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Abstract. In 2016, Facchini and Nazemian defined the notion of iso-Artinian and iso-
Noetherian modules and rings. We discuss some new properties of iso-Artinian and
iso-Noetherian rings and modules. We also generalize the notion of iso-Artinian (iso-
Noetherian) and introduced the notion of mono-Artinian (mono-Noetherian) rings and
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modules and rings.
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1. Introduction

Some notions in the “Theory of Rings and Modules” made a deep impact on
us. The one example of it is the notions of chain conditions, introduced by
the great mathematicians Noether and Artin. We can realize the importance of
these by the fact that many people are still working on these notions and their
generalizations (for some examples, see [2, 12, 13, 15, 16, 17, 22, 23, 24, 25, 27,
28, 29], etc.). Therefore, during the period a rich theory has been developed. As
an example of recent developments, the term iso-Noetherian (iso-Artinian) was
coined by Facchini and Nazemian in [15]. They studied a class of modules (rings),
where any chain is stationary in the sense of isomorphism (i.e. instead of equality
of submodules as in the case of ACC and DCC). In [12], authors generalized these

∗Corresponding Author



36 A.K. Chaturvedi and S. Prakash

notions to epi-ACC (epi-DCC) and studied the class of modules in which the
chain is stationary in the sense of epimorphism. In [23], we call these notions as
epi-Noetherian (epi-Artinian) and studied various properties over these notions.
In the present work, we continued our study of these modules. By the motivation,
in the final section, we have introduced the idea of mono-Artinian and mono-
Noetherian rings and modules.

In the Section 2, we discuss some properties of iso-Noetherian and iso-Arti-
nian rings. In [6], authors defined the notion of virtually semisimple module. We
show that every semiprime right iso-Artinian ring is generated by iso-retractable
right ideals (Theorem 2.5 (4)). In general, iso-Noetherian modules need not be
virtually semisimple and vice versa. We provide some examples. We know that
the notions of iso-Noetherian and Noetherian are not equivalent in general. But,
if we take virtually semisimple module then both notions are same; i.e. if M
is virtually semisimple then M is iso-Noetherian if and only if M is Noethe-
rian (Proposition 2.6). We finish this section with the results involving some
properties related to fe-module that is a module with finitely many essential
submodules. In Theorem 2.9, we show that if M is fe-module such that soc(M)
is iso-Noetherian, then M is Noetherian.

In the Section 3, we define the notion of mono-Artinian and mono-Noetherian
rings and modules that are dual to epi-Artinian and epi-Noetherian. Also,
they generalize the notions of iso-Artinian and iso-Noetherian. We investigate
some general properties of mono-Artinian (mono-Noetherian) rings and mod-
ules. We show the existance of mono-Artinian (mono-Noetherian) modules over
hereditary ring. We show that a finite direct product of mono-Artinian (mono-
Noetherian) rings is mono-Artinian (mono-Noetherian). But the direct sum of
two mono-Artinian (mono-Noetherian) modules is not necessarily mono-Artinian
(mono-Noetherian). Over a commutative ring R, if the sum of annihilator ide-
als of two mono-Artinian (mono-Noetherian) modules is the ring R, then their
direct sum is the mono-Artinian (mono-Noetherian) module. If R is a mono-
Artinian ring, then we show that R satisfies ACC on right (left) annihilator
ideals, Z(RR) is nilpotent and every nonzero nil left (right) ideal of R contains
a nonzero nilpotent left (right) ideal.

Trivially, every iso-Artinian (iso-Noetherian) modules are examples of mono-
Artinian (mono-Noetherian). But every mono-Artinian (mono-Noetherian) need
not be iso-Artinian (iso-Noetherian). For example, every compressible module
which is not iso-retractable is mono-Artinian but not iso-Artinian. We show
the existance of mono-Artinian (mono-Noetherian) modules over a hereditary
ring. We also prove that the direct sum of two R-modules M and K is mono-
Artinian (mono-Noetherian) if M is mono-Artinian (mono-Noetherian) and K
is projective iso-retractable or K is iso-retractable and M ⊕ K is distributive.
We find the structure of an essential ideal of a mono-Artinian ring. Further, we
discuss some properties of semiprime mono-Artinian (mono-Noetherian) rings.
We prove that a right mono-Artinian (mono-Noetherian) integral domain is a
right ore domain.

The notations N ≤ M , N ≤e M means N is a submodule, an essential sub-
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module of M , respectively and I-soc(M), I-rad(R), u.dim(M) denotes iso-socle
of M , iso-radical of R, uniform dimention of M , respectively. Unless otherwise
stated, we assume rings as associative with unity and modules as unitary right
modules. We refer [1, 20, 30] for undefined terms and notions.

2. Iso-Noetherian and Iso-Artinian Rings and Modules

In the following, we discuss structure of any essential submodule of an iso-
Noetherian module in terms of uniform submodules.

Theorem 2.1. Let M be a nonzero iso-Noetherian R-module. Then the following
statements hold:
(1) Every submodule of M contains a uniform submodule.

(2) If M is injective, then M is a direct sum of finitely many indecomposable
injective modules.

Proof. (1). Since every submodule of an iso-Noetherian module is iso-Noethe-
rian, it is sufficient to show that M contains a uniform submodule. If M is
uniform, then nothing to prove. If not, M contains a direct sum of two nonzero
submodules, say M = M0 ⊇ M1 ⊕M ′

1. If either of M1 or M ′
1 is uniform, then

nothing to prove. If not, we repeat this argument forM1. We getM2,M3,M4, . . .
and a direct sumM ′

1⊕M
′
2⊕M

′
3⊕. . .. SinceM is iso-Noetherian, u.dim(M) <∞

by [15, Proposition 5.1]. Due to the finite uniform dimension this process must
stop after k steps and the submodule Mk is uniform.

(2). SinceM is iso-Noetherian, u.dim(M) is finite. It follows from [20, Propo-
sition 6.12] that M is a direct sum of finite indecomposable injective modules.

In [9, 8], first author defined the notion of iso-retractable modules and calls a
module M iso-retractable if every nonzero submodule of M is isomorphic to M .
In [15], authors call this notion by isosimple and in [6] virtually simple. In [14],
authors defined the notion of I-soc(M) as the sum of isosimple submodules of an
R-module M . In the following result we provide a characterization of I-soc(M)
when it is essential.

Proposition 2.2. Let M be an R-module. Every nonzero submodule of M con-
tains an iso-retractable submodule if and only if I-soc(M) ≤e M .

Proof. Let N be a nonzero submodule ofM . Then N contains an iso-retractable
submodule. Thus N ∩ I-soc(M) 6= 0. Therefore, I-soc(M) ≤e M . Conversely
suppose I-soc(M) ≤e M . Let N be a nonzero submodule of M . Then N ∩ I-
soc(M) 6= 0. Thus N ∩ I-soc(M), being a submodule of I-soc(M), has an
iso-retractable submodule. It follows that N has an iso-retractable submodule.
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Corollary 2.3. Let M be an iso-Artinian R-module. Then I-soc(M) ≤e M .

Proof. Since M is iso-Artinian, therefore every submodule of M is iso-Artinian.
Thus every submodule of M contains an iso-retractable submodule. Now the
result follows from Proposition 2.2.

Definition 2.4. [6, Definition 1.1] An R-module M is virtually semisimple if each
submodule of M is isomorphic to a direct summand of M . If each submodule of
M is virtually semisimple module, we call M completely virtually semisimple.

Recall, a ringR is semiprime if (0) is a semiprime ideal ofR. If we consider the
ring Z4, then trivially Z4 is iso-Artinian (iso-Noetherian) but it is not semiprime.
A ring R is said to be a right Goldie ring if it satisfies the ascending chain
condition on right annihilators and u.dim(RR) < ∞. We call a ring R Goldie
ring if it is both left and right Goldie. We note that for a semiprime ring
l.ann(A) = r.ann(A) = ann(A) for any ideal A of R. We know that every right
Artinian ring is right Noetherian. We have the following theorem:

Theorem 2.5. Let R be a semiprime right iso-Artinian ring. Then

(1) R is a right Noetherian ring.

(2) Every projective R-module M is completely virtually semisimple.

(3) I-soc(M) =M , for every R-module M .

(4) R is generated by iso-retractable right ideals and I-rad(R) = 0.

Proof. (1). Since R is a semiprime right iso-Artinian ring, R satisfies ACC on
annihilators. Therefore R satisfies ACC on right annihilators because every right
annihilator is two sided annihilator. It follows by [20, Proposition 11.43] that
R satisfies ACC on right complement. Therefore, u.dim(RR) < ∞ (see [20,
Proposition (6.30)’]). So, R is a right Goldie ring and hence R is a finite direct
sum of iso-retractable right ideals. Since every iso-retractable right ideal is right
Noetherian, R is right Noetherian because R is direct sum of finitely many right
Noetherian.

(2). Since R is a semiprime right iso-Artinian ring, by [23, Proposition 2.7],
R is a direct sum of iso-retractable right ideals. It follows by [6, Theorem 3.11]
that R is a right completely virtually semisimple ring. Hence by [6, Prop. 3.3],
every projective right R-module is completely virtually semisimple.

(3). Since R is a semiprime right iso-Artinian ring, it is right nonsingular (see
[15, Lemma 4.3]). Therefore, R is a direct sum of iso-retractable right ideals. By
[14, Lemma 4.4], I-soc(RR) = RR. Thus, R is generated by iso-retractable right
ideals. Further due to RR projective, I-rad(R) = 0 by [14, Remark 4.3(5)].

(4). Since R is a semiprime right iso-Artinian ring, it is a direct sum of iso-
retractable right ideals. It follows by Theorem 2.5 (3) and [14, Theorem 4.9],
I-soc(M) =M , for every right R-module M .
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In general, iso-Noetherian modules need not be virtually semisimple. For
example, consider Zpn , n > 1 as a Z-module. Zpn is iso-Noetherian but not vir-
tually semisimple. Also, virtually semisimple module need not be iso-Noetherian.
For example, ⊕∞

i=1Zpi
, where pi’s are distinct primes, as a Z-module is virtually

semisimple but not iso-Noetherian.

Proposition 2.6. Every nonzero virtually semisimple iso-Noetherian module is
Noetherian.

Proof. Since M is iso-Noetherian, therefore u.dim(M) < ∞. It follows by [6,
Proposition 2.8] that M is Noetherian.

In [6], authors proved that R is a left completely virtually semisimple ring
if and only if RR is a direct sum of iso-retractable ideals. In the following, we
prove this result in case of module.

Proposition 2.7. Let M be a completely virtually semisimple right R-module.
If M is an iso-Noetherian R-module then M is a direct sum of iso-retractable
R-modules and M is Noetherian.

Proof. LetM be right iso-Noetherian. Then by [15, Prop. 5.1], u.dim(MR) <∞.
By [6, Proposition 2.8],M is finitely generated. Thus [6, Proposition 2.9] implies
that M is a direct sum of iso-retractable R-modules. It is clear that the direct
sum is finite because u.dim(MR) < ∞. Since every iso-retractable module is
Noetherian and finite direct sum of Noetherian modules is Noetherian, therefore
M is Noetherian.

Corollary 2.8. Over a right completely virtually semisimple ring, every iso-
Noetherian projective right R-module is finite direct sum of iso-retractable right
R-modules.

Proof. Let R be a right completely virtually semisimple ring. By [6, Prop. 3.2]
every projective R-module is right completely virtually semisimple. It follows
by Proposition 2.7 that M is a finite direct sum of iso-retractable R-modules.

Recall by [3] that a right R-module M is said to be a fe-module if, MR

has only finitely many essential submodules. A ring R is right fe-ring if RR

is fe-module. In general, iso-Noetherian modules need not be fe-module. For
example, Z as Z-module is iso-Noetherian but not a fe-module.

Theorem 2.9. A fe-module M is Noetherian if any one of the following state-
ments holds:

(1) A submodule N of M and the quotient module M/N both are iso-
Noetherian.



40 A.K. Chaturvedi and S. Prakash

(2) M is iso-Noetherian.

(3) soc(M) is iso-Noetherian.

Proof. (1). Let M be a fe-module. Then N and M/N both are fe-module by [3,
Prop. 1.3]. Since N and M/N both are iso-Noetherian, both have finite uniform
dimension by [15, Proposition 5.1]. It follows by [3, Corollary 1.2] that N and
M/N both are Noetherian. Thus M is Noetherian.

(2). It follows from [15, Proposition 5.1] and [3, Corollary 1.2].

(3). Suppose M is a fe-module and soc(M) is iso-Noetherian. It follows
from [3, Theorem 1.1] that M/soc(M) has finitely many submodules. Therefore
M/soc(M) is Noetherian. By [3, Proposition 1.3, Corollary 1.2], soc(M) is
Noetherian. This implies that M is Noetherian.

Corollary 2.10. If R is semiprime fe-ring such that I and R/I both are iso-
Artinian, then R is Noetherian.

Recall [2], an R-moduleM is a ue-module ifM has an unique proper essential
submodule. Finally we prove a result analogous to [3, Theorem 1.7].

Theorem 2.11. If an R-module M is iso-Artinian, iso-Noetherian ue-module,
then M = N⊕L, where N is iso-Artinian, iso-Noetherian cyclic ue-module with
unique maximal submodule and L is finite sum of iso-retractable R-modules or
L = 0.

Proof. Assume M as an iso-Artinian module. By Corollary 2.3, I-soc(M) is
essential in M . Also, M is an ue-module implies that I-soc(M) is maximal
submodule of M . If I-soc(M) is an unique maximal submodule, then M is
cyclic and hence we are done by [3, Lemma 1.6, Corollary 1.2]. If not, let
M1 be a maximal submodule of M different from I-soc(M). Then M1 is not
essential because M is an ue-module. Hence, it must be a direct summand.
Thus M = M1 ⊕K1, where K1 is an iso-retractable submodule of M . By [18,
Theorem 15], M1 is an ue-module. If M1 has unique maximal submodule, then
nothing to prove. If not, letM2 be a maximal submodule ofM1 which is a direct
summand ofM1. Therefore, there exists an iso-retractable submodule K2 ofM1

such that M1 =M2⊕K2. Thus M =M2⊕K2⊕K1. Since M is iso-Noetherian
hence u.dim(M) < ∞. Therefore, this process must stop after finitely many
steps, say n, i.e. we have M =Mn ⊕Kn ⊕ . . .⊕K1, where Mn is an ue-module
with a unique maximal submodule and each Ki is an iso-retractable submodule.
Since M is iso-Artinian,Mn is iso-Artinian. So, it follows by previous steps that
Mn is cyclic. Take N =Mn and L = Kn ⊕ . . .⊕K1. This completes the proof.

Corollary 2.12. If R is a semiprime iso-Artinian ue-ring, then R = I⊕L, where
I is a semiprime iso-Artinian cyclic ue-module with the unique maximal ideal
and L is a finite direct sum of iso-retractable ideals or L = 0.
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Proof. If R is a semiprime iso-Artinian ring then the u.dim(R) < ∞. The rest
of proof is on the same line as of the Theorem 2.11.

3. Mono-Artinian and Mono-Noetherian Rings

Definition 3.1. A right R-module M is mono-Artinian if for every descending
chain M1 ≥ M2 ≥ M3 ≥ . . . of submodules of M , there exists n ∈ N such that
Mi embeds in Mi+1, for all i ≥ n. A ring R is right mono-Artinian if the right
R-module R is mono-Artinian. A ring R is said to be mono-Artinian if it is both
left as well as right mono-Artinian. Similarly, we can define mono-Noetherian
modules and rings.

The classes of mono-Noetherian and mono-Artinian modules are dual to that
of epi-Noetherian and epi-Artinian modules, respectively. We find that none of
the classes imply one another, in support we give the following examples.

Example 3.2. Consider Z4 as Z4-module. It follows by [12, Example 3.1] that

Z
(N)
4 is epi-Noetherian. Clearly, Z4 is not mono-Noetherian.

Example 3.3. Let R be a domain, which is not a principal right ideal domain
(PRID). Clearly, every domain is compressible (see [26]), therefore R is a mono-
Artinian (mono-Noetherian) ring. By [12, Corollary 4.8], RR is not epi-Artinian.

Remark 3.4.

(1) Every iso-Noetherian (iso-Artinian) module is mono-Noetherian (mono-
Artinian) but the converse need not be true. For example, we consider
Example 3.3, in which RR is mono-Artinian but not epi-Artinian. This
implies that RR is not iso-Artinian.

(2) Let M be a nonzero virtually semisimple R-module. Then M is mono-
Noetherian if and only if M is Noetherian.

(3) If R is a ring such that all R-modules are compressible, then all R-modules
are mono-Noetherian (mono-Artinian).

Now we find existance of mono- Artinian modules over hereditary rings.

Proposition 3.5. Over a hereditary ring every finitely generated projective com-
pletely virtually semisimple module is mono-Artinian (mono-Noetherian).

Proof. LetM be a finitely generated completely virtually semisimple R-module.
By [6, Proposition 2.9], M is the finite direct sum of iso-retractable R-modules,
say M = M1 ⊕M2 ⊕ . . . ⊕Mn, where each Mi is iso-retractable. Since R is
a hereditary ring and M is projective, therefore M1 is projective. Next, M1
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is iso-Artinian (iso-Noetherian) and M2 is projective iso-retractable. It follows
by [15, Proposition 2.3] that M1 ⊕ M2 is iso-Artinian (iso-Noetherian). Now
M1 ⊕M2 is iso-Artinian (iso-Noetherian) and M3 is projective iso-retractable
hence M1 ⊕M2 ⊕M3 is iso-Artinian (iso-Noetherian). Thus by induction on
n, M is iso-Artinian (iso-Noetherian). Obviously, M is mono-Artinian (mono-
Noetherian).

We have a straightforward characterization of mono-Artinian and mono-
Noetherian modules.

Lemma 3.6. Let M be an R-module. The following statements are equivalent:

(1) M is mono-Artinian (mono-Noetherian).

(2) For every non-empty set F of submodules of M , there exists N ∈ F such
that, for every submodule K ≤ N (K ≥ N), if K ∈ F , then N embeds in
K (K embeds in N).

(3) For every non-empty chain C of submodules ofM , there exists N ∈ C such
that, for every submodule K ≤ N (K ≥ N), if K ∈ C, then N embeds in
K (K embeds in N).

Now we study some general properties of right mono-Artinian (mono-Noethe-
rian) rings. The following result is dual to the [12, Lemma 5.4].

Proposition 3.7. A finite direct product of right mono-Artinian (mono-
Noetherian) rings is right mono-Artinian (mono-Noetherian).

Proof. Let R1, R2, . . . , Rn be right mono-Artinian rings and R = R1 × R2 ×
. . . × Rn. Let I1 ≥ I2 ≥ I3 ≥ . . . be a descending chain of right ideals of
R. For each j ∈ N, Ij is of the form Ij = Aj1 × Aj2 × . . . × Ajn, where
each Ajk is a right ideal of Rj . Since for each k ∈ {1, 2, 3, . . . , n}, Rk is
right mono-Artinian, there exists m ∈ N such that for each j ≥ m there is
a monomorphism, say ψjk : Ajk → A(j+1)k. For each j ≥ m, we define a map
ψj : Ij → Ij+1 by ψj(aj1, aj2, . . . , ajn) = (ψj1(aj1), ψj2(aj2), . . . , ψjn(ajn)), for
every (aj1, aj2, . . . , ajn) ∈ Ij . Since each ψjk is a monomorphism, therefore ψj

is a monomorphism. Hence R is right mono-Artinian. In case of right mono-
Noetherian, if we consider ascending chain of right ideals then the proof is on
the same line.

Remark 3.8. We observe that the direct product of finitely many mono-Artinian
(mono-Noetherian) modules over different rings is again mono-Artinian (mono-
Noetherian) over the product of rings. Let R be the product of n rings Ri,
i = 1, 2, . . . , n and M be the product of Ri-modules Mi, i = 1, 2, . . . , n. Then
M is a mono-Artinian (mono-Noetherian) R-module if and only if each Mi is
a mono-Artinian (mono-Noetherian) Ri-module. Because any submodule of an
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R-module M is of the form M1 ⊕M2 ⊕ . . . ⊕Mn, where Mi is Ri-module for
i = 1, 2, . . . , n.

In general, the direct sum of two mono-Artinian (mono-Noetherian) modules
need not be mono-Artinian (mono-Noetherian). In the following results, we
provide sufficient conditions for the direct sum to be mono-Artinian (mono-
Noetherian).

Lemma 3.9. Let R be a commutative ring. Let M1 and M2 be two R-modules
such that M = M1 ⊕M2. If annR(M1) + annR(M2) = R, then any submodule
of M is of the form K1 ⊕K2 for some submodules K1 of M1 and K2 of M2.

Proof. Let K be a submodule of M . Since RK = K, therefore RK =
(annR(M1)+annR(M2))K = annR(M1)K+annR(M2)K = K2+K1 = K1+K2,
where Ki are submodules of Mi for i = 1, 2.

Proposition 3.10. Let R be a commutative ring. Let M1 and M2 be two R-
modules such that M = M1 ⊕M2. If annR(M1) + annR(M2) = R, then M is
mono-Artinian (mono-Noetherian) if and only if M1 and M2 are mono-Artinian
(mono-Noetherian).

Proof. Let K1 ≥ K2 ≥ K3 ≥ . . . be a descending chain of submodules of M .
Thus each Ki is of the form Ki = Ki1 ⊕Ki2. So, we have a chain of the form
K11 ⊕K12 ≥ K21 ⊕K22 ≥ K31 ⊕K32 ≥ . . .. Since M1 and M2 both are mono-
Artinian, there exist indices n1 and n2 such that Ki1 embeds in K(i+1)1, for all
i ≥ n1 and Ki2 embeds in K(i+1)2, for all i ≥ n2. Let n = max{n1, n2}. Then
Ki1 ⊕Ki2 embeds in K(i+1)1 ⊕K(i+1)2, for all i ≥ n. Therefore Ki embeds in
Ki+1, for all i ≥ n. Thus M is mono-Artinian. The converse is obvious.

Corollary 3.11. Let R be a commutative ring. Let M1,M2, . . . ,Mn be R-modules
such that annR(M1)+annR(M2)+ . . .+annR(Mn) = R. Then M =M1⊕M2⊕
. . .⊕Mn is mono-artinian if and only if eachMi, i = 1, 2, . . . , n is mono-artinian.

Theorem 3.12. Let R be a mono-Artinian ring. Then the following statements
hold:

(1) R satisfies ACC on right (left) annihilator ideals.

(2) Z(RR) is nilpotent.

(3) Every nonzero nil left (right) ideal of R contains a nonzero nilpotent left
(right) ideal.

Proof. (1). Let A1 ≤ A2 ≤ A3 ≤ . . . be an ascending chain of right annihilator
ideals. Then we have a descending chain l.ann(A1) ≥ l.ann(A2) ≥ l.ann(A3) ≥
. . . in R. Since R is mono-Artinian, there exists an index n such that l.ann(Ai)
embeds in l.ann(Ai+1), for all i ≥ n. Put Li = l.ann(Ai), for all i. Then Li

embeds in Li+1, for all i ≥ n. Let fi : Li → Li+1 be embeddings. Then for
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i ≥ n, we have Li
∼= f(Li) ≤ Li+1. Taking right annihilators we get r.ann(Li) =

r.ann(f(Li)) ≥ r.ann(Li+1), for all i ≥ n. Since r.ann(Li) = Ai for all i. Thus
Ai ≥ Ai+1, for all i ≥ n. Therefore R satisfies the ACC on right annihilator
ideals. Similarly by taking ascending chain of left annihilator ideals we can show
that R satisfies the ACC on left annihilator ideals.

(2). Let r.ann(Z(RR)) ≤ r.ann(Z(RR)
2) ≤ r.ann(Z(RR)

3) ≤ . . . be the
ascending chain of right annihilator ideals. By (1) there exists an index m
such that r.ann(Z(RR)

m) = r.ann(Z(RR)
m+1). We claim that Z(RR)

m+1 =
0. Suppose that Z(RR)

m+1 6= 0. Choose x ∈ Z(RR) with Z(RR)
mx 6= 0 so

that r.ann(x) is as large as possible. If y ∈ Z(RR), then r.ann(y) ≤e R, so
xR ∩ r.ann(y) 6= 0. Hence yxr = 0, for some r ∈ R with xr 6= 0. This implies
that r.ann(yx) ⊃ r.ann(x) and this is a contradiction to the choice of x except
Z(RR)

myx = 0. This shows that Z(RR)
m+1x = 0 and so by the choice of m,

Z(RR)
mx = 0. Hence Z(RR)

m+1 = 0. Thus Z(RR) is nilpotent.

(3). Let N be a nil left ideal of R. Since R is a mono-Artinian ring, N is
also mono-Artinian. It follows that N satisfies ACC on annihilator ideals. So,
we can choose 0 6= x ∈ N such that annR(x) is maximal in the collection of
right annihilators of nonzero elements of N . If y ∈ R, then (yx)n = 0, for some
n ≥ 1 and (yx)n−1 6= 0. So, annR(yx)

n−1 = annR(x), by the maximality of
right annihilators. Since yx annihilates (yx)n−1, therefore it annihilates x. It
follows that xyx = 0. Thus xRx = 0 and so Rx is nilpotent.

Recall by [29] that a nonzero R-module M is quasi-polysimple if every sub-
module ofM contains a uniform submodule. In [26], Smith introduced the notion
of compressible modules. Clearly, every mono-Artinian module contains a com-
pressible module. In the following result, we discuss structure of an essential
submodule of a mono-Artinian module in terms of compressible modules.

Theorem 3.13. Let M be a nonzero mono-Artinian R-module. Then the follow-
ing statements hold:

(1) M contains an essential submodule that is a direct sum of compressible
modules.

(2) If M is semiprime then M is quasi-polysimple.

(3) If K is a projective iso-retractable, then M ⊕K is a mono-Artinian.

(4) If K is iso-retractable R-module and M ⊕K is distributive, then M ⊕K
is mono-Artinian.

Proof. (1). Let Ω be the set of all families of independent compressible sub-
modules of M . Since a mono-Artinian module contains a compressible mod-
ule, hence Ω is nonempty. By the Zorn’s Lemma, Ω has a maximal member
L = {Uα : α ∈ Λ}, where Λ is some index set. Consider, U = ⊕α∈ΛUα. Suppose
U is not essential in M . Then U ∩N = 0, for some submodule N of M . Since
submodule of a mono-Artinian module is mono-Artinian, so is N . This implies
that N contains a nonzero compressible module K. Thus {L,K} is a member



Properties of Modules and Rings Satisfying Certain Chain Conditions 45

of Ω. This contradicts the maximality of L. Therefore U = ⊕α∈ΛUα is essential
in M .

(2). Let M be a nonzero semiprime mono-Artinian R-module. Then
u.dim(M) < ∞. So every submodule of M is of finite uniform dimension.
Thus by [20, Lemma 2.7], every submodule ofM contains a uniform submodule.
Therefore M is quasi-polysimple.

(3). It is analogous to [15, Proposition 2.3].

(4). Assume that M is mono-Noetherian and L1 ≤ L2 ≤ L3 ≤ . . . is an
ascending chain of submodules of M ⊕K. If Li ∩K = 0, for each i, then every
member of the chain is inM . SinceM is mono-Artinian, there exists n ∈ N such
that Li+1 embeds in Li, for each i ≥ n. Next, suppose there exists i0 such that
K ∩ Li0 6= 0. Then for every i ≥ i0, K ∩ Li

∼= K. Now Li = Li ∩ (K ⊕M) =
(Li∩K)⊕(Li∩M) ∼= K⊕(Li∩M), and Li+1

∼= K⊕(Li+1∩M). Consider a chain
Li0 ∩M ≤ Li0+1 ∩M ≤ . . . of submodules of M . By the mono-Noetherianness
of M , there exists k ≥ i0 such that Li+1 ∩M embeds in Li ∩M, ∀i ≥ k. Now
K ⊕ (Li+1 ∩M) embeds in K ⊕ (Li ∩M). Thus Li+1 embeds in Li, ∀i ≥ k.
Therefore K ⊕M is mono-Noetherian.

Proposition 3.14. Being mono-Artinian (mono-Noetherian) is a Morita invari-
ant property of modules.

Proof. It follows by the definition of mono-Artinian (mono-Noetherian) modules
and [1, Proposition 21.7].

If we consider the ring Z4, then trivially Z4 is mono-Artinian (mono-Noethe-
rian) but it is not semiprime. If we consider mono-Artinian (mono-Noetherian)
ring which is semiprime, then we have the following theorem:

Theorem 3.15. Let R be a semiprime mono-Artinian (mono-Noetherian) ring.
Then

(1) R has finite uniform dimension.

(2) R is a Goldie ring.

(3) R has finitely many minimal prime ideals.

(4) R/P is a Goldie ring, for each minimal prime ideal P of R.

(5) R has finitely many annihilator ideals.

Proof. (1). Since R is a semiprime mono-Artinian ring, R satisfies ACC on
annihilator ideals. It follows from [21, Theorem 2.15] that R has finite uniform
dimension.

(2). Since R is semiprime mono-Artinian, it satisfies ACC on annihilator
ideals and has finite uniform dimension. Thus R is a Goldie ring.

(3). Let u.dim(R) = n. Then there are uniform ideals U1, U2, . . . Un such
that U1 ⊕U2⊕ . . .⊕Un ≤e R. If Pi = ann(Ui), then Pi is a minimal prime ideal
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by [21, Proposition 2.14(iv)]. Also, ∩Pi = 0. Therefore, these are all minimal
prime ideals.

(4). Let R be a semiprime ring. Since R is mono-Artinian, it satisfies the
ascending chain condition on annihilator ideals. This implies, by [20, Theorem
11.43] that R has finitely many minimal prime ideals. By Theorem 3.13 (2), R
is a Goldie ring. It follows from [20, Corollary 11.44], R/P is a Goldie ring for
each minimal prime ideal of R.

(5). It follows from Theorem 3.15 (2) and [21, Proposition 2.14(iii)].

Theorem 3.16. Let R be a semiprime mono-Artinian ring. Then

(1) R is direct sum of finitely many compressible ideals.

(2) R is right nonsingular.

(3) R is right Noetherian.

(4) R satisfies ACC and DCC on complements.

Proof. (1). We know that a ring R is mono-Artinian if and only if RRR is a
mono-Artinian module. Suppose RRR is a mono-Artinian module. By Theo-
rem 3.13 (1), RRR has an ideal I which is essential in RRR and is a direct sum of
compressible submodules. Let R be a semiprime ring. Then R is a Goldie ring
by Theorem 3.15 (2). It follows by [12, Proposition 5.6] that RRR is isomorphic
to I. Also, the direct sum in I is finite because R is a Goldie ring.

(2). By Theorem 3.12 (2), Z(RR) is nilpotent. Since R is semiprime, therefore
Z(RR) = 0. Thus R is right nonsingular.

(3). Let R be a semiprime right mono-Artinian ring. Then R is right Goldie
ring. By [15, Theorem 4.6], R is right Noetherian.

(4). Let R be a semiprime mono-Artinian ring. Then u.dim(R) < ∞. Thus
by [20, Proposition (6.30)’], R satisfies ACC and DCC on complements.

By Hopkins theorem every Artinian ring is a Noetherian ring. In general, a
right iso-Artinian ring need not be right Noetherian. In [14], authors state that
they were not able to prove or disprove whether a semiprime right iso-Artinian
ring is right Noetherian. We have the following results:

Corollary 3.17. A semiprime right iso-Artinian ring is right Noetherian.

Corollary 3.18. [23, Proposition 2.9] Let R be a semiprime iso-Noetherian (iso-
Artinian) ring. Then R/P is a right Goldie ring for each minimal prime ideal
P of R.

Theorem 3.19. A right mono-Artinian (mono-Noetherian) integral domain is a
right Ore domain.

Proof. Let a, b ∈ R. We claim that aR∩bR 6= 0. Suppose if possible, aR∩bR = 0.
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It follows from [21, Example 1.2.11(ii)] that
∑
bnaR is direct. This contradicts

that u.dim(R) < +∞. Thus aR ∩ bR 6= 0. Hence, R is a right Ore domain.

Question 3.20.

(1) What are the properties of the endomorphism ring of a mono-Artinian
(mono-Noetherian) module ?

(2) How to characterize mono-Artinian (mono-Noetherian) modules in terms
of their endomorphism rings ?

Various generalizations of injectivity have been studied in [4, 5, 7, 10, 11].
We can also study some properties of these chain conditions on such classes of
modules.
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