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1. Introduction, Definitions and Notations

We denote by C the set of all finite complex numbers. Let f be an entire function
defined on C. The maximum modulus function Mf (r) and the maximum term
µf (r) of f =

∑∞
n=0 anz

n on |z| = r are defined as Mf (r) = max|z|=r |f (z)| and
µf (r) = maxn≥0 (|an|r

n) respectively.

We use the standard notations and definitions of the theory of entire func-
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tions which are available in [15] and [17], and therefore we do not explain
those in details. For x ∈ [0,∞) and k ∈ N where N is the set of all posi-
tive integers, define iterations of the exponential and logarithmic functions as

exp[k] x = exp
(

exp[k−1] x
)

and log[k] x = log
(

log[k−1] x
)

with convention that

log[0] x = x, log[−1] x = expx, exp[0] x = x and exp[−1] x = log x. Now consider-
ing this, let us recall that Juneja et al. [7] defined the (p, q)-th order and (p,q)-th
lower order of an entire function respectively, as follows:

Definition 1.1. [7] The (p,q)-th order and (p,q)-th lower order of an entire func-
tion f are defined as:

ρ(p,q) (f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
and λ(p,q) (f) = lim inf

r→+∞

log[p] Mf (r)

log[q] r
,

where p and q always denote positive integers with p ≥ q.

The function f is said to be of regular (p, q) growth when (p,q)-th order and
(p,q)-th lower order of f are the same. Functions which are not of regular (p, q)
growth are said to be of irregular (p, q) growth.

Extending the notion of (p,q)-th order, Shen et al. [11] introduced the new
concept of [p,q]-ϕ order of an entire function where p ≥ q. Later on, combining
the definition of (p,q)-th order and [p,q]-ϕ order, Biswas [1] redefined the (p,q)-th
order of an entire function without restriction p ≥ q.

However the above definition is very useful for measuring the growth of entire
functions. If p = l and q = 1 then we write ρ(l,1) (f) = ρ(l) (f) and λ(l,1) (f) =
λ(l) (f) where ρ(l) (f) and λ(l) (f) are respectively known as generalized order
and generalized lower order of entire function f . For details about generalized
order one may see [9]. Also for p = 2 and q = 1, we respectively denote ρ(2,1) (f)
and λ(2,1) (f) by ρ (f) and λ (f) which are classical growth indicators such as
order and lower order of entire function f .

In this connection we just recall the following definition where we will give a
minor modification to the original definition (see e.g. [7]):

Definition 1.2. An entire function f is said to have index-pair (p, q) if b <

ρ(p,q) (f) < +∞ and ρ(p−1,q−1) (f) is not a nonzero finite number, where b = 1
if p = q and b = 0 for otherwise. Moreover if 0 < ρ(p,q) (f) < +∞, then







ρ(p−n,q) (f) = +∞ for n < p,

ρ(p,q−n) (f) = 0 for n < q,

ρ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ(p,q) (f) < +∞, one can easily verify that






λ(p−n,q) (f) = +∞ for n < p,

λ(p,q−n) (f) = 0 for n < q,

λ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .
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Now let L be a class of continuous non-negative functions α defined on
(−∞,+∞) such that α (x) = α (x0) ≥ 0 for x ≤ x0 with α (x) ↑ +∞ as x → +∞
and α ((1 + o(1)) x) = (1 + o(1))α (x) as x → +∞. We say that α ∈ L0, if α ∈ L

and α (cx) = (1 + o(1))α (x) as x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is
slowly increasing function. Clearly L0 ⊂ L.

Further we assume that throughout the present paper α, α1, α2, β, β1 and
β2 always denote the functions belonging to L0.

Considering this, the value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [12] generalized order (α,β) of an entire function f . For details about
generalized order (α,β) one may see [12]. During the past decades, several
authors made close investigations on the properties of entire functions related to
generalized order (α,β) in some different direction. For the purpose of further
applications, Biswas et al. [3] rewrite the definition of the generalized order
(α,β) of entire function in the following way after giving a minor modification
to the original definition (see, e.g. [12]) which considerably extend the definition
of ϕ-order of entire function introduced by Chyzhykov et al. [4]:

Definition 1.3. [3] The generalized order (α, β) and generalized lower order (α, β)
of an entire function f are defined as:

ρ(α,β)[f ] = lim sup
r→+∞

α (Mf (r))

β (r)
and λ(α,β)[f ] = lim inf

r→+∞

α (Mf (r))

β (r)
.

Since µf (r) ≤ Mf (r) ≤ R
R−r

µf (R) for 0 ≤ r < R {cf. [13] }, so it is easy to
see that

ρ(α,β)[f ] = lim sup
r→+∞

α (µf (r))

β (r)
and λ(α,β)[f ] = lim inf

r→+∞

α (µf (r))

β (r)
.

The function f is said to be of regular generalized (α, β) growth when general-
ized order (α, β) and generalized lower order (α, β) of f are the same. Functions
which are not of regular generalized (α, β) growth are said to be of irregular
generalized (α, β) growth.

Definition 1.1 is a special case of Definition 1.3 for α (r) = log[p] r and β (r) =

log[q] r.

In this connection we also introduce the following definition which will be
needed in the sequel:

Definition 1.4. An entire function f is said to have generalized index-pair (α, β)
if b < ρ(α,β)[f ] < +∞ and ρ(expα,exp β) [f ] is not a non-zero finite number, where
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b = 1 if α = β and b = 0 for otherwise. Moreover if 0 < ρ(α,β)[f ] < +∞, then
for any γ1 ∈ L and γ1(r) 6= r







































































ρ(γ1(α),β)[f ] = +∞ when γ1(α) ∈ L0

and lim
r→+∞

γ1(ρβ(r))
β(r)) = +∞ for any ρ < ρ(α,β)[f ],

ρ(γ1(α),β)[f ] = 0 when γ1(α) ∈ L0

and lim
r→+∞

γ1(ρ1β(r))
β(r)) = 0 for any ρ1 > ρ(α,β)[f ],

ρ(α,γ1(β))[f ] = +∞ when γ1(β) ∈ L0

and lim
r→+∞

ρβ(r)
γ1(β(r))

= +∞ for any ρ < ρ(α,β)[f ],

ρ(α,γ1(β))[f ] = 0 when γ1(β) ∈ L0

and lim
r→+∞

ρ1β(r)
γ1(β(r))

= 0 for any ρ1 > ρ(α,β)[f ],

ρ(γ1(α),γ1(β))[f ] = 1 when γ1 ∈ L0.

Similarly for 0 < λ(α,β)[f ] < +∞, one can easily verify that







































































λ(γ1(α),β)[f ] = +∞ when γ1(α) ∈ L
0

and lim
r→+∞

γ1(λβ(r))
β(r)) = +∞ for any λ < λ(α,β)[f ],

λ(γ1(α),β)[f ] = 0 when γ1(α) ∈ L
0

and lim
r→+∞

γ1(λ1β(r))
β(r)) = 0 for any λ1> λ(α,β)[f ],

λ(α,γ1(β))[f ] = +∞ when γ1(β) ∈ L
0

and lim
r→+∞

λβ(r)
γ1(β(r))

= +∞ for any λ < λ(α,β)[f ],

λ(α,γ1(β))[f ] = 0 when γ1(β) ∈ L
0

and lim
r→+∞

λ1β(r)
γ1(β(r))

= 0 for any λ1> λ(α,β)[f ],

λ(γ1(α),γ1(β))[f ] = 1 when γ1∈ L0.

Now in order to refine the growth scale namely the generalized order (α,β),
Biswas et al. [2] have introduced the definitions of another growth indicators,
called generalized type (α,β) and generalized lower type (α,β) respectively of an
entire function which are as follows:

Definition 1.5. [2] The generalized type (α,β) denoted by σ(α,β)[f ] and generalized
lower type (α,β) denoted by σ(α,β)[f ] of an entire function f having finite positive

generalized order (α, β)
(

0 < ρ(α,β)[f ] < +∞
)

are defined as:

σ(α,β)[f ] = lim sup
r→+∞

exp (α (Mf (r)))

(exp (β (r)))
ρ(α,β)[f ]

,

σ(α,β)[f ] = lim inf
r→+∞

exp (α (Mf (r)))

(exp (β (r)))
ρ(α,β)[f ]

.

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ +∞.
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Analogously, to determine the relative growth of two entire functions having
same non zero finite generalized lower order (α, β), Biswas et al. [2] have in-
troduced the definitions of generalized weak type (α,β) and generalized upper
weak type (α,β) of an entire function f of finite positive generalized lower order
(α, β), λ(α,β)[f ] in the following way:

Definition 1.6. [2] The generalized upper weak type (α,β) denoted by τ(α,β)[f ] and
generalized weak type (α,β) denoted by τ (α,β)[f ] of an entire function f having

finite positive generalized order (α, β)
(

0 < λ(α,β)[f ] < +∞
)

are defined as:

τ(α,β)[f ] = lim sup
r→+∞

exp (α (Mf(r)))

(exp (β (r)))
λ(α,β)[f ]

,

τ (α,β)[f ] = lim inf
r→+∞

exp (α (Mf(r)))

(exp (β (r)))
λ(α,β)[f ]

.

It is obvious that 0 ≤ τ (α,β)[f ] ≤ τ(α,β)[f ] ≤ +∞.

Using the characteristic of entire functions many researchers have already
contributed their works in the different directions of the present literature (see

[6, 8, 10]). For any two entire functions f and g the ratio
Mf (r)
Mg(r)

as r → +∞ and
µf (r)
µg(r)

as r → +∞ are called the growth of f with respect to g in terms of their

maximum modulus and the maximum term respectively. Actually the studies of
the growths of composite entire functions in the light of their generalized order
(α, β) and generalized type (α, β) after improving some results of [14] and [16]
are the prime concern of this paper.

2. Main Results

First of all we present a lemma which will be needed in the sequel.

Lemma 2.1. [5] Let f and g be any two entire functions with g (0) = 0. Also let

B satisfy 0 < B < 1 and c (B) = (1−B)2

4B . Then for all sufficiently large values
of r,

Mf (c (B)Mg (Br)) ≤ Mf◦g (r) ≤ Mf (Mg (r)) .

In addition if B = 1
2 , then for all sufficiently large values of r,

Mf◦g (r) ≥ Mf

(1

8
Mg

(r

2

))

.

Now we present the main results of this paper.
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Theorem 2.2. Let f and g be any two entire functions with generalized index-
pairs (α1,β1) and (α2,β2) respectively. Then

(i) the generalized index-pair of f ◦ g is (α1, β2) when β1 (r) = α2 (r) and
either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0. Also

(a) λ(α1,β1)[f ]ρ(α2,β2)[g] ≤ ρ(α1,β2)[f ◦ g] 6 ρ(α1,β1)[f ]ρ(α2,β2)[g] if
λ(α1,β1)[f ] > 0,

(b) λ(α1,β1)[f ]ρ(α2,β2)[g] ≤ ρ(α1,β2)[f ◦ g] 6 ρ(α1,β1)[f ]ρ(α2,β2)[g] if
λ(α2,β2)[g] > 0.

(ii) the generalized index-pair of f ◦ g is (α1,β1(α
−1
2 (β2))) when β1(α

−1
2 (r)) ∈

L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0. Also

(a) λ(α1,β1)[f ] ≤ ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] 6 ρ(α1,β1)[f ] if λ(α1,β1)[f ] > 0.

(b) ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ] if λ(α2,β2)[g] > 0.

(i) the generalized index-pair of f ◦ g is (α2(β
−1
1 (α1)),β2) when α2(β

−1
1 (r)) ∈

L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0. Also

(a) ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = ρ(α2,β2)[g] if λ(α1,β1)[f ] > 0.

(b) λ(α2,β2)[g] ≤ ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] 6 ρ(α2,β2)[g] if λ(α2,β2)[g] > 0.

Proof. In view of the first part of Lemma 2.1, it follows for all sufficiently large
values of r that

α1(Mf◦g (r)) ≥ (1 + o(1))
(

λ(α1,β1)[f ]− ε
)

β1

(

Mg

( r

2

))

(1)

and also for a sequence of values of r tending to infinity that

α1 (Mf◦g (r)) ≥ (1 + o(1))
(

ρ(α1,β1)[f ]− ε
)

)β1

(

Mg

(r

2

))

. (2)

Similarly, in view of the second part of Lemma 2.1, we have for all sufficiently
large values of r that

α1 (Mf◦g (r)) 6
(

ρ(α1,β1)[f ] + ε
)

β1 (Mg (r)) . (3)

Now the following two cases may arise:

Case I. Let β1 (r) = α2 (r).

Now we have from (3) for all sufficiently large values of r that

α1 (Mf◦g (r)) 6
(

ρ(α1,β1)[f ] + ε
) (

ρ(α2,β2)[g] + ε
)

β2 (r)

i.e., lim sup
r→+∞

α1 (Mf◦g (r))

β2 (r)
6 ρ(α1,β1)[f ]ρ(α2,β2)[g]. (4)

Also from (1), we obtain for a sequence of values of r tending to infinity that

α1 (Mf◦g (r)) ≥ (1 + o(1))
(

λ(α1,β1)[f ]− ε
) (

ρ(α2,β2)[g]− ε
)

β2 (r)

i.e., lim sup
r→+∞

α1 (Mf◦g (r))

β2 (r)
≥ λ(α1,β1)[f ]ρ(α2,β2)[g]. (5)
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Moreover, we have from (2) for a sequence of values of r tending to infinity that

α1 (Mf◦g (r)) ≥ (1 + o(1))
(

ρ(α1,β1)[f ]− ε
) (

λ(α2,β2)[g]− ε
)

β2 (r)

i.e., lim sup
r→+∞

α1 (Mf◦g (r))

β2 (r)
≥ ρ(α1,β1)[f ]λ(α2,β2)[g]. (6)

Therefore from (4) and (5), we get for λ(α1,β1)[f ] > 0 that

λ(α1,β1)[f ]ρ(α2,β2)[g] ≤ lim sup
r→+∞

α1 (Mf◦g (r))

β2 (r)
6 ρ(α1,β1)[f ]ρ(α2,β2)[g]

i.e., λ(α1,β1)[f ]ρ(α2,β2)[g] ≤ ρ(α1,β2) [f ◦ g] 6 ρ(α1,β1)[f ]ρ(α2,β2)[g]. (7)

Likewise, from (4) and (6), we obtain for λ(α2,β2)[g] > 0 that

ρ(α1,β1)[f ]λ(α2,β2)[g] ≤ lim sup
r→+∞

α1 (Mf◦g (r))

β2 (r)
6 ρ(α1,β1)[f ]ρ(α2,β2)[g]

i.e., ρ(α1,β1)[f ]λ(α2,β2)[g] ≤ ρ(α1,β2) [f ◦ g] 6 ρ(α1,β1)[f ]ρ(α2,β2)[g]. (8)

Also from (7) and (8) one can easily verify that

ρ(α1(γ
−1
1 ),β2)

[f ◦ g] = ∞

when α1(γ
−1
1 ) ∈ L0 and lim

r→+∞

α1(γ
−1
1 (r))

α1(r)
= +∞,

ρ(α1,β2(γ
−1
1 ))[f ◦ g] = 0

when β2

(

γ−1
1

)

∈ L0 and lim
r→+∞

β2(γ
−1
1 (r))

β2(r)
= +∞,

ρ(α1(γ1),β2(γ1))[f ◦ g] = 1

when lim
r→+∞

α1(γ1(r))
α1(r)

= 0 and lim
r→+∞

β2(γ1(r))
β2(r)

= 0.

Therefore we obtain that the generalized index-pair of f ◦ g is (α1, β2) when
β1 (r) = α2 (r) and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0 and thus the first
part of the theorem is established.

Case II. Let β1(α
−1
2 (r)) ∈ L0.

Now we obtain from (3) for all sufficiently large values of r that

α1 (Mf◦g (r)) 6
(

ρ(α1,β1)[f ] + ε
)

β1

(

α−1
2 (α2 (Mg (r)))

)

i.e., α1 (Mf◦g (r)) 6
(

ρ(α1,β1)[f ] + ε
)

β1

(

α−1
2

((

ρ(α2,β2)[g] + ε
)

β2 (r)
))

i.e., α1 (Mf◦g (r)) 6 (1 + o(1))
(

ρ(α1,β1)[f ] + ε
)

β1

(

α−1
2 (β2 (r))

)

i.e., lim
r→+∞

α1 (Mf◦g (r))

β1

(

α−1
2 (β2 (r))

) 6 ρ(α1,β1)[f ]. (9)

Also from (1), we have for a sequence of values of r tending to infinity that

α1 (Mf◦g (r)) ≥ (1 + o(1))
(

λ(α1,β1)[f ]− ε
)

β1

(

α−1
2

(

(

ρ(α2,β2)[g] + ε
)

β2

( r

2

)))
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i.e., α1 (Mf◦g (r)) ≥ (1 + o(1))
(

λ(α1,β1)[f ]− ε
)

β1

(

α−1
2 (β2 (r))

)

i.e., lim sup
r→+∞

α1 (Mf◦g (r))

β1

(

α−1
2 (β2 (r))

) ≥ λ(α1,β1)[f ]. (10)

Further, we get from (2) for a sequence of values of r tending to infinity that

α1 (Mf◦g (r))

≥ (1 + o(1))
(

ρ(α1,β1)[f ]− ε
)

β1

(

α−1
2

(

(

λ(α2,β2)[g]− ε
)

β2

(r

2

)))

i.e., α1 (Mf◦g (r)) ≥ (1 + o(1))
(

ρ(α1,β1)[f ]− ε
)

β1

(

α−1
2 (β2 (r))

)

i.e., lim sup
r→+∞

α1 (Mf◦g (r))

β1

(

α−1
2 (β2 (r))

) ≥ ρ(α1,β1)[f ]. (11)

Therefore from (9) and (10), we get for λ(α1,β1)[f ] > 0 that

λ(α1,β1)[f ] ≤ lim sup
r→+∞

α1 (Mf◦g (r))

β1

(

α−1
2 (β2 (r))

) 6 ρ(α1,β1)[f ]

i.e., λ(α1,β1)[f ] ≤ ρ(α1,β1(α−1
2 (β2))) [f ◦ g] 6 ρ(α1,β1)[f ]. (12)

Likewise, from (9) and (11) we get for λ(α2,β2)[g] > 0 that

ρ(α1,β1)[f ] ≤ lim sup
r→+∞

α1 (Mf◦g (r))

β1

(

α−1
2 (β2 (r))

) 6 ρ(α1,β1)[f ]

i.e., ρ(α1,β1(α−1
2 (β2))) [f ◦ g] = ρ(α1,β1)[f ]. (13)

Further from (12) and (13) one can easily verify that

ρ(α1(γ
−1
1 ),β1(α

−1
2 (β2)))

[f ◦ g] = ∞

when α1(γ
−1
1 ) ∈ L0 and lim

r→+∞

α1(γ
−1
1 (r))

α1(r)
= +∞,

ρ(α1,β1(α
−1
2 (β2(γ

−1
1 ))))[f ◦ g] = 0,

when β1(α
−1
2 (β2(γ

−1
1 ))) ∈ L0 and lim

r→+∞

β1(α
−1
2 (β2(γ

−1
1 (r))))

β1(α
−1
2 (β2(r)))

= +∞,

ρ(α1(γ1),β1(α
−1
2 (β2(γ1))))

[f ◦ g] = 1

when lim
r→+∞

α1(γ1(r))
α1(r)

= 0 and lim
r→+∞

β1(α
−1
2 (β2(γ1(r))))

β1(α
−1
2 (β2(r)))

= 0.

Therefore we get that the generalized index-pair of f ◦ g is
(

α1, β1

(

α−1
2 (β2)

))

when β1

(

α−1
2 (r)

)

∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0 and thus the
second part of the theorem follows.

Case III. Let α2(β
−1
1 (r)) ∈ L0.
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Then we obtain from (3) for all sufficiently large values of r that

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

≤ α2

(

β−1
1

((

ρ(α1,β1) [f ] + ε
)

β1 (Mg (r))
))

i.e., α2

(

β−1
1 (α1 (Mf◦g (r)))

)

6 (1 + o(1))α2 (Mg (r))

i.e., α2

(

β−1
1 (α1 (Mf◦g (r)))

)

6 (1 + o(1))
(

ρ(α2,β2)[g] + ε
)

β2 (r)

i.e., lim sup
r→+∞

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

β2 (r)
6 ρ(α2,β2)[g]. (14)

Also from (1) we have for a sequence of values of r tending to infinity that

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

≥ (1 + o(1)) β2

(

Mg

(r

2

))

i.e., α2

(

β−1
1 (α1 (Mf◦g (r)))

)

≥ (1 + o(1))
(

ρ(α2,β2)[g]− ε
)

)β2 (r)

lim sup
r→+∞

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

β2 (r)
≥ ρ(α2,β2)[g]. (15)

Similarly, we get from (2) for a sequence of values of r tending to infinity that

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

≥ (1 + o(1))
(

λ(α2,β2) [g]− ε
)

)β2 (r)

lim sup
r→+∞

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

β2 (r)
≥ λ(α2,β2) [g] . (16)

Therefore from (14) and (15), we obtain for λ(α1,β1)[f ] > 0 that

ρ(α2,β2) [g] ≤ lim sup
r→+∞

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

β2 (r)
6 ρ(α2,β2) [g]

i.e., ρ(α2(β−1
1 (α1)),β2) [f ◦ g] = ρ(α2,β2) [g] . (17)

Similarly, from (14) and (16) we get for λ(α2,β2) [g] > 0 that

λ(α2,β2)[g] ≤ lim sup
r→+∞

α2

(

β−1
1 (α1 (Mf◦g (r)))

)

β2 (r)
6 ρ(α2,β2)[g]

i.e., λ(α2,β2)[g] ≤ ρ(α2(β−1
1 (α1)),β2) [f ◦ g] 6 ρ(α2,β2)[g]. (18)

So from (17) and (18) one can easily verify that

ρ(α2(β
−1
1 (α1(γ

−1
1 ))),β2)

[f ◦ g] = ∞,

when α2(β
−1
1 (α1(γ

−1
1 ))) ∈ L0 and lim

r→+∞

α2(β
−1
1 (α1(γ

−1
1 (r))))

α2(β
−1
1 (α1(r)))

= +∞,

ρ(α2(β−1
1 (α1)),β2(γ−1

1 ))[f ◦ g] = 0,

when β2

(

γ−1
1

)

∈ L0 and lim
r→+∞

β2(γ−1
1 (r))

β2(r)
= +∞

ρ(α2(β
−1
1 (α1(γ1))),β2(γ1))

[f ◦ g] = 1,

when lim
r→+∞

α2(β
−1
1 (α1(γ1(r))))

α2(β
−1
1 (α1(r)))

= 0 and lim
r→+∞

β2(γ1(r))
β2(r)

= 0.
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So we obtain that the generalized index-pair of f ◦g is (α2(β
−1
1 (α1)),β2) when

α2(β
−1
1 (r)) ∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0 and thus the third

part of the theorem is established.

Theorem 2.3. Let f and g be any two entire functions with generalized index-
pairs (α1, β1) and (α2, β2) respectively.

(i) If β1 (r) = α2 (r), λ(α1,β1)[f ] > 0 and λ(α2,β2)[g] > 0, then

λ(α1,β1)[f ]λ(α2,β2)[g] ≤ λ(α1,β2)[f ◦ g]

≤ min
{

ρ(α1,β1)[f ]λ(α2,β2)[g], λ(α1,β1)[f ]ρ(α2,β2)[g]
}

.

(ii) If β1

(

α−1
2 (r)

)

∈ L0, λ(α1,β1)[f ] > 0 and λ(α2,β2)[g] > 0, then

λ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = λ(α1,β1) [f ] .

(iii) If α2

(

β−1
1 (r)

)

∈ L0, λ(α1,β1)[f ] > 0 and λ(α2,β2)[g] > 0, then

λ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = λ(α2,β2)[g].

In the line of Theorem 2.2 one can easily deduce the conclusion of Theorem 2.3
and so its proof is omitted.

Theorem 2.4. Let f and g be any two entire functions with generalized index-
pairs (α1, β1) and (α2, β2) respectively.

(i) If β1 (r) = α2 (r) and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]

≤ lim inf
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤ min
{λ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]

}

≤ max
{λ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]

}

≤ lim sup
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤
ρ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
.
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(ii) If β1(α
−1
2 (r)) ∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α1,β1(α
−1
2 (β2)))

[f ◦ g]

ρ(α1,β1)[f ]

≤ lim inf
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r)))))

≤ min
{λ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

ρ(α1,β1)[f ]

}

≤ max
{λ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

ρ(α1,β1)[f ]

}

≤ lim sup
r→+∞

α1(Mf◦g(r))

α1(Mf(β
−1
1 (β1(α

−1
2 (β2(r)))))

≤
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α1,β1)[f ]
.

(iii) If α2(β
−1
1 (r)) ∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α2(β
−1
1 (α1)),β2)

[f ◦ g]

ρ(α1,β1)[f ]

≤ lim inf
r→+∞

α2(β
−1
1 (α1(Mf◦g(r))))

α1(Mf (β
−1
1 (β2(r))))

≤ min
{λ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

ρ(α1,β1)[f ]

}

≤ max
{λ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α1,β1)[f ]
,
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

ρ(α1,β1)[f ]

}

≤ lim sup
r→+∞

α2(β
−1
1 (α1(Mf◦g(r))))

α1(Mf (β
−1
1 (β2(r)))))

≤
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α1,β1)[f ]
.

Proof. Let β1 (r) = α2 (r) and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0. Then in
view of Theorem 2.2, the generalized index-pair of f ◦ g is (α1,β2).

Now from the definition of ρ(α1,β1)[f ] and λ(α1,β2)[f ◦g], we have for arbitrary
positive ε and for all sufficiently large positive numbers of r that

α1(Mf◦g(r)) >
(

λ(α1,β2)[f ◦ g]− ε
)

β2(r), (19)

α1(Mf (β
−1
1 (β2(r)))) ≤

(

ρ(α1,β1)[f ] + ε
)

β2(r). (20)

Now from (19) and (20), it follows for all sufficiently large positive numbers of
r that

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

>

(

λ(α1,β2)[f ◦ g]− ε
)

β2(r)
(

ρ(α1,β1)[f ] + ε
)

β2(r)
.



24 T. Biswas and C. Biswas

As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

>
λ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]
. (21)

Again we get for a sequence of positive numbers of r tending to infinity that

α1(Mf◦g(r)) ≤
(

λ(α1,β2)[f ◦ g] + ε
)

β2(r) (22)

and for all sufficiently large positive numbers of r that

α1(Mf (β
−1
1 (β2(r)))) >

(

λ(α1,β1)[f ]− ε
)

β2(r). (23)

Combining (22) and (23), we get for a sequence of positive numbers of r tending
to infinity that

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤

(

λ(α1,β2)[f ◦ g] + ε
)

β2(r)
(

λ(α1,β1)[f ]− ε
)

β2(r)
.

Since ε (> 0) is arbitrary, it follows that

lim inf
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤
λ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
. (24)

Also for a sequence of positive numbers of r tending to infinity that

α1(Mf (β
−1
1 (β2(r)))) ≤

(

λ(α1,β1)[f ] + ε
)

β2(r). (25)

Now from (19) and (25), we obtain for a sequence of positive numbers of r

tending to infinity that

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≥

(

λ(α1,β2)[f ◦ g]− ε
)

β2(r)
(

λ(α1,β1)[f ] + ε
)

β2(r)
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≥
λ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
. (26)

Also we obtain for all sufficiently large positive numbers of r that

α1(Mf◦g(r)) ≤
(

ρ(α1,β2)[f ◦ g] + ε
)

β2(r). (27)

Now it follows from (23) and (27) for all sufficiently large positive numbers of r
that

α1(Mf◦g(r))

α1(Mf(β
−1
1 (β2(r))))

≤

(

ρ(α1,β2)[f ◦ g] + ε
)

β2(r)
(

λ(α1,β1)[f ]− ε
)

β2(r)
.
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Since ε (> 0) is arbitrary, we obtain that

lim sup
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤
ρ(α1,β2)[f ◦ g]

λ(α1,β1)[f ]
. (28)

Further from the definition of ρ(α1,β1)[f ], we get for a sequence of positive
numbers of r tending to infinity that

α1(Mf (β
−1
1 (β2(r)))) >

(

ρ(α1,β1)[f ]− ε
)

β2(r). (29)

Now from (27) and (29), it follows for a sequence of positive numbers of r tending
to infinity that

α1(Mf◦g(r))

α1(Mf(β
−1
1 (β2(r))))

≤

(

ρ(α1,β2)[f ◦ g] + ε
)

β2(r)
(

ρ(α1,β1)[f ]− ε
)

β2(r)
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

≤
ρ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]
. (30)

Again we obtain for a sequence of positive numbers of r tending to infinity that

α1(Mf◦g(r)) >
(

ρ(α1,β2)[f ◦ g]− ε
)

β2(r). (31)

So combining (20) and (31), we get for a sequence of positive numbers of r

tending to infinity that

α1(Mf◦g(r))

α1(Mf(β
−1
1 (β2(r))))

>

(

ρ(α1,β2)[f ◦ g]− ε
)

β2(r)
(

ρ(α1,β1)[f ] + ε
)

β2(r)
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→+∞

α1(Mf◦g(r))

α1(Mf (β
−1
1 (β2(r))))

>
ρ(α1,β2)[f ◦ g]

ρ(α1,β1)[f ]
. (32)

Thus the first part of the theorem follows from (21),(24),(26), (28), (30) and
(32).

Analogously, the second and third part of the theorem can be derived in a
like manner.

The following theorem can be proved in the line of Theorem 2.4 and so its
proof is omitted.

Theorem 2.5. Let f and g be any two entire functions with generalized index-
pairs (α1, β1) and (α2,β2) respectively.
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(i) If β1 (r) = α2 (r) and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α1,β2)[f ◦ g]

ρ(α2,β2)[g]
≤ lim inf

r→+∞

α1(Mf◦g(r))

α2(Mg(r))

≤ min
{λ(α1,β2)[f ◦ g]

λ(α2,β2)[g]
,
ρ(α1,β2)[f ◦ g]

ρ(α2,β2)[g]

}

≤ max
{λ(α1,β2)[f ◦ g]

λ(α2,β2)[g]
,
ρ(α1,β2)[f ◦ g]

ρ(α2,β2)[g]

}

≤ lim sup
r→+∞

α1(Mf◦g(r))

α2(Mg(r))
≤

ρ(α1,β2)[f ◦ g]

λ(α2,β2)[g]
.

(ii) If β1(α
−1
2 (r)) ∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α1,β1(α
−1
2 (β2)))

[f ◦ g]

ρ(α2,β2)[g]

≤ lim inf
r→+∞

α1(Mf◦g(r))

α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r))))))

≤ min
{λ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α2,β2)[g]
,
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

ρ(α2,β2)[g]

}

≤ max
{λ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α2,β2)[g]
,
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

ρ(α2,β2)[g]

}

≤ lim sup
r→+∞

α1(Mf◦g(r))

α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r))))))

≤
ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

λ(α2,β2)[g]
.

(iii) If α2(β
−1
1 (r)) ∈ L0 and either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, then

λ(α2(β
−1
1 (α1)),β2)

[f ◦ g]

ρ(α2,β2)[g]

≤ lim inf
r→+∞

α2(β
−1
1 (α1(Mf◦g(r))))

α2(Mg(r))

≤ min
{λ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α2,β2)[g]
,
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

ρ(α2,β2)[g]

}

≤ max
{λ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α2,β2)[g]
,
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

ρ(α2,β2)[g]

}

≤ lim sup
r→+∞

α2(β
−1
1 (α1(Mf◦g(r))))

α2(Mg(r))

≤
ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

λ(α2,β2)[g]
.
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Remark 2.6. The same results of Theorems 2.4 and 2.5 in terms of maximum
terms of entire functions can also be deduced with the help of Definition 1.3.

The proofs of the following four theorems can be carried out as of Theo-
rem 2.4, therefore we omit the details.

Theorem 2.7. Let f and g be any two entire functions with generalized index-
pairs (α1, β1) and (α2, β2) respectively.
(i) If β1 (r) = α2 (r), either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 < σ(α1,β2)[f ◦

g] ≤ σ(α1,β2)[f◦g] < ∞, 0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ] < ∞ and ρ(α1,β2)[f◦g]
= ρ(α1,β1)[f ], then

σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]

≤ lim inf
r→+∞

exp (α1(Mf◦g(r)))

exp
(

α1(Mf (β
−1
1 (β2(r)))))

)

≤ min
{σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]
,
σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]

}

≤ max
{σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]
,
σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]

}

≤ lim sup
r→+∞

exp (α1(Mf◦g(r)))

exp
(

α1(Mf (β
−1
1 (β2(r)))))

)

≤
σ(α1,β2)[f ◦ g]

σ(α1,β1)[f ]
.

(ii) If β1(α
−1
2 (r)) ∈ L0, either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 <

σ(α1,β1(α
−1
2 (β2)))

[f ◦ g] ≤ σ(α1,β1(α
−1
2 (β2)))

[f ◦ g] < ∞, 0 < σ(α1,β1)[f ] ≤

σ(α1,β1)[f ] < ∞ and ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ], then

σ(α1,β1(α
−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]

≤ lim inf
r→+∞

exp (α1(Mf◦g(r)))

exp
(

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r))))))

)

≤ min
{σ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]
,
σ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]

}

≤ max
{σ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]
,
σ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]

}

≤ lim sup
r→+∞

exp (α1(Mf◦g(r)))

exp
(

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r))))))

)

≤
σ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

σ(α1,β1)[f ]
.
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(iii) If α2(β
−1
1 (r)) ∈ L0, either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 <

σ(α2(β
−1
1 (α1)),β2)

[f ◦ g] ≤ σ(α2(β
−1
1 (α1)),β2)

[f ◦ g] < ∞, 0 < σ(α1,β1)[f ] ≤

σ(α1,β1)[f ] < ∞ and ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ], then

σ(α2(β
−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]

≤ lim inf
r→+∞

exp(α2(β
−1
1 (α1(Mf◦g(r)))))

exp(α1(Mf (β
−1
1 (β2(r)))))

≤ min
{σ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]
,
σ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]

}

≤ max
{σ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]
,
σ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]

}

≤ lim sup
r→+∞

exp(α2(β
−1
1 (α1(Mf◦g(r)))))

exp(α1(Mf (β
−1
1 (β2(r)))))

≤
σ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

σ(α1,β1)[f ]
.

Remark 2.8. In Theorem 2.7 (i), if we replace the conditions “0 < σ(α1,β1)[f ]
≤ σ(α1,β1)[f ] < ∞” and “ρ(α1,β2)[f ◦ g] = ρ(α1,β1)[f ]” by “0 < σ(α2,β2)[g] ≤
σ(α2,β2)[g] < ∞” and “ρ(α1,β2)[f ◦ g] = ρ(α2,β2)[g]” respectively and other con-
ditions remain the same, then the conclusion of Theorem 2.7 (i) remains valid
with “σ(α2,β2)[g]”, “σ(α2,β2)[g]” and “exp(α2(Mg(r)))” instead of “σ(α1,β1)[f ]”,

“σ(α1,β1)[f ]” and “exp(α1(Mf (β
−1
1 (β2(r)))))” respectively.

In Theorem 2.7 (ii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < σ(α2,β2)[g] ≤ σ(α2,β2)[g]

< ∞” and “ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = ρ(α2,β2)[g]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7 (ii) remains valid
with “σ(α2,β2)[g]”, “σ(α2,β2)[g]” and “exp(α2(Mg(β

−1
2 (β1(α

−1
2 (β2(r)))))))” in-

stead of “σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp
(

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r))))))

)

”
respectively.

In Theorem 2.7 (iii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < σ(α2,β2)[g] ≤ σ(α2,β2)[g]

< ∞” and “ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = ρ(α2,β2)[g]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7 (iii) remains valid
with “σ(α2,β2)[g]”, “σ(α2,β2)[g]” and “exp(α2(Mg(r)))” instead of “σ(α1,β1)[f ]”,

“σ(α1,β1)[f ]” and “exp(α1(Mf (β
−1
1 (β2(r)))))” respectively.

Remark 2.9. In Theorem 2.7 (i), if we replace the conditions “0 < σ(α1,β1)[f ]
≤ σ(α1,β1)[f ] < ∞” and “ρ(α1,β2)[f ◦ g] = ρ(α1,β1)[f ]” by “0 < τ (α1,β1)[f ] ≤
τ(α1,β1)[f ] < ∞” and “ρ(α1,β2)[f ◦ g] = λ(α1,β1)[f ]” respectively and other condi-
tions remain the same, then the conclusion of Theorem 2.7 (i) remains valid with
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“τ(α1,β1)[f ]”, “τ (α1,β1)[f ]” and “exp
(

α1(Mf (β
−1
1 (β2(r)))))

)

” instead of

“σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp(α1(Mf (β
−1
1 (β2(r)))))” respectively.

In Theorem 2.7 (ii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < τ (α1,β1)[f ] ≤ τ(α1,β1)[f ]

< ∞” and “ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = λ(α1,β1)[f ]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7(ii) remains valid
with “τ(α1,β1)[f ]”, “τ (α1,β1)[f ]” and “exp

(

α1(Mf(β
−1
1 (β1(α

−1
2 (β2(r))))))

)

” in-

stead of “σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp
(

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r))))))

)

”
respectively.

In Theorem 2.7 (iii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < τ (α1,β1)[f ] ≤ τ(α1,β1)[f ]

< ∞” and “ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = λ(α1,β1)[f ]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7(iii) remains valid
with “τ(α1,β1)[f ]” and “τ (α1,β1)[f ]” instead of “σ(α1,β1)[f ]” and “σ(α1,β1)[f ]” re-
spectively.

Remark 2.10. In Theorem 2.7 (i), if we replace the conditions “0 < σ(α1,β1)[f ] ≤
σ(α1,β1)[f ]< ∞” and “ρ(α1,β2)[f◦g] = ρ(α1,β1)[f ]” by “0 < τ (α2,β2)[g]≤ τ(α2,β2)[g]
< ∞” and “ρ(α1,β2)[f ◦g] = λ(α2,β2)[g]” respectively and other conditions remain
the same, then the conclusion of Theorem 2.7 (i) remains valid with “τ(α2,β2)[g]”,
“τ (α2,β2)[g]” and “exp(α2(Mg(r)))” instead of “σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and

“exp(α1(Mf (β
−1
1 (β2(r)))))” respectively.

In Theorem 2.7 (ii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α1,β1(α

−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g]

< ∞” and “ρ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = λ(α2,β2)[g]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7(ii) remains valid with
“τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(β

−1
2 (β1(α

−1
2 (β2(r)))))))” instead of

“σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp
(

α1(Mf (β
−1
1 (β1(α

−1
2 (β2(r))))))

)

” respec-
tively.

In Theorem 2.7 (iii), if we replace the conditions “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]
< ∞” and “ρ(α2(β

−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ]” by “0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g]

< ∞” and “ρ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = λ(α2,β2)[g]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.7 (iii) remains valid
with “τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(r)))” instead of “σ(α1,β1)[f ]”,

“σ(α1,β1)[f ]” and “exp(α1(Mf (β
−1
1 (β2(r)))))” respectively.

Analogously one may formulate the following theorem without its proof.

Theorem 2.11. Let f and g be any two entire functions with generalized index-
pairs (α1,β1) and (α2,β2) respectively.

(i) If β1 (r) = α2 (r), either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 < τ (α1,β2)[f◦g]
≤ τ(α1,β2)[f ◦ g] < ∞, 0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g] < ∞ and λ(α1,β2)[f ◦ g]
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= λ(α2,β2)[g] then

τ (α1,β2)[f ◦ g]

τ(α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(Mf◦g(r)))

exp(α2(Mg(r)))

≤ min
{τ (α1,β2)[f ◦ g]

τ (α2,β2)[g]
,
τ(α1,β2)[f ◦ g]

τ(α2,β2)[g]

}

≤ max
{τ (α1,β2)[f ◦ g]

τ (α2,β2)[g]
,
τ(α1,β2)[f ◦ g]

τ(α2,β2)[g]

}

≤ lim sup
r→+∞

exp(α1(Mf◦g(r)))

exp(α2(Mg(r)))

≤
τ(α1,β2)[f ◦ g]

τ (α2,β2)[g]
.

(ii) If β1(α
−1
2 (r)) ∈ L0, either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 <

τ (α1,β1(α
−1
2 (β2)))

[f ◦ g] ≤ τ(α1,β1(α
−1
2 (β2)))

[f ◦ g] < ∞, 0 < τ (α2,β2)[g] ≤

τ(α2,β2)[g] < ∞ and λ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = λ(α2,β2)[g] then

τ (α1,β1(α
−1
2 (β2)))

[f ◦ g]

τ(α2,β2)[g]

≤ lim inf
r→+∞

exp(α1(Mf◦g(r)))

exp(α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r)))))))

≤ min
{τ (α1,β1(α

−1
2 (β2)))

[f ◦ g]

τ (α2,β2)[g]
,
τ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

τ(α2,β2)[g]

}

≤ max
{τ (α1,β1(α

−1
2 (β2)))

[f ◦ g]

τ (α2,β2)[g]
,
τ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

τ(α2,β2)[g]

}

≤ lim sup
r→+∞

exp(α1(Mf◦g(r)))

exp(α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r)))))))

≤
τ(α1,β1(α

−1
2 (β2)))

[f ◦ g]

τ (α2,β2)[g]
.

(iii) If α2(β
−1
1 (r)) ∈ L0, either λ(α1,β1)[f ] > 0 or λ(α2,β2)[g] > 0, 0 <

τ (α2(β
−1
1 (α1)),β2)

[f ◦ g] ≤ τ(α2(β
−1
1 (α1)),β2)

[f ◦ g] < ∞, 0 < τ (α2,β2)[g] ≤

τ(α2,β2)[g] < ∞ and λ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = λ(α2,β2)[g] then

τ (α2(β
−1
1 (α1)),β2)

[f ◦ g]

τ(α2,β2)[g]

≤ lim inf
r→+∞

exp(α2(β
−1
1 (α1(Mf◦g(r)))))

exp(α2(Mg(r)))
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≤ min
{τ (α2(β

−1
1 (α1)),β2)

[f ◦ g]

τ (α2,β2)[g]
,
τ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

τ(α2,β2)[g]

}

≤ max
{τ (α2(β

−1
1 (α1)),β2)

[f ◦ g]

τ (α2,β2)[g]
,
τ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

τ(α2,β2)[g]

}

≤ lim sup
r→+∞

exp(α2(β
−1
1 (α1(Mf◦g(r)))))

exp(α2(Mg(r)))

≤
τ(α2(β

−1
1 (α1)),β2)

[f ◦ g]

τ (α2,β2)[g]
.

Remark 2.12. In Theorem 2.11 (i), if we replace the conditions “0 < τ (α2,β2)[g]
≤ τ(α2,β2)[g] < ∞” and “λ(α1,β2)[f ◦ g] = λ(α2,β2)[g]” by “0 < τ (α1,β1)[f ] ≤
τ(α1,β1)[f ] < ∞” and “λ(α1,β2)[f ◦ g] = λ(α1,β1)[f ]” respectively and other condi-
tions remain the same, then the conclusion of Theorem 2.11 (i) remains valid with
“τ(α1,β1)[f ]”, “τ (α1,β1)[f ]” and “exp

(

α1(Mf (β
−1
1 (β2(r)))))

)

” instead of “τ(α2,β2)[g]”,
“τ (α2,β2)[g]” and “exp(α2(Mg(r)))” respectively.

In Theorem 2.11 (ii), if we replace the conditions “0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g]
< ∞” and “λ(α1,β1(α

−1
2 (β2)))

[f ◦ g] = λ(α2,β2)[g]” by “0 < τ (α1,β1)[f ] ≤ τ(α1,β1)[f ]

< ∞” and “λ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = λ(α1,β1)[f ]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.11 (ii) remains valid
with “τ(α1,β1)[f ]”, “τ (α1,β1)[f ]” and “exp

(

α1(Mf(β
−1
1 (β1(α

−1
2 (β2(r))))))

)

” in-

stead of “τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r)))))))” re-

spectively.

In Theorem 2.11 (iii), if we replace the conditions “0 < τ (α2,β2)[g]≤ τ(α2,β2)[g]
< ∞” and “λ(α2(β

−1
1 (α1)),β2)

[f ◦ g] = λ(α2,β2)[g]” by “0 < τ (α1,β1)[f ] ≤ τ(α1,β1)[f ]

< ∞” and “λ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = λ(α1,β1)[f ]” respectively and other con-

ditions remain the same, then the conclusion of Theorem 2.11 (iii) remains
valid with “τ(α1,β1)[f ]”, “τ (α1,β1)[f ]” and “exp(α1(Mf (β

−1
1 (β2(r)))))” instead

of “τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(r)))” respectively.

Remark 2.13. In Theorem 2.11 (i), if we replace the conditions “0 < τ (α2,β2)[g]
≤ τ(α2,β2)[g] < ∞” and “λ(α1,β2)[f ◦ g] = λ(α2,β2)[g]” by “0 < σ(α1,β1)[f ] ≤
σ(α1,β1)[f ] < ∞” and “λ(α1,β2)[f ◦ g] = ρ(α1,β1)[f ]” respectively and other con-
ditions remain the same, then the conclusion of Theorem 2.11 (i) remains valid
with “σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp

(

α1(Mf (β
−1
1 (β2(r)))))

)

” instead of
“τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(r)))” respectively.

In Theorem 2.11 (ii), if we replace the conditions “0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g]
< ∞” and “λ(α1,β1(α

−1
2 (β2)))

[f ◦g] = λ(α2,β2)[g]” by “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]

< ∞” and “λ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = ρ(α1,β1)[f ]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.11 (ii) remains valid
with “σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp

(

α1(Mf(β
−1
1 (β1(α

−1
2 (β2(r))))))

)

” in-

stead of “τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(β
−1
2 (β1(α

−1
2 (β2(r)))))))” re-

spectively.
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In Theorem 2.11 (iii), if we replace the conditions “0 < τ (α2,β2)[g]≤ τ(α2,β2)[g]
< ∞” and “λ(α2(β

−1
1 (α1)),β2)

[f ◦g] = λ(α2,β2)[g]” by “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]

< ∞” and “λ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ]” respectively and other con-

ditions remain the same, then the conclusion of Theorem 2.11 (iii) remains
valid with ““σ(α1,β1)[f ]”, “σ(α1,β1)[f ]” and “exp(α1(Mf (β

−1
1 (β2(r)))))”instead

of “τ(α2,β2)[g]”, “τ (α2,β2)[g]” and “exp(α2(Mg(r)))” respectively.

Remark 2.14. In Theorem 2.11 (i), if we replace the conditions “0 < τ (α2,β2)[g] ≤
τ(α2,β2)[g]< ∞” and “λ(α1,β2)[f◦g] = λ(α2,β2)[g]” by “0 < σ(α2,β2)[g]≤ σ(α2,β2)[g]
< ∞ ” and “λ(α1,β2)[f ◦g] = ρ(α2,β2)[g]” respectively and other conditions remain
the same, then the conclusion of Theorem 2.11 (i) remains valid with “σ(α2,β2)[g]”
and “σ(α2,β2)[g]” instead of “τ(α2,β2)[g]”, and “τ (α2,β2)[g]” respectively.

In Theorem 2.11 (ii), if we replace the conditions “0 < τ (α2,β2)[g] ≤ τ(α2,β2)[g]
< ∞” and “λ(α1,β1(α

−1
2 (β2)))

[f ◦ g] = λ(α2,β2)[g]” by “0 < σ(α2,β2)[g] ≤ σ(α2,β2)[g]

< ∞” and “λ(α1,β1(α
−1
2 (β2)))

[f ◦ g] = ρ(α2,β2)[g]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.11 (ii) remains valid
with “σ(α2,β2)[g]” and “σ(α2,β2)[g]” instead of “τ(α2,β2)[g]”, and “τ (α2,β2)[g]” re-
spectively.

In Theorem 2.11 (iii), if we replace the conditions “0 < τ (α2,β2)[g]≤ τ(α2,β2)[g]
< ∞” and “λ(α2(β

−1
1 (α1)),β2)

[f ◦g] = λ(α2,β2)[g]” by “0 < σ(α1,β1)[f ] ≤ σ(α1,β1)[f ]

< ∞” and “λ(α2(β
−1
1 (α1)),β2)

[f ◦ g] = ρ(α1,β1)[f ]” respectively and other condi-

tions remain the same, then the conclusion of Theorem 2.11 (iii) remains valid
with “σ(α2,β2)[g]” and “σ(α2,β2)[g]” instead of “τ(α2,β2)[g]”, and “τ (α2,β2)[g]” re-
spectively.
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