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1. Introduction

Convexity theory has become a rich source of inspiration in pure and applied
sciences. This theory had not only stimulated new and deep results in many
branches of mathematical and engineering sciences, but also provided us a unified
and general framework for studying a wide class of unrelated problems. For
recent application- s, generalizations and other aspects of convex functions and
their variant forms, see [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 17, 27, 20, 22, 28, 30, 33]
and the references therein. Varosanec [25], introduced the class of h-convex
functions with respect to an arbitrary non-negative function h. It has shown that
this class contains some previously known classes of convex functions as special
cases. Zhang et al. [34] introduced and studied a class of nonconvex functions
which is called p-convex functions. Motivated by this ongoing research, Noor et
al. [15] have derived several inequalities for differentiable p-convex functions.

Let I be an interval. A function f : I = [a, b] ⊂ R\{0} → R is a p-convex
function, if and only if,

f

(

[

ap + bp

2

]
1
p

)

≤
1

2

[

f

(

[

3ap + bp

4

]
1
p

)

+ f

(

[

ap + 3bp

4

]
1
p

)]

≤
p

bp − ap

∫ b

a

f(x)

x1−p
dx ≤

1

2

[

f

(

[

ap + bp

2

]
1
p

)

+
f(a) + f(b)

2

]

≤
1

2
[f(a) + f(b)] (1)

This double inequality is known as the Hermite-Hadamard inequality for
p-convex functions, which may be regarded as a refinement of the concept of
convexity. The inequality (1) holds in reversed direction if f is a p-concave
function. If p = 1, then inequality (1) is known as Hermite-Hadamard inequality
for convex functions.

M. Tunc et al. [31] defined a new concept of beta-convex function and es-
tablished some inequalities. One of the most recent significant generalizations of
convex functions is generalized convex (φ-convex function), introduced by Gordji
et al. [5]. These functions are non-convex functions. The class of harmonic con-
vex function was introduced by Anderson [1] and Iscan [9]. It has been shown
[18] that the minimum of the differentiable harmonic convex functions can be
characterized by a class of variational inequalities, which is known as harmonic
variational inequalities. See [12, 13, 14, 15, 19, 16, 17, 26, 27] for the recent
developments in variational inequalities. Noor et al. [23] introduced and inves-
tigated new class of convex functions, which is called relative harmonic (s, η)-
convex functions. They discussed some basic results of harmonic (s, η)-convex
functions and also derived the Hermite-Hadamard and Fejer type inequalities
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for this class of functions. For recent developments, see [3, 6, 23, 25] and the
references therein.

Motivated and inspired by the ongoing research on convex functions, we
introduce concept of generalized (p, r, h)-convex functions. We establish some
basic results regarding inequalities related to generalized (p, r, h)-convex func-
tions. Several special cases are discussed which can be obtained from our main
results. Our results can be viewed as significant and important refinement of
well-known results for inequalities.

2. Preliminaries

In this section, we recall some basic concepts. Let η(·, ·) : R × R → R be a
continuous bifunction.

Definition 2.1. [11] A set I = [a, b] ⊂ R is said to be a convex set, if

(1− t)x+ ty ∈ I, ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.2. [11] A function f : I = [a, b] → R is said to be a convex function,
if

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.3. [29] Let h : J = [0, 1] → R be a nonnegative function. A function
f : I = [a, b] ⊂ R → R is said to be an h-convex function, if

f((1 − t)x+ ty) ≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.4. [34] A set I = [a, b] ⊆ R\{0} is said to be p-convex set, if

[(1− t)xp + typ]
1
p ∈ I, ∀x, y ∈ I, t ∈ [0, 1].

Some special cases of the p-convex sets are:

(i) If p = 1, then p-convex set is a convex set.

(ii) If p = −1, then p-convex set becomes a harmonic convex set.

(iii) If p = 0, then p-convex set collapses to the geometrically convex set.

This shows that the concept of p-convex sets is quite general and unifying
one.

Definition 2.5. [34] A function f : I = [a, b] ⊆ R\{0} → R is said to be p-convex
function, where p 6= 0, if

f
(

[(1 − t)xp + typ]
1
p

)

≤ (1 − t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1]. (2)
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We note that, if p = 0, then p-convex functions reduce to geometrically convex
functions [11], that is,

f
(

x1−tyt
)

≤ (1 − t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

For different and appropriate choices of p, one can show that the p-convex func-
tions include the convex functions, harmonic convex functions and geometrically
convex functions as special cases.

Definition 2.6. [4] A function f : I = [a, b] ⊂ R → R is (r)-convex, if f is
positive and for all x, y ∈ I and t ∈ [0, 1], we have

f((1− t)x+ ty) =

{

((1− t)[f(x)]r + t[f(y)]r)
1
r if r 6= 0,

(f(x))1−t(f(y))t if r = 0.

For t = 1
2 , we have

f

(

x+ y

2

)

≤







(

[f(x)]r+[f(y)]r

2

)
1
r

if r 6= 0
√

(f(x))(f(y)) if r = 0.

It is clear that 0-convex functions are simply log-convex functions and 1-convex
functions are ordinary convex functions.

Definition 2.7. [3] A function f : I = [a, b] ⊂ R → R is said to be generalized
convex ( φ-convex) function with respect to the bifunction η(., .) : H ×H → R,

such that,

f((1− t)x+ ty) ≤ f(x) + tη(f(y), f(x)), ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.8. [12] A function f : I = [a, b] ⊂ R → R is said to be generalized
r-convex with respect to the bifunction η(., .) : H ×H → R,if f is positive and
for all x, y ∈ I and t ∈ [0, 1], we have

f((1− t)x+ ty) =

{

((1− t)[f(x)]r + t[f(x) + η(f(y), f(x))]r)
1
r if r 6= 0,

(f(x))1−t(f(x) + η(f(y), f(x)))t if r = 0.

It is clear that generalized 0-convex functions are simply generalized log-convex
functions [25] and generalized 1-convex functions are generalized convex (φ-
convex) functions, see [3]. We now introduce the concept of generalized (p, r, h)-
convex functions.

Definition 2.9. Let h : J = [0, 1] → R be a nonnegative function. A function
f : I = [a, b] ⊂ R\{0} → R is said to be generalized (p, r, h, η(, ., ))-convex



Inequalities via Generalized (p, r, h, η)-Convex Functions 87

function with respect to the bifunction η(., .) : H ×H → R, if

f
(

[(1− t)xp + tbp]
1
p

)

=

{

[h(1− t)[f(x)]r + h(t)[f(x) + η(f(y), f(x))]r ]
1
r if r 6= 0,

(f(x))h(1−t)(f(x) + η(f(y), f(x)))h(t) if r = 0.

(3)

The function f is said to be generalized (p, r, h, η)-concave function, if and only
if, −f is generalized (p, r, h, η)-convex function. For t = 1

2 , we have

f

(

[

xp + yp

2

]
1
p

)

=

{

h
(

1
2

)
1
r [[f(x)]r + [f(x) + η(f(y), f(x))]r)

1
r

]

if r 6= 0,

(f(x)(f(x) + η(f(y), f(x))))h(
1
2 ) if r = 0.

(4)

The function f is called generalized (p, r, h, η)-Jensen convex function. If
η(f(y), f(x)) = f(y)− f(x) in (6), then it reduces to the class of (p, r, h)-convex
functions.

Now we discuss some special cases of generalized (p, r, h)-convex function,
which appears to be new ones:

(i) If h(t) = t in Definition 2.9, then it reduces to the definition of generalized
(p, r)-convex functions.

(ii) If r = 1 in Definition 2.9, then it reduces to the definition of generalized
(p, h) convex functions.

(iii) If h(t) = ts in Definition 2.9, then it reduces to the definition of Breckner
type of generalized (p, r)-convex functions.

(iv) If h(t) = tp(1 − t)q in Definition 2.9, then it reduces to the definition of
generalized (p, r)-beta convex functions.

Lemma 2.10. Suppose that a, b, c ∈ R. Then the following statements hold:

(i) min{a, b} ≤ a+b
2 .

(ii) if c ≥ 0, c.min{a, b} = min{ca, cb}.

Generalized logarithmic means of order r of positive numbers x, y is defined
by:

Lr(x, y) =























r
r+1

(

xr+1−yr+1

xr−yr

)

if r 6= {−1, 0}, x 6= y

x−y
ln x−ln y

if r = 0, x 6= y

xy ln x−ln y
x−y

if r = −1, x 6= y,

x if x = y.
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3. Main Results

In this section, we obtain Hermite-Hadamard type inequalities for generalized
(p, r, h) convex functions.

Theorem 3.1. Let f : I = [a, b] ⊂ R\{0} → R be a generalized (p, r, h, η)-convex
function. If f ∈ L[a, b], then

p

bp − ap

∫ b

a

f(x)

x1−p
dx

≤ min

{

[[f(a)]r + [f(a) + η(f(b), f(a))]r]
1
r

(∫ 1

0

[h(t)]
1
r dt

)

,

[[f(b)]r + [f(b) + η(f(a), f(b))]r]
1
r

(∫ 1

0

[h(t)]
1
r dt

)}

≤
1

2

{

[[f(a)]r + [f(a) + η(f(b), f(a))]r]
1
r

+ [[f(b)]r + [f(b) + η(f(a), f(b))]r]
1
r

}

(
∫ 1

0

[h(t)]
1
r dt

)

. (5)

Proof. Let f be a generalized (p, r, h, η)-convex function. Then, ∀x, y ∈ I, t ∈
[0, 1],

f
(

[(1 − t)ap + tbp]
1
p

)

≤ [h(1− t)[f(a)]r + h(t)[f(a) + η(f(b), f(a))]r ]
1
r ,

and

f
(

[tap + (1− t)bp]
1
p

)

≤ [h(1− t)[f(b)]r + h(t)[f(b) + η(f(a), f(b))]r ]
1
r .

Thus, we have

f
(

[(1− t)ap + tbp]
1
p

)

+ f
(

[tap + (1 − t)bp]
1
p

)

≤ [h(1− t)[f(a)]r + h(t)[f(a) + η(f(b), f(a))]r ]
1
r

+ [h(1− t)[f(b)]r + h(t)[f(b) + η(f(a), f(b))]r]
1
r ,

Integrating (5) over the interval [0, 1] and using Minkowskis inequality, we
have

∫ 1

0

f
(

[(1− t)ap + tbp]
1
p

)

dt+

∫ 1

0

f
(

[tap + (1− t)bp]
1
p

)

dt

≤

[

(∫ 1

0

[h(1 − t)]
1
r f(a)dt

)r

+

(∫ 1

0

[h(t)]
1
r [f(a) + η(f(b), f(a))]dt

)r
]

1
r
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+

[

(∫ 1

0

[h(1− t)]
1
r f(b)dt

)r

+

(∫ 1

0

[h(t)]
1
r [f(b) + η(f(a), f(b))]dt

)r
]

1
r

=
{

[[f(a)]r + [f(a) + η(f(b), f(a))]r]
1
r

+ [[f(b)]r + [f(b) + η(f(a), f(b))]r ]
1
r

}

(∫ 1

0

[h(t)]
1
r dt

)

.

This implies

p

bp − ap

∫ b

a

f(x)

x1−p
dx

≤
1

2

{

[[f(a)]r + [f(a) + η(f(b), f(a))]r ]
1
r

+ [[f(b)]r + [f(b) + η(f(a), f(b))]r]
1
r

}

(∫ 1

0

[h(t)]
1
r dt

)

,

which is the required result.

Corollary 3.2. Under the assumptions of Theorem 3.1 with r = 1, we have

p

bp − ap

∫ b

a

f(x)

x1−p
dx ≤ min

{

f(a)

∫ 1

0

[h[(1− t)] + h(t)]dt

+η(f(b), f(a))

∫ 1

0

h(t)dt, f(b)

∫ 1

0

[h[(1 − t)] + h(t)]dt

+η(f(a), f(b))

∫ 1

0

h(t)dt

}

≤ [f(a) + f(b)]

∫ 1

0

h(t)dt

+
η(f(b), f(a)) + η(f(a), f(b))

2

∫ 1

0

h(t)dt.

Theorem 3.3. Let f : I = [a, b] ⊂ R\{0} → R be a generalized (p, r, h, η)-convex
function. If f ∈ L[a, b], then

f

(

[

ap + bp

2

]
1
p

)

≤ min

{

[h(
1

2
)]

1
r

([

f
(

[(1− t)ap + tbp]
1
p

)]r

+
[

f
(

[(1 − t)ap + tbp]
1
p

)

+η
(

f
(

[tap + (1 − t)bp]
1
p

)

, f
(

[(1− t)ap + tbp]
1
p

))]r)
1
r

,

[

h

(

1

2

)]
1
r ([

f
(

[tap + (1 − t)bp]
1
p

)]r

+
[

f
(

[tap + (1− t)bp]
1
p

)
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+η
(

f
(

[(1− t)ap + tbp]
1
p

)

, f
(

[tap + (1− t)bp]
1
p

))]r)
1
r

}

.

Proof. Let f be a generalized (p, r, h, η)-convex function. Then, taking x =

[(1 − t)ap + tbp]
1
p and y = [tap + (1− t)bp]

1
p in (4), we have

f

(

[

ap + bp

2

]
1
p

)

≤

[

h

(

1

2

)]
1
r ([

f
(

[(1 − t)ap + tbp]
1
p

)]r

+
[

f
(

[(1− t)ap + tbp]
1
p

)

+η
(

f
(

[tap + (1− t)bp]
1
p

)

, f
(

[(1− t)ap + tbp]
1
p

))]r)
1
r

,

and

f

(

[

ap + bp

2

]
1
p

)

≤

[

h

(

1

2

)]
1
r ([

f
(

[tap + (1− t)bp]
1
p

)]r

+
[

f
(

[tap + (1− t)bp]
1
p

)

+η
(

f
(

[(1 − t)ap + tbp]
1
p

)

, f
(

[tap + (1− t)bp]
1
p

))]r)
1
r

.

Thus,

f

(

[

ap + bp

2

]
1
p

)

≤ min

{

[h(
1

2
)]

1
r

([

f
(

[(1− t)ap + tbp]
1
p

)]r

+
[

f
(

[(1 − t)ap + tbp]
1
p

)

+η
(

f
(

[tap + (1 − t)bp]
1
p

)

, f
(

[(1− t)ap + tbp]
1
p

))]r)
1
r

×

[

h

(

1

2

)]
1
r ([

f
(

[tap + (1− t)bp]
1
p

)]r

+
[

f
(

[tap + (1− t)bp]
1
p

)

+η
(

f
(

[(1− t)ap + tbp]
1
p

)

, f
(

[tap + (1− t)bp]
1
p

))]r)
1
r

}

The required result.

Corollary 3.4. Under the assumptions of Theorem 3.3 with r = 1, we have

f

(

[

ap + bp

2

]
1
p

)

≤ min

{

h(
1

2
)
[

2f
(

[(1 − t)ap + tbp]
1
p

)

+η
(

f
(

[tap + (1 − t)bp]
1
p

)

, f
(

[(1− t)ap + tbp]
1
p

))]

,
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h

(

1

2

)

[

2f
(

[tap + (1− t)bp]
1
p

)

+η
(

f
(

[(1− t)ap + tbp]
1
p

)

, f
(

[tap + (1− t)bp]
1
p

))]}

.

Theorem 3.5. Let f : I = [a, b] ⊂ R\{0} → R be a generalized (p, r, h, η)-convex
function. If f ∈ L[a, b], then

2
r−1

r

h
(

1
2

)

(

f

(

[

ap + bp

2

]
1
p

))r

−





p

bp − ap

∫ b

a

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)

x1−p
dx





r

≤

(

p

bp − ap

∫ b

a

f(x)

x1−p
dx

)r

≤
1

2r

(

[[f(a)]r + [f(a) + η(f(b), f(a))]r]
1
r

+ [[f(b)]r + [f(b) + η(f(a), f(b))]r ]
1
r

)r
(∫ 1

0

[h(t)]
1
r dt

)r

.

Proof. Let f be a generalized (p, r, h, η)-convex function. Then, from inequality
(6) and Lemma 2.10, we have

2
[

h
(

1
2

)]
1
r

f

(

[

ap + bp

2

]
1
p

)

≤

[

(∫ 1

0

f
(

[(1− t)ap + tbp]
1
p

)

dt

)r

+

(∫ 1

0

f
(

[tap + (1− t)bp]
1
p

)

dt

)r

+

(∫ 1

0

f
(

[(1− t)ap + tbp]
1
p

)

dt+

∫ 1

0

η
(

f
(

[tap + (1 − t)bp]
1
p

)

,

f
(

[(1− t)ap + tbp]
1
p

))

dt
)r

+

(∫ 1

0

f
(

[tap + (1− t)bp]
1
p

)

dt

+

∫ 1

0

η
(

f
(

[(1− t)ap + tbp]
1
p

)

, f
(

[tap + (1 − t)bp]
1
p

))

dt

)r
]

1
r

=

[

2

(

p

bp − ap

∫ b

a

f(x)

x1−p
dx

)r

+2





p

bp − ap

∫ b

a

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)

x1−p
dx





r



1
r

.
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This implies

2
r−1

r

h
(

1
2

)

(

f

(

[

ap + bp

2

]
1
p

))r

−





p

bp − ap

∫ b

a

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)

x1−p
dx





r

≤

(

p

bp − ap

∫ b

a

f(x)

x1−p
dx

)r

≤
1

2r

(

[[f(a)]r + [f(a) + η(f(b), f(a))]r]
1
r

+ [[f(b)]r + [f(b) + η(f(a), f(b))]r ]
1
r

)r
(∫ 1

0

[h(t)]
1
r dt

)r

which is the required result.

Corollary 3.6. Under the assumptions of Theorem 3.3 with r = 1, we have

1

2h
(

1
2

)f

(

[

ap + bp

2

]
1
p

)

−
ab

2(b− a)

∫ b

a

η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)

x1−p
dx

≤
p

bp − ap

∫ b

a

f(x)

x1−p
dx

≤ [f(a) + f(b)]

∫ 1

0

h(t)dt+
η(f(b), f(a)) + η(f(a), f(b))

2

∫ 1

0

h(t)dt.

One can also obtain the Hermite-Hadamard inequality for generalized
(p, r, h, η)-convex functions as:

1

h
(

1
2

)f r

(

[

ap + bp

2

]
1
p

)

−
p

bp − ap

∫ b

a

[

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)]r

x1−p
dx

≤
p

bp − ap

∫ b

a

f r(x)

x1−p
dx

≤ [[f(a)]r + [f(a) + η(f(b), f(a))]r]

(∫ 1

0

[h(t)]
1
r dt

)r

.

We now obtain some Fejer type integral inequalities for generalized (p, r, h, η)-
convex functions.
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Theorem 3.7. Let f, g : I = [a, b] ⊂ R\{0} → R be generalized (p, r, h)-convex
functions. If fg ∈ L[a, b], then

∫ b

a

f(x)g(x)

x1−p
dx

≤
1

2

∫ b

a

[

h

(

bp − xp

bp − ap

)

[f(a)]r + h

(

xp − ap

bp − ap

)

[f(a) + η(f(b),

f(a))]r]
1
r

] g(x)

x1−p
dx+

1

2

∫ b

a

[

h

(

bp − xp

bp − ap

)

[f(b)]r

+h

(

xp − ap

bp − ap

)

[f(b) + η(f(a), f(b))]r
]

1
r

]

g(x)

x1−p
dx,

where g : [a, b] ⊂ R\{0} is symmetric, nonnegative, integrable and satisfies

g(x) = g
(

[ap + bp − xp]
1
p

)

, ∀x ∈ [a, b].

Proof. Let f be a generalized (p, r, h, η)-convex function. Then multiplying in-

equality (5) with g
(

[(1− t)ap + tbp]
1
p

)

and integrating over t, we have

∫ 1

0

[

f
(

[(1−t)ap + tbp]
1
p

)

+f
(

[tap+(1−t)bp]
1
p

)]

g
(

[(1− t)ap + tbp]
1
p

)

dt

≤

∫ 1

0

[h(1−t)[f(a)]r+h(t)[f(a)+η(f(b), f(a))]r]
1
r

]

g
(

[(1−t)ap+ tbp]
1
p

)

dt

+

∫ 1

0

[h(1−t)[f(b)]r+h(t)[f(b)+η(f(a), f(b))]r]
1
r

]

g
(

[(1−t)ap + tbp]
1
p

)

dt.

Thus,

∫ b

a

f(x)g(x)

x1−p
dx

≤
1

2

∫ b

a

[

h

(

bp−xp

bp−ap

)

[f(a)]r+h

(

xp−ap

bp−ap

)

[f(a)+η(f(b), f(a))]r
]

1
r

]

g(x)

x1−p
dx

+
1

2

∫ b

a

[

h

(

bp−xp

bp−ap

)

[f(b)]r+h

(

xp−ap

bp−ap

)

[f(b)+η(f(a), f(b))]r
]

1
r

]

g(x)

x1−p
dx,

the required result.
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Corollary 3.8. Under the assumptions of Theorem 3.1 with r = 1, we have

∫ b

a

f(x)g(x)

x1−p
dx

≤
f(a) + f(b)

2

∫ b

a

[

h

(

bp − xp

bp − ap

)

+ h

(

xp − ap

bp − ap

)]

g(x)

x1−p
dx

+
η(f(b), f(a)) + η(f(a), f(b))

2

∫ b

a

h

(

xp − ap

bp − ap

)

g(x)

x1−p
dx.

Theorem 3.9. Let f, g : I = [a, b] ⊂ R\{0} → R be generalized (p, r, h)-convex
functions. If fg ∈ L[a, b], then

f

(

[

ap + bp

2

]
1
p

)

∫ b

a

g(x)

x1−p
dx

≤

∫ b

a

g(x)

x1−p
min

{

[

h

(

1

2

)]
1
r (

[f(x)]r +
[

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

,

f(x))]
r
)

1
r ,

[

h

(

1

2

)]
1
r ([

f
(

[ap + bp − xp]
1
p

)]r

+
[

f
(

[ap + bp − xp]
1
p

)

+ η
(

f(x), f
(

[ap + bp − xp]
1
p

))]r) 1
r

}

dx.

where g : [a, b] ⊂ R\{0} is symmetric, nonnegative, integrable and satisfies

g(x) = g
(

[ap + bp − xp]
1
p

)

, ∀x ∈ [a, b].

Proof. Let f, g be generalized (p, r, h)-convex functions. Then multiplying (6)

with g
(

[(1 − t)ap + tbp]
1
p

)

and integrating over t, we have

f

(

[

ap + bp

2

]
1
p

)

∫ 1

0

g
(

[(1 − t)ap + tbp]
1
p

)

dt

≤

∫ 1

0

g
(

[(1− t)ap + tbp]
1
p

)

min

{

[h(
1

2
)]

1
r

([

f
(

[(1− t)ap + tbp]
1
p

)]r

+
[

f
(

[(1− t)ap + tbp]
1
p

)

+ η
(

f
(

[tap + (1− t)bp]
1
p

)

,

f
(

[(1 − t)ap + tbp]
1
p

))]r)
1
r

[

h

(

1

2

)]
1
r ([

f
(

[tap + (1− t)bp]
1
p

)]r

+
[

f
(

[tap + (1− t)bp]
1
p

)

+ η
(

f
(

[(1− t)ap + tbp]
1
p

)

,

f
(

[tap + (1− t)bp]
1
p

))]r)
1
r

}

dt.
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By the symmetry of g on [a, b], we have

f

(

[

ap + bp

2

]
1
p

)

∫ b

a

g(x)

x1−p
dx

≤

∫ b

a

g(x)

x1−p
min

{

[h(
1

2
)]

1
r

(

[f(x)]r +
[

f(x) + η
(

f
(

[ap + bp − xp]
1
p

)

,

f(x))]r)
1
r

[

h

(

1

2

)]
1
r ([

f
(

[ap + bp − xp]
1
p

)]r

+
[

f
(

[ap + bp − xp]
1
p

)

+ η
(

f(x), f
(

[ap + bp − xp]
1
p

))]r)
1
r

}

dx,

which is the required result.

Corollary 3.10. Under the assumptions of Theorem 3.5 with r = 1, we have

1

2h
(

1
2

)f

(

[

ap + bp

2

]
1
p

)

∫ b

a

g(x)

x1−p
dx

≤

∫ b

a

g(x)

x1−p
min

{

f(x) +
1

2
η
(

f
(

[ap + bp − xp]
1
p

)

, f(x)
)

,

f
(

[ap + bp − xp]
1
p

)

+
1

2
η
(

f(x), f
(

[ap + bp − xp]
1
p

))

}

dx

≤

∫ b

a

f(x)g(x)

x1−p
dx+

1

2

∫ b

a

g(x)

x1−p

[

η
(

f(x), f
(

[ap + bp − xp]
1
p

))]

dx.

Theorem 3.11. Let f : I = [a, b] ⊂ R\{0} → R be a generalized (p, r, η)-convex
function. If f ∈ L[a, b], then

p

bp − ap

∫ b

a

f(x)

x1−p
dx

≤























r
r+1

(

[f(a)]r+1−[f(a)+η(f(b),f(a))]r+1

ff(a)]r−[f(a)+η(f(b),f(a))]r

)

r 6={−1, 0}, f(a) 6=f(b)
η(f(b),f(a))

ln[f(a)+η(f(b),f(a)]−ln f(a) r = 0, f(a) 6= f(b)

f(a)[f(a)+η(f(b), f(a))] ln[f(a)+η(f(b),f(a))]−lnf(a)
η(f(b),f(a)) r = −1, f(a) 6= f(b)

f(a) f(a) = f(b).

Proof.

f
(

[(1 − t)ap + tbp]
1
p

)

≤ [(1− t)[f(a)]r + [f(a) + η(f(b), f(a))]r ]
1
r ,
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Case 1. r 6= {−1, 0}, f(a) 6= f(b).

p

bp − ap

∫ b

a

f(x)

x1−p
dx =

∫ 1

0

f
(

[(1− t)ap + tbp]
1
p

)

dt

≤

∫ 1

0

[(1− t)[f(a)]r + t[f(a) + η(f(b), f(a))]r]
1
r dt

=
r

r + 1

(

[f(a)]r+1 − [f(a) + η(f(b), f(a))]r+1

[f(a)]r − [f(a) + η(f(b), f(a))]r

)

.

Case 2. r = 0, f(a) 6= f(b).

p

bp − ap

∫ b

a

f(x)

x1−p
dx =

∫ 1

0

f
(

[(1− t)ap + tbp]
1
p

)

dt

≤

∫ 1

0

[f(a)]1−t + [f(a) + η(f(b), f(a))]t dt

=
η(f(b), f(a))

ln[f(a) + η(f(b), f(a))]− ln f(a)
.

Case 3. r = −1, f(a) 6= f(b).

p

bp − ap

∫ b

a

f(x)

x1−p
dx

=

∫ 1

0

f
(

[(1 − t)ap + tbp]
1
p

)

dt

≤

∫ 1

0

[

(1− t)[f(a)]−1 + t[f(a) + η(f(b), f(a))]−1
]−1

dt

=
f(a)[f(a) + η(f(b), f(a))]

η(f(b), f(a))

∫ f(a)+η(f(b),f(a))

f(a)

1

u
du

= f(a)[f(a) + η(f(b), f(a))]
ln[f(a) + η(f(b), f(a))]− ln f(a)

η(f(b), f(a))
.

4. Conclusion and Future Research

In this paper we, have introduced and studied a new class of generalized convex
functions involving an arbitrary function h and bifunction η(., .). Several new
integral inequalities for this class of functions are obtained. Applications of our
results are discussed. Result of this paper can be extended for the new class. To
be more precise, let h : J = [0, 1] → R be a nonnegative function. A function
f : I = [a, b] ⊂ R\{0} → R is said to be generalized (p, r, h, ζ)-convex function,
if

f
(

[(1− t)xp + tbp]
1
p

)

=

{

[h(1− t)[f(x)]r + h(t)[f(x) + ζ(f(y)− f(x))]r ]
1
r if r 6= 0,

(f(x))h(1−t)(f(x) + η(f(y), f(x)))h(t) if r = 0.
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where ζ(f(y) − f(x) is a bifunction ζ(., .) : H × H → R. Note that the bi-
functions η(f(y), f(x) and ζ(f(y) − f(x)) are quite different from other. In
fact η(f(y), f(x) 6= ζ(f(y)− f(x)). The ideas and techniques of this paper may
stimulate further research.
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