, where

$$
H=\left[\begin{array}{cc}
\frac{k^{6}+6 k^{4}+9 k^{2}+2}{2} & \frac{k^{5}+4 k^{3}+3 k}{2} \\
\frac{k^{7}+8 k^{5}+19 k^{3}+12 k}{2} & \frac{k^{6}+6 k^{4}+9 k^{2}+2}{2}
\end{array}\right]
$$

which is the transpose of $M$ defined in (5). Thus the set of all integer solutions of $F_{\Delta}(x, y)=k^{2}$ is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n-1}, y_{3 n-1}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{3 n-1}, y_{3 n-1}\right) & =\left(x_{1}^{*} R-y_{1}^{*} S, x_{1}^{*} T-y_{1}^{*} U\right) \text { for } n \geq 1 \\
\left(x_{3 n}, y_{3 n}\right) & =\left(x_{0}^{*} R, x_{0}^{*} T\right) \text { for } n \geq 1
\end{aligned}
$$

Indeed, we only prove $\left(x_{3 n+1}, y_{3 n+1}\right)=\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right)$ for $n \geq 0$. Let $n \geq 0$ be even. For $n=0$, we have $R=1, S=0, T=0$ and $U=1$. So $\left(x_{1}, y_{1}\right)=$ $\left(x_{1}^{*}, y_{1}^{*}\right)$ and hence

$$
x_{1}^{2}-d y_{1}^{2}=\left(\frac{k^{4}-2 k^{3}+5 k^{2}-6 k+4}{2}\right)^{2}-\left(k^{2}+4\right)\left(\frac{k^{3}-2 k^{2}+3 k-2}{2}\right)^{2}=1 .
$$

So it is true for $n=0$. Assume that it is satisfied for $n-2$, that is, $x_{3 n-5}=$ $x_{1}^{*} R+y_{1}^{*} S$ and $y_{3 n-5}=x_{1}^{*} T+y_{1}^{*} U$, where

$$
\begin{aligned}
& R=\sum_{i=0}^{\frac{n-2}{2}}\binom{n-2}{2 i} x_{1}^{n-2-2 i} y_{1}^{2 i} d^{i}=U, \quad S=\sum_{i=0}^{\frac{n-4}{2}}\binom{n-2}{2 i+1} x_{1}^{n-3-2 i} y_{1}^{2 i+1} d^{i+1} \\
& T=\sum_{i=0}^{\frac{n-4}{2}}\binom{n-2}{2 i+1} x_{1}^{n-3-2 i} y_{1}^{2 i+1} d^{i}
\end{aligned}
$$

Then $x_{3 n+1}=x_{3 n-5}\left(R^{2}+T S\right)+y_{3 n-5}(S R+U S)$ and $y_{3 n+1}=x_{3 n-5}(R T+$ $T U)+y_{3 n-5}\left(S T+U^{2}\right)$ and clearly,

$$
\begin{aligned}
x_{3 n+1}^{2}-d y_{3 n+1}^{2}= & {\left[x_{3 n-5}\left(R^{2}+T S\right)+y_{3 n-5}(S R+U S)\right]^{2} } \\
& -d\left[x_{3 n-5}(R T+T U)+y_{3 n-5}\left(S T+U^{2}\right)\right]^{2} \\
= & x_{3 n-5}^{2}\left[\left(R^{2}+T S\right)^{2}-d(R T+T U)^{2}\right] \\
& +2 x_{3 n-5} y_{3 n-5}\left[\left(R^{2}+T S\right)(S R+U S)\right. \\
& \left.-d(R T+T U)\left(S T+U^{2}\right)\right] \\
& +y_{3 n-5}^{2}\left[(S R+U S)^{2}-d\left(S T+U^{2}\right)^{2}\right] \\
= & x_{3 n-5}^{2}-d y_{3 n-5}^{2} \\
= & k^{2}
\end{aligned}
$$

since $\left(R^{2}+T S\right)^{2}-d(R T+T U)^{2}=1,\left(R^{2}+T S\right)(S R+U S)-d(R T+T U)(S T+$ $\left.U^{2}\right)=0$ and $(S R+U S)^{2}-d\left(S T+U^{2}\right)^{2}=-d$. The other cases can be proved similarly.

## 4.2. $k \geq 2$ Is Even

Theorem 4.2. Let $k \geq 2$ be even. Then we have the following statements:
(i) For the positive Pell equation $F_{\Delta}(x, y)=k^{2}$,
(a) If $k=2$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 2 & 0\end{array}\right]\right\}$ and the set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where $x_{n}=2 C_{n}$ and $y_{n}=2 B_{n}$ for $n \geq 1$ (Here $B_{n}$ is the $n^{\text {th }}$ balancing number and $C_{n}$ is the $n^{\text {th }}$ Lucas-balancing number).
(b) If $k=4$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 4 & 0\end{array}\right],\left[\begin{array}{ll} \pm 6 & 1\end{array}\right]\right\}$ and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n-1}, y_{3 n-1}\right)\right.$, $\left.\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =(6 R+S, 6 T+U) \text { for } n \geq 0 \\
\left(x_{3 n-1}, y_{3 n-1}\right) & =(6 R-S, 6 T-U) \text { for } n \geq 1 \\
\left(x_{3 n}, y_{3 n}\right) & =(4 R, 4 T) \text { for } n \geq 1
\end{aligned}
$$

(c) If $k \geq 6$ is not a perfect square and $\#$ Rep $=4$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm x_{0}^{*} & 0\end{array}\right],\left[\begin{array}{ll} \pm x_{1}^{*} & y_{1}^{*}\end{array}\right]\right\}$, where

$$
\begin{equation*}
x_{0}^{*}=k, x_{1}^{*}=\frac{k^{2}-2 k+4}{2}, y_{1}^{*}=\frac{k-2}{2} \tag{11}
\end{equation*}
$$

and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n-1}\right.\right.$, $\left.\left.y_{3 n-1}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{3 n-1}, y_{3 n-1}\right) & =\left(x_{1}^{*} R-y_{1}^{*} S, x_{1}^{*} T-y_{1}^{*} U\right) \text { for } n \geq 1 \\
\left(x_{3 n}, y_{3 n}\right) & =\left(x_{0}^{*} R, x_{0}^{*} T\right) \text { for } n \geq 1 .
\end{aligned}
$$

(d) If $k \geq 16$ is a perfect square, say $k=t^{2}$ for some integer $t \geq 1$ and $\# R e p=6$, then the set of representatives is

$$
\operatorname{Rep}=\left\{\left[\begin{array}{ll} 
\pm x_{0}^{*} & 0
\end{array}\right],\left[ \pm x_{1}^{* *} \quad y_{1}^{* *}\right],\left[ \pm x_{1}^{*} \quad y_{1}^{*}\right]\right\}
$$

where $x_{0}^{*}, x_{1}^{*}, y_{1}^{*}$ is defined in (11), $x_{1}^{* *}=\frac{t^{3}+2 t}{2}, y_{1}^{* *}=\frac{t}{2}$, and the set of all integer solutions is $\Omega=\left\{\left(x_{5 n+1}, y_{5 n+1}\right),\left(x_{5 n+2}, y_{5 n+2}\right),\left(x_{5 n-2}\right.\right.$, $\left.\left.y_{5 n-2}\right),\left(x_{5 n-1}, y_{5 n-1}\right),\left(x_{5 n}, y_{5 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{5 n+1}, y_{5 n+1}\right) & =\left(x_{1}^{* *} R+y_{1}^{* *} S, x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 0 \\
\left(x_{5 n+2}, y_{5 n+2}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{5 n-2}, y_{5 n-2}\right) & =\left(x_{1}^{*} R-y_{1}^{*} S, x_{1}^{*} T-y_{1}^{*} U\right) \text { for } n \geq 1 \\
\left(x_{5 n-1}, y_{5 n-1}\right) & =\left(x_{1}^{* *} R-y_{1}^{* *} S, x_{1}^{* *} T-y_{1}^{* *} U\right) \text { for } n \geq 1 \\
\left(x_{5 n}, y_{5 n}\right) & =\left(x_{0}^{*} R, x_{0}^{*} T\right) \text { for } n \geq 1 .
\end{aligned}
$$

(ii) For the negative Pell equation $F_{\Delta}(x, y)=-k^{2}$,
(a) If $k=2$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 2 & 1\end{array}\right]\right\}$, and the set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where $x_{n}=2 c_{n}$ and $y_{n}=P_{2 n-1}$ for $n \geq 1$ (Here $c_{n}$ is the $n^{\text {th }}$ Lucas-cobalancing number and $P_{n}$ is the $n^{\text {th }}$ Pell number).
(b) If $k=4$, then the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 2 & 1\end{array}\right],\left[\begin{array}{ll} \pm 8 & 2\end{array}\right]\right\}$, and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n+2}\right.\right.$, $\left.\left.y_{3 n+2}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =(2 R+S, 2 T+U) \text { for } n \geq 0 \\
\left(x_{3 n+2}, y_{3 n+2}\right) & =(8 R+2 S, 8 T+2 U) \text { for } n \geq 0 \\
\left(x_{3 n}, y_{3 n}\right) & =(-2 R+S,-2 T+U) \text { for } n \geq 1
\end{aligned}
$$

(c) If $k \geq 6$ is not a perfect square and $\#$ Rep $=4$, then the set of repre-


$$
\begin{equation*}
x_{0}^{*}=2, x_{1}^{*}=\frac{k^{2}}{2}, y_{1}^{*}=\frac{k}{2} \tag{12}
\end{equation*}
$$

and the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n+2}\right.\right.$, $\left.\left.y_{3 n+2}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{3 n+1}, y_{3 n+1}\right) & =\left(x_{0}^{*} R+S, x_{0}^{*} T+U\right) \text { for } n \geq 0 \\
\left(x_{3 n+2}, y_{3 n+2}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{3 n}, y_{3 n}\right) & =\left(-x_{0}^{*} R+S,-x_{0}^{*} T+U\right) \text { for } n \geq 1
\end{aligned}
$$

(d) If $k \geq 16$ is a perfect square, say $k=t^{2}$ for some integer $t \geq 1$ and $\# R e p=6$, then the set of representatives is

$$
\operatorname{Rep}=\left\{\left[\begin{array}{ll} 
\pm x_{0}^{*} & 1
\end{array}\right],\left[\begin{array}{ll} 
\pm x_{1}^{* *} & y_{1}^{* *}
\end{array}\right],\left[\begin{array}{ll} 
\pm x_{1}^{*} & y_{1}^{*}
\end{array}\right]\right\}
$$

where $x_{0}^{*}, x_{1}^{*}, y_{1}^{*}$ is defined in (12), $x_{1}^{* *}=\frac{t^{3}-2 t}{2}, y_{1}^{* *}=\frac{t}{2}$ and the set of all integer solutions is $\Omega=\left\{\left(x_{5 n+1}, y_{5 n+1}\right),\left(x_{5 n+2}, y_{5 n+2}\right),\left(x_{5 n+3}\right.\right.$, $\left.\left.y_{5 n+3}\right),\left(x_{5 n-1}, y_{5 n-1}\right),\left(x_{5 n}, y_{5 n}\right)\right\}$, where

$$
\begin{aligned}
\left(x_{5 n+1}, y_{5 n+1}\right) & =\left(x_{0}^{*} R+S, x_{0}^{*} T+U\right) \text { for } n \geq 0 \\
\left(x_{5 n+2}, y_{5 n+2}\right) & =\left(x_{1}^{* *} R+y_{1}^{* *} S, x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 0 \\
\left(x_{5 n+3}, y_{5 n+3}\right) & =\left(x_{1}^{*} R+y_{1}^{*} S, x_{1}^{*} T+y_{1}^{*} U\right) \text { for } n \geq 0 \\
\left(x_{5 n-1}, y_{5 n-1}\right) & =\left(-x_{1}^{* *} R+y_{1}^{* *} S,-x_{1}^{* *} T+y_{1}^{* *} U\right) \text { for } n \geq 1 \\
\left(x_{5 n}, y_{5 n}\right) & =\left(-x_{0}^{*} R+S,-x_{0}^{*} T+U\right) \text { for } n \geq 1 .
\end{aligned}
$$

In all cases $R, S, T, U$ is defined in Theorem 3.5.
Proof. (i)(a) Let $k=2$. The the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 2 & 0\end{array}\right]\right\}$ for the Pell equation $x^{2}-8 y^{2}=4$. Here $\left[\begin{array}{ll}2 & 0\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{n}, y_{n}\right)$ for $n \geq 1$ and $M=\left[\begin{array}{ll}3 & 1 \\ 8 & 3\end{array}\right]$.

Behera and Panda [2] introduced balancing numbers $n \in \mathbb{Z}^{+}$as solutions of the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{13}
\end{equation*}
$$

for some positive integer $r$ which is called balancer. If $n$ is a balancing number with balancer $r$, then from (13) one has

$$
\begin{equation*}
r=\frac{-2 n-1+\sqrt{8 n^{2}+1}}{2} \tag{14}
\end{equation*}
$$

Let $B_{n}$ denote the $n^{\text {th }}$ balancing number. Then from (14), we note that $B_{n}$ is a balancing number if and only if $8 B_{n}^{2}+1$ is a perfect square. Thus $\sqrt{8 B_{n}^{2}+1}$ is an integer which is called $n^{\text {th }}$ Lucas-balancing number and is denoted by $C_{n}$, that is, $C_{n}=\sqrt{8 B_{n}^{2}+1}$ (for further details see also [8, 9, 10, 12]). It can be easily seen that the $n^{\text {th }}$ power of $M=\left[\begin{array}{ll}3 & 1 \\ 8 & 3\end{array}\right]$ is $M^{n}=\left[\begin{array}{cc}C_{n} & B_{n} \\ 8 B_{n} & C_{n}\end{array}\right]$. Thus the
set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where $x_{n}=2 C_{n}$ and $y_{n}=2 B_{n}$ for $n \geq 1$.
(i)(b) If $k=4$, then the set of representatives is $\operatorname{Rep}=\left\{\left[\begin{array}{ll} \pm 4 & 0\end{array}\right],\left[\begin{array}{ll} \pm 6 & 1\end{array}\right]\right\}$ and $M=\left[\begin{array}{cc}9 & 2 \\ 40 & 9\end{array}\right]$. In this case $\left[\begin{array}{ll}4 & 0\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n}, y_{3 n}\right)$ for $n \geq 1,\left[\begin{array}{ll}6 & 1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n+1}, y_{3 n+1}\right)$ for $n \geq 0$ and $\left[\begin{array}{cc}6 & -1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n-1}, y_{3 n-1}\right)$ for $n \geq 1$. So the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n-1}, y_{3 n-1}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where $\left(x_{3 n+1}, y_{3 n+1}\right)=(6 R+S, 6 T+U)$ for $n \geq 0,\left(x_{3 n-1}, y_{3 n-1}\right)=(6 R-S, 6 T-U)$ for $n \geq 1$ and $\left(x_{3 n}, y_{3 n}\right)=(4 R, 4 T)$ for $n \geq 1$. The other two cases can be proved similarly.
(ii)(a) Let $k=2$. The the set of representatives is Rep $=\left\{\left[\begin{array}{ll} \pm 2 & 1\end{array}\right]\right\}$ and $M=\left[\begin{array}{ll}3 & 1 \\ 8 & 3\end{array}\right]$. Here $\left[\begin{array}{ll}-2 & 1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{n}, y_{n}\right)$ for $n \geq 1$.

Panda and Ray [11] defined that a positive integer $n$ is called a cobalancing number if the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r) \tag{15}
\end{equation*}
$$

holds for some positive integer $r$ which is called cobalancer corresponding to $n$. If $n$ is a cobalancing number with cobalancer $r$, then from (15), we get

$$
\begin{equation*}
r=\frac{-2 n-1+\sqrt{8 n^{2}+8 n+1}}{2} \tag{16}
\end{equation*}
$$

Let $b_{n}$ denote the $n^{\text {th }}$ cobalancing number. Then from (16), $b_{n}$ is a cobalancing number if and only if $8 b_{n}^{2}+8 b_{n}+1$ is a perfect square. Thus $\sqrt{8 b_{n}^{2}+8 b_{n}+1}$ is an integer which is called $n^{\text {th }}$ Lucas-cobalancing number and is denoted by $c_{n}$, that is, $c_{n}=\sqrt{8 b_{n}^{2}+8 b_{n}+1}$. Recall that Pell numbers are the numbers given by $P_{0}=0, P_{1}=1$ and $P_{n}=2 P_{n-1}+P_{n-2}$ for $n \geq 2$. Since

$$
\left[\begin{array}{ll}
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
C_{n} & B_{n} \\
8 B_{n} & C_{n}
\end{array}\right]=\left[\begin{array}{ll}
-2 C_{n}+8 B_{n} & -2 B_{n}+C_{n}
\end{array}\right]
$$

and since $-C_{n}+4 B_{n}=c_{n}$ and $-2 B_{n}+C_{n}=P_{2 n-1}$, the set of all integer solutions is $\Omega=\left\{\left(x_{n}, y_{n}\right)\right\}$, where $x_{n}=2 c_{n}$ and $y_{n}=P_{2 n-1}$ for $n \geq 1$.
(ii)(b) Let $k=4$. Then the set of representatives is $\operatorname{Rep}=\left\{\left[\begin{array}{ll} \pm 2 & 1\end{array}\right],\left[\begin{array}{ll} \pm 8 & 2\end{array}\right]\right\}$ and $M=\left[\begin{array}{cc}9 & 2 \\ 40 & 9\end{array}\right]$. Here $\left[\begin{array}{cc}2 & 1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n+1}, y_{3 n+1}\right)$ for $n \geq 0,\left[\begin{array}{ll}-2 & 1\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n}, y_{3 n}\right)$ for $n \geq 1$ and $\left[\begin{array}{ll}8 & 2\end{array}\right] M^{n}$ generates all integer solutions $\left(x_{3 n+2}, y_{3 n+2}\right)$ for $n \geq 0\left(\left[\begin{array}{ll}-8 & 2\end{array}\right] M^{n}\right.$ generates all integer solutions $\left(x_{3 n-1}, y_{3 n-1}\right)$ for $\left.n \geq 1\right)$. Thus the set of all integer solutions is $\Omega=\left\{\left(x_{3 n+1}, y_{3 n+1}\right),\left(x_{3 n+2}, y_{3 n+2}\right),\left(x_{3 n}, y_{3 n}\right)\right\}$, where $\left(x_{3 n+1}, y_{3 n+1}\right)=(2 R+S, 2 T+U)$ for $n \geq 0,\left(x_{3 n+2}, y_{3 n+2}\right)=(8 R+2 S, 8 T+2 U)$ for $n \geq 0$ and $\left(x_{3 n}, y_{3 n}\right)=(-2 R+S,-2 T+U)$ for $n \geq 1$. The others are similar.

## References

[1] E. Barbeau, Pell's Equation, Springer Verlag, 2003.
[2] A. Behera and G.K. Panda, On the square roots of triangular numbers, The Fibonacci Quarterly 37 (2) (1999) 98-105.
[3] J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach, Springer-Verlag, Berlin, Heidelberg, 2007.
[4] D.A. Buell, Binary Quadratic Forms, Clasical Theory and Modern Computations, Springer-Verlag, New York, 1989.
[5] D.E. Flath, Introduction to Number Theory, Wiley, 1989.
[6] M. Jacobson and H. Williams, Solving the Pell Equation, CMS Books in Mathematics, Springer, 2010.
[7] R.A. Mollin, Fundamental Number Theory with Applications, 2nd Ed., Discrete Mathematics and Its Applications, Chapman \& Hall/ CRC, Boca Raton, London, New York, 2008.
[8] P. Olajos, Properties of Balancing, Cobalancing and Generalized Balancing Numbers, Annales Mathematicae et Informaticae 37 (2010) 125-138.
[9] G.K. Panda, Some fascinating properties of balancing numbers, In: Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer. 194 (2009) 185-189.
[10] G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bul. of Inst. of Math. Acad. Sinica 6 (1) (2011) 41-72.
[11] G.K. Panda and P.K. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci. 8 (2005) 1189-1200.
[12] P.K. Ray, Balancing and Cobalancing Numbers. Ph.D. Thesis, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
[13] A. Tekcan, Proper cycle of indefinite quadratic forms and their right neighbors, Applications of Mathematics 52 (5) (2007) 407-415.
[14] A. Tekcan, On the cycles of indefinite quadratic forms and cycles of ideals III, Comptes rendus mathématiques-Mathematical Reports 30 (1) (2008) 22-32.
[15] A. Tekcan, Indefinite quadratic forms and Pell equations involving quadratic ideals, Mathematical Reports 19 (2) (2017) 263-279.
[16] A. Tekcan and Ş. Kutlu, Base points, bases and positive definite forms, Asian-Eur J. Math. 11 (2) (2018), 1850017-1/1850017-18.


[^0]:    * Corresponding author.

