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Abstract. The notions of coannihilator and coannulet in a residuated lattice are inves-

tigated. For a residuated lattice A, it is shown that γ(A), the set of coannulets of A,

is a sublattice of Γ(A), the Boolean lattice of coannihilators of A. It is observed that

γ(A) is a Boolean sublattice of Γ(A) if and only if A is quasicomplemented and γ(A)

is a sublattice of F(A), the filter lattice of A, if and only if A is normal. Finally, it is

shown that γ(A) is a Boolean sublattice of F(A) if and only if A is generalized Stone.

During this research, some facts about coannihilators, coannulets and dual coannulets

of a residuated lattice are also obtained which are given in the paper.

Keywords: Quasicomplemented residuated lattice; Normal residuated lattice; General-

ized Stone residuated lattice; Coannihilator; Coannulet.

1. Introduction

In the ring theory the annihilator of a set is a concept generalizing torsion
and orthogonality. Also, Baer rings and Rickart rings are various attempts
to give an algebraic analogue of Von Neumann algebras, using axioms about
annihilators of various sets. The theory of relative annihilators was introduced
in lattices by Mandelker who characterized distributive lattices in terms of their
relative annihilators in [17]. Later, many authors introduced the concept of
annihilators in the structures of rings as well as lattices and characterized several
algebraic structures in terms of annihilators. Speed [28] and Cornish [2, 4]
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made an extensive study on annihilators in distributive lattices. Filipoiu [6]
and Leustean [15] used this notion for Baer extensions of MV-algebras and BL-
algebras, respectively. Halaš [11] and Kondo [14] applied this notion to study
of BCK algebras. Recently, Rasouli [18] generalized this notion for residuated
lattices and studied its properties. This work is motivated by the above works
and a desire to extend these investigations to residuated lattices. Our findings
show that the results obtained by [2, 4] can also be reproduced via residuated
lattices.

This paper is organized in four sections. In Section 2, some definitions and
facts about residuated lattices that we use in the sequel are recalled. In Section
3, the notion of coannihilators, coannulets and dual coannulets are introduced
and investigated. It is established a connection between coannihilators and Ga-
lois connection theory and coannihilators are characterized by means of minimal
prime filters and it is observed that any prime coannihilator is minimal prime.
For a residuated lattice A, it is shown that γ(A), the set of coannulets of A, and
λ(A) is a sublattice of Γ(A), the Boolean lattice of coannihilators of A. This sec-
tion ends with a kind of Chinese remainder theorem for the lattice of coannulets.
In Section 4, the notions of quasicomplemented, normal and generalized Stone
residuated lattices are introduced and characterized. It is observed that γ(A) is
a Boolean sublattice of Γ(A) if and only if A is quasicomplemented, γ(A) is a
sublattice of F(A) if and only if A is normal and γ(A) is a Boolean sublattice of
F(A) if and only if A is generalized Stone.

2. A Brief Excursion into Residuated Lattices

In this section, we recall some definitions, properties, and results relative to
residuated lattices, which will be used in the following.

An algebra A = (A;∨,∧,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a residu-
ated lattice if `(A) = (A;∨,∧, 0, 1) is a bounded lattice, (A;�, 1) is a commuta-
tive monoid and (�,→) is an adjoint pair. A residuated lattice A is called an
MTL algebra [7] if it satisfies the pre-linearity condition (denoted by pprel):

(prel) (x → y) ∨ (y → x) = 1.

In a residuated lattice A, for any a ∈ A, we put ¬a := a → 0. It is well-known
that the class of residuated lattices is equational [12], and so it forms a variety.
For a survey of residuated lattices we refer to [8].

Remark 2.1. [1, Proposition 2.6] Let A be a residuated lattice. The following
conditions are satisfied for any x, y, z ∈ A:

(i) x� (y ∨ z) = (x� y) ∨ (x� z);

(ii) x ∨ (y � z) ≥ (x ∨ y)� (x ∨ z).

Example 2.2. Let B6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is



Coannihilators and Coannulets of a Residuated Lattice 101

given by Figure 1. Routine calculation shows that B6 = (B6;∨,∧,�,→, 0, 1) is
a residuated lattice, in which the commutative operation “� ” is given by Table
1, and the operation “ → ” is defined by x → y =

∨
{a ∈ B6|x� a ≤ y}, for any

x, y ∈ B6.

� 0 a b c d 1
0 0 0 0 0 0 0

a a 0 a 0 a
b 0 0 b b

c a b c
d d d

1 1

Table 1: Cayley table for “�”

0

a b

c d

1

Figure 1

Example 2.3. Let B7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram is
given by Figure 2. Routine calculation shows that B7 = (B7;∨,∧,�,→, 0, 1) is
a residuated lattice, in which the commutative operation “� ” is given by Table
2, and the operation “ → is defined by x → y =

∨
{a ∈ B7|x � a ≤ y}, for any

x, y ∈ B7.

� 0 a b c d e 1
0 0 0 0 0 0 0 0

a a 0 a a a a
b b b b b b

c c c c c
d d c d

e e e
1 1

Table 2: The Cayley table for “�” of B7

0

a b

c

d e

1

Figure 2

Let A be a residuated lattice. A non-void subset F of A is called a filter of A
if x, y ∈ F implies x� y ∈ F and x∨ y ∈ F for any x ∈ F and y ∈ A. The set of
filters of A is denoted by F(A). A filter F of A is called proper if F 6= A. Clearly,
F is a proper filter if and only if 0 /∈ F . For any subset X of A the filter of A
generated by X is denoted by F(X). For each x ∈ A, the filter generated by {x}
is denoted by F(x) and it is called principal filter. The set of principal filters is
denoted by PF(A). Let F be a collection of filters of A. Set YF = F(∪F). For
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the basic facts concerning filters of a residuated lattice we refer to [24, 26, 20].
According to [8], (F(A);∩,Y, {1}, A) is a frame and so it is a complete Heyting
algebra.

Example 2.4. Consider the residuated lattice B6 from Example 2.2 and the
residuated lattice B7 from Example 2.3. The set of their filters is presented in
Table 3.

filters

B6 {1}, {a, c, 1}, {d, 1}, B6

B7 {1}, {d, 1}, {e, 1}, {c, d, e, 1}, {a, c, d, e, 1}, {b, c, d, e, 1}, B7

Table 3

The following proposition has a routine verification.

Proposition 2.5. Let A be a residuated lattice and F be a filter of A. The
following assertions hold for any x, y ∈ A:

(1) F(F, x) := F Y F(x) = {a ∈ A|f � xn ≤ a, ∃f ∈ F ∧ ∃n ∈ N};
(2) x ≤ y implies F(F, y) ⊆ F(F, x).

(3) F(F, x) ∩ F(F, y) = F(F, x ∨ y);

(4) F(x) Y F(y) = F(x� y);

(5) PF(A) is a sublattice of F(A).

The following lemma is an important property of principal filters of residuated
lattices which must be compared with its lattice version [10, Lemma 105].

Lemma 2.6. Let F , G and H be filters of a residuated lattice A. If G ∩ H =
F(F, x) and G YH = F(F, y), then there exist u,w ∈ A such that G = F(F, u)
and H = F(F,w).

Proof. y ∈ G Y H implies that g � h ≤ y, for some g ∈ G and h ∈ H . So
F(F, y) ⊆ F(F, g) Y F(F, h) ⊆ G Y H = F(F, y) and this shows that F(F, y) =
F(F, g) YF(F, h). So, for any z ∈ G, we have z ∈ F(F, g) Y (F(F, h) ∩F(F, z)) ⊆
F(F, g� x) and this state that G ⊆ F(F, g� x). The inverse inclusion is evident
and so G = F(F, g � x). By symmetry, we can obtain the other case.

A proper filter of a residuated lattice A is called maximal if it is a maximal
element in the set of all proper filters. The set of all maximal filters of A is
denoted by Max(A). A proper filter P of A is called prime, if for any x, y ∈ A,
x∨ y ∈ P implies x ∈ P or y ∈ P . The set of all prime filters of A is denoted by
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Spec(A). Since F(A) is a distributive lattice, so Max(A) ⊆ Spec(A). By Zorn’s
lemma follows that any proper filter is contained in a maximal filter and so in a
prime filter.

A non-empty subset C of A is called ∨-closed if it is closed under the join
operation, i.e. x, y ∈ C implies x ∨ y ∈ C.

Theorem 2.7. [23, Theorem 3.18] If C is a ∨-closed subset of A which does not
meet the filter F , then F is contained in a filter P which is maximal with respect
to the property of not meeting C; furthermore P is prime.

Let A be a residuated lattice and X be a subset of A. A prime filter P is
called a minimal prime filter belonging to X or X-minimal prime filter if P is a
minimal element in the set of prime filters containing X . The set of X-minimal
prime filters of A is denoted by MinX(A). A prime filter P is called a minimal
prime if P ∈ Min{1}(A). The set of minimal prime filters of A is denoted by
Min(A).

Example 2.8. Consider the residuated lattice B6 from Example 2.2 and the
residuated lattice B7 from Example 2.3. The set of their maximal, prime and
minimal prime filters is presented in Table 4.

prime filters

Maximal Minimal

B6 {d,1},{a,c,1} {d,1},{a,c,1}

B7 {a,c,d,e,1},{b,c,d,e,1} {d,1},{e,1}

Table 4

The following proposition states some properties of minimal prime filters.

Proposition 2.9. [27, Corollary 2.8] Let F be a filter of a residuated lattice A and
X be a subset of A. The following assertions hold:

(1) If X * F , there exists an F -minimal prime filter m such that X * m;

(2) F(X) =
⋂

MinX(A).

3. Coannihilators and Coannulets

In this section, the notions of coannihilator and coannulet in a residuated lat-
tice are recalled and investigated. The results in the this section are original,
excepting those that we cite from other papers. For the basic facts concerning
coannihilators of a residuated lattice we refer to [18].
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Definition 3.1. [18] Let A be a residuated lattice and F be a filter of A. For any
subset X of A the coannihilator of X belonging to F (or, F -coannihilator of X)
is denoted by (F : X) and defined as follow:

(F : X) = {a ∈ A|x ∨ a ∈ F, ∀x ∈ X}.

If X = {x}, we write (F : x) instead of (F : X).

Example 3.2. Consider the residuated lattice B6 from Example 2.2. Let F =
{a, c, 1}. We have (F : 0) = (F : b) = (F : d) = F and (F : a) = (F : c) = (F :
1) = B6.

Example 3.3. Consider the residuated lattice B7 from Example 2.3. Let F =
{d, 1}. We have (F : 0) = (F : a) = (F : b) = (F : c) = (F : e) = F and
(F : d) = (F : 1) = B7.

Proposition 3.4. [18, Proposition 3.1] Let A be a residuated lattice. The following
assertions hold for any X,Y ⊆ A and F,G ∈ F(A):

(1) X ⊆ (F : Y ) implies Y ⊆ (F : X);

(2) F ⊆ (F : X);

(3) F ⊆ G implies (F : X) ⊆ (G : X);

(4) (F : X) = A if and only if X ⊆ F . In particular, (F : ∅) = (F : 1) = (F :
F ) = A;

(5) X ∩ (F : X) ⊆ F ;

(6) if F ⊆ X, then X ∩ (F : X) = F . In particular, (F : A) = F ;

(7) (F : X) ∩ (F : (F : X)) = F ;

(8) ((F : X) : Y ) = ((F : Y ) : X) = (F : X ∨ Y ), where X ∨ Y = {x ∨ y|x ∈
X, y ∈ Y };

(9) (F : X) is a filter of A.

We know that the set of filters of a residuated lattice forms a Heyting algebra.
The next proposition characterizes relative pseudocomplements of this Heyting
algebra in terms of coannihilators.

Proposition 3.5. Let A be a residuated lattice and F,G be two filters of A. Then
(F : G) is the relative pseudocomplement of G with respect to F .

Proof. By Proposition 3.4(5), we have G ∩ (F : G) ⊆ F . Now, assume that
G ∩ H ⊆ F . Let a ∈ H and b ∈ G. Since a, b ≤ a ∨ b so a ∨ b ∈ G ∩ H ⊆ F .
Thus a ∈ (F : G) and it shows that H ⊆ (F : G).

We recall that a bounded lattice (A;∧,∨, 0, 1) is a Heyting algebra if for all
x, y ∈ A, there exists the relative pseudocomplement of x with respect to y which
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it is denoted by x → y. For any x ∈ A, we set ¬x = x → 0. An element of A is
called regular if ¬¬x = x. It is well-known that a Heyting algebra is a Boolean
algebra if and only if each its element is regular.

In the following, If F is a filter of a residuated lattice A, then FF (A) stands
for the set of filters of A containing F .

Corollary 3.6. Let A be a residuated lattice and F be a filter of A. Then the
following assertions hold:

(1) (FF (A);∩,Y, F, A) is a Heyting algebra;

(2) FF (A) is a Boolean algebra if and only if (F : (F : G)) = G, for any
G ∈ FF (A).

Proof. (1) It is obvious that (FF (A);∩,Y, F, A) is a bounded lattice. Let G,H ∈
FF (A). Applying Proposition 3.4, it follows that (G : H) ∈ FF (A). Also,
Proposition 3.5 implies that FF (A) is closed under relative pseudo-complements
and so it is a Heyting algebra.

(2) It follows by Cor. 3.6.

Let A = (A;≤) and B = (B;4) be two posts. Recalling that, a pair (f, g)
is called a (contravariant or antitone) Galois connection between posets A and
B, where f : A −→ B and g : B −→ A are two functions such that for all a ∈ A
and b ∈ B, a ≤ g(b) if and only if b 4 f(a). It is well known that (f, g) is a
Galois connection if and only if gf, fg are inflationary and f, g are antitone [9,
Theorem 2]. In the following, if Cl is a closure operator on a set X , the set of
closed elements of Cl shall be denoted by CCl.

Proposition 3.7.[9] Let (f, g) be a Galois connection between posets A and B.
The following assertions hold:

(1) fgf = f and gfg = g;

(2) if ∨X exists for some X ⊆ A then ∧f(X) exists and ∧f(X) = f(∨X);

(3) gf is a closure operator on A and Cgf = g(B).

Proposition 3.8. Let A be a residuated lattice and F be a filter of A. Consider
the following map:

CF : P(A) −→ P(A)
X 7−→ (F : X).

Then, the pair (CF ,CF ) is a Galois connection on P(A).

Proof. It follows obviously from Proposition 3.4.

Let A be a residuated lattice and F be a filter of A. Set ΓF (A) = {(F :
X)|X ⊆ A}.
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Corollary 3.9. Let A be a residuated lattice and F be a filter of A. For any
X,Y ⊆ A the following assertions hold:

(1) X ⊆ (F : (F : X));

(2) X ⊆ Y implies (F : Y ) ⊆ (F : X);

(3) (F : X) = (F : (F : (F : X)));

(4) CFCF is a closure operator on P(A) and CCFCF
= ΓF (A).

Proof. It is a direct consequence of Props. 3.7 and 3.8.

As an application of Proposition 3.8, the next proposition gives some prop-
erties of coannihilators.

Proposition 3.10. Let A be a residuated lattice and F be a filter of A. The
following assertions hold for any X ⊆ A:

(1) (F : ∪i∈IXi) = ∩i∈I(F : Xi), for any {Xi}i∈I ⊆ P(A);

(2) (F : X) = ∩x∈X(F : x);

(3) for any filter G ⊆ F we have (F : F(G,X)) = (F : X);

(4) (F : F(X)) = (F : X). In particular, (F : 0) = F ;

(5) for any filter G ⊆ F we have F(G,X) ∩ (F : X) ⊆ F ;

(6) F(F,X) ∩ (F : X) = F ;

(7) (F : X) = (F : X − F ).

Proof. (1) It is straightforward by Props. 3.7 and 3.8.

(2) By taking X = ∪x∈X{x} it follows by Prop. 3.10.

(3) Let G be a filter contained in F . Applying Proposition 3.9, it follows
that (F : F(G,X)) ⊆ (F : X). Assume that a ∈ (F : X). By Proposition
3.4, we obtain that G ∪ X ⊆ (F : a). Since (F : a) is a filter it states that
F(G,X) ⊆ (F : a). Thus we have a ∈ (F : F(G,X)).

(4) By taking G = {1} it follows by Props. 2.5 and 3.4. By Prop. 3.4 it
follows that (F : 0) = (F : F(0)) = (F : A) = F .

(5) It follows by Props. 3.4 and 3.10.

(6) It follows by Props. 3.4 and 3.10.

(7) By Proposition 3.4, we have (F : X) = (F : (X − F ) ∪ (X ∩ F )) = (F :
X − F ) ∩ (F : X ∩ F ). Also, by Proposition 3.4, we have (F : X ∩ F ) = A. It
states that (F : X) = (F : X − F ).

Proposition 3.11. Let A be a residuated lattice and F be a filter of A. We have

ΓF (A) = {(F : G)|F ⊆ G ∈ F(A)}.

Proof. It is obvious that {(F : G)|F ⊆ G ∈ F(A)} ⊆ ΓF (A). Let H = (F : X)
for some X ⊆ A. By Corollary 3.9 follows (F : (F : H)) = H and by Proposition
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3.4 follows F ⊆ (F : H) ∈ F(A). It shows that ΓF (A) ⊆ {(F : G)|G ∈ FF (A)}.

Example 3.12. Consider the residuated lattice B6 from Example 2.2. By no-
tations of Example 3.2, we have ΓF (B6) = {F,B6}.

Example 3.13. Consider the residuated lattice B7 from Example 2.3. By no-
tations of Example 3.3, we have ΓF (B7) = {F,B7}.

Let A be a residuated lattice and F be a filter of A. By [18, Proposition 3.13]
follows that (ΓF (A);∩,∨

ΓF , F, A) is a complete Boolean lattice, where for any
G ⊆ ΓF (A) we have ∨ΓF G = (F : (F : ∪G)).

The following proposition characterizes coannihilators by means of minimal
prime filters.

Proposition 3.14. [25, Proposition 2.10] Let Π be a collection of prime filters in
a residuated lattice A. For any subset X of A, we have

(
⋂

Π : X) =
⋂

{P ∈ Π| X * P}.

Corollary 3.15. Let A be a residuated lattice and F be a filter of A. For any
subset X of A, we have

(F : X) =
⋂

{m ∈ MinF (A)| X * m}.

Proof. It follows by Props. 2.9 and 3.14.

Corollary 3.16. Let A be a residuated lattice and F be a filter of A. We have

Spec(A) ∩ ΓF (A) ⊆ MinF (A).

Proof. It is evident by Corollary 3.15.

Proposition 3.17. Let A be a residuated lattice and F be a filter of A. If P is a
prime filter of A containing F , then either (F : (F : P )) = A or P ∈ ΓF (A).

Proof. Let (F : (F : P )) 6= A. By Proposition 3.4 follows that (F : P ) * F .
Consider x ∈ (F : (F : P )) \ P . Then x ∨ y ∈ F , for any y ∈ (F : P ). As x /∈ P ,
we have y ∈ P . However, Proposition 3.4 yields that y ∈ F . Consequently,
(F : P ) ⊆ F ; a contradiction. The rest follows immediately from Corollary 3.16.
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Theorem 3.18. Let A be a residuated lattice and F be a filter of A. If for a prime
filter P which containing F we have (F : (F : P )) 6= A, then P is an F -minimal
prime filter.

Proof. It follows by Corollary 3.16 and Proposition 3.17.

Proposition 3.19. [18, Proposition 3.15] Let A be a residuated lattice and F be a
filter of A. The following assertions hold for any x, y ∈ A:

(1) x ≤ y implies (F : x) ⊆ (F : y);

(2) (F : x) ∩ (F : y) = (F : x� y);

(3) (F : x) Y (F : y) ⊆ (F : x) ∨ΓF (F : y) = (F : x ∨ y);

(4) (F : (F : x)) ∩ (F : (F : y)) = (F : (F : x ∨ y));

(5) (F : (F : x)) ∨ΓF (F : (F : y)) = (F : (F : x� y)).

Let A be a residuated lattice. We set γF (A) = {(F : x)|x ∈ A} and λF =
{(F : (F : x)) : x ∈ A}. The elements of γF (A) are called F -coannulets of A and
the elements of λF (A) are called dual F -coannulets of A.

Corollary 3.20. Let A be a residuated lattice and F be a filter of A. Then γF (A)
and λF (A) are sublattices of ΓF (A).

Proof. It follows by Proposition 3.19.

Let A be a residuated lattice and F be a filter of A. A subset X of A is
called F -dense if (F : X) = F . The set of all F -dense elements of A shall be
denoted by deF (A). By Proposition 3.19 follows that deF (A) is an ideal of `(A).
Also, by Props. 3.4 and 3.10 follows that a filter of A is F -dense provided that
it contains an F -dense element.

Proposition 3.21. Let A be a residuated lattice and F be a filter of A. Then any
non F -dense prime filter of A containing F is an F -coannulet.

Proof. Let P be a non F -dense prime filter containing F . So (F : P ) 6= F . Let
x ∈ (F : P ) \ F . Thus P ⊆ (F : (F : P )) ⊆ (F : x). Otherwise, y ∈ (F : x)
implies that x ∨ y ∈ F ⊆ P . But x /∈ P , since x ∈ P states that x ∈ P ∩ (F :
P ) = F and so x ∈ F ; a contradiction. So y ∈ P and it shows that P = (F : x).

We end this section with a kind of Chinese remainder theorem for coannulets,
inspired by the one obtained for bounded distributive lattices by [3, Proposition
3.6].

Proposition 3.22. Let A be a residuated lattice, F be a filter of A and
a1, · · · , an, x1, · · · , xn ∈ A. Suppose that (F : (F : a1)) Y · · ·Y (F : (F : a1)) = A
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and xi ≡(F :ai∨aj) xj for all i, j ∈ {1, · · · , n}. Then there exist u, v ∈ A such that
u → xi, xi → v ∈ (F : ai) for all i ∈ {1, · · · , n}.

Proof. Since (F : (F : a1)) Y · · · Y (F : (F : a1)) = A, so for all i ∈ {1, · · · , n}
there exist yi ∈ (F : (F : ai)) such that y1�· · ·�yn = 0. For all i, j ∈ {1, · · · , n}
we set uij = xi → xj . By hypothesis, we have uij ∈ (F : ai∨aj). It implies that
uij ∨ ai ∈ (F : aj) ⊆ (F : yj) and it states that uij ∨ yj ∈ (F : ai). Analogously,
we deduce that uij ∨ yi ∈ (F : aj). Set u = (x1 ∨ y1) � · · · � (xn ∨ yn) and
v = (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn). In a similar manner of [16, Proposition 2.2.17]
we obtain that u → xi ≥ (u1i ∨ y1)� (u2i ∨ y2)� · · · � (uni ∨ yn) ∈ (F : ai) and
xi → v ∈ (ui1 ∨y1)� (ui2 ∨y2)�· · · � (uin ∨yn) ∈ (F : ai) for all i ∈ {1, · · · , n}.

4. The Lattice of Coannulets

In this section, the notions of quasicomplemented, normal and generalized Stone
residuated lattice with respect to a filter are introduced and investigated. For
a residuated lattice A and a filter F of A, it is shown that γF (A) is a Boolean
sublattice of ΓF (A) if and only if A is F -quasicomplemented and γF (A) is a
sublattice of FF (A) if and only if A is F -normal. Furthermore, it is observed
that γF (A) is a Boolean sublattice of FF (A) if and only if A is generalized F -
Stone. For the basic facts concerning quasicomplemented residuated lattices we
refer to [21, 22] and for the basic facts concerning normal residuated lattices we
refer to [27, 19].

Definition 4.1. Let A be a residuated lattice and F be a filter of A. A is called
quasicomplemented with respect to F (or, F -quasicomplemented) provided that
for any x ∈ A, there exists y ∈ A such that (F : (F : x)) = (F : y), i.e.
λF (A) ⊆ γF (A).

Remark 4.2. Following by [21, Definition 3.1], a residuated lattice A is quasi-
complemented if it is quasicomplemented with respect to {1}.

Proposition 4.3. Let A be a residuated lattice and F be a filter of A. The
following assertions are equivalent:

(1) A is F -quasicomplemented;

(2) for any x ∈ A, there exists y ∈ A such that x� y ∈ deF (A) and x∨ y ∈ F ;

(3) γF (A) is a Boolean lattice.

Proof. (1)⇒(2): Consider x ∈ A. So there exists y ∈ A such that (F : (F :
x)) = (F : y). Applying Propositions 3.4 and 3.19, it follows that x � y is an
F -dense element and Proposition 3.9 shows that x ∈ (F : (F : x)) = (F : y) and
so x ∨ y ∈ F .

(2)⇒(3): By applying Proposition 3.19, it is evident.
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(3)⇒(1): Let x ∈ A. So there exists some y ∈ A such that (F : x) ∩ (F :
y) = F and (F : x)∨ΓF (F : y) = A. Applying Proposition 3.5, the former states
(F : y) ⊆ (F : (F : x)), and the latter states the reverse inclusion.

The following proposition derives a sufficient condition for a residuated lattice
to become quasicomplemented.

Proposition 4.4. Let A be a residuated lattice and F be a filter of A. A is
F -quasicomplemented provided that γF (A) ⊆ PFF (A).

Proof. Consider x ∈ A. So there exist y ∈ A such that (F : x) = F(F, y).
Using Proposition 3.10, it follows that (F : (F : x)) = (F : y) and so A is
F -quasicomplemented.

Corollary 4.5. Let A be a residuated lattice and F be a filter of A. If A/F is
a finite residuated lattice, then A is F -quasicomplemented. In particular, any
finite residuated lattice is quasicomplemented.

Proof. Since in finite residuated lattices any filter is principal, so it follows by
Proposition 4.4.

Corollary 4.6. Let A be a residuated lattice and F be a filter of A. If A/F is a
finite residuated lattice, then γF (A) is a Boolean lattice. In particular, in any
finite residuated lattice γ(A) is a Boolean lattice.

Proof. It is an immediate consequence of Proposition 4.3 and Corollary 4.5.

Let A be a residuated lattice and F be a filter of A. For any prime filter P
of A we set

DF (P ) = {a ∈ A|(F : a) * P}.

Following by [27], DF (P ) is a filter of A containing F . The following theorem
characterizes minimal prime filters belonging to a filter.

Theorem 4.7. [27, Proposition 3.14] Let A be a residuated lattice, F be a filter
and P be a prime filter containing F . The following assertions are equivalent:

(1) P is an F -minimal prime filter;

(2) P = DF (P );

(3) for any x ∈ A, P contains precisely one of x or (F : x).

Corollary 4.8. [27, Proposition 3.21] Let A be a residuated lattice, F be a filter
and P be a prime filter. We have

DF (P ) =
⋂

{m|m ∈ MinF (A), m ⊆ P}.
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The following proposition by applying Theorem 4.7 gives some necessary and
sufficient conditions for any residuated lattice to become quasicomplemented.

Proposition 4.9. Let A be a residuated lattice and F be a filter of A. The
following assertions are equivalent:

(1) A is F -quasicomplemented;

(2) any prime filter containing F which not contains any F -dense element is
F -minimal prime;

(3) any filter containing F which not contains any F -dense element is con-
tained in an F -minimal prime filter.

Proof. (1)⇒(2): Let P be a prime filter containing F such that P ∩ deF (A) = ∅.
Consider x ∈ P . Applying Proposition 4.3, there exists a y ∈ A such that x� y
is F -dense and x ∨ y ∈ F . It shows that x � y /∈ P and so y /∈ P . Hence,
x ∈ DF (P ) and it states that P = DF (P ). So the result holds by Theorem 4.8.

(2)⇒(3): It follows by Theorem 2.7.

(3)⇒(1): Let x ∈ A. By Theorem 4.7 follows that F(F, x)Y(F : x) cannot be
contained in any F -minimal prime filter and so it contains an F -dense element
like d. Hence, there are a ∈ F(F, x) and b ∈ (F : x) such that a� b ≤ d. So for
some integer n follows that xn � b is F -dense. Let u ∈ (F : b) and v ∈ (F : x).
Thus we have (u ∨ v) ∨ b ∈ F and (u ∨ v) ∨ xn ∈ F . And by using Remark 2.1
(ii) we deduce that (u∨ v)∨ (xn � b) ∈ F . It shows that u∨ v ∈ F and it means
that (F : b) ⊆ (F : (F : x)). The other inclusion is evident by Proposition 3.4,
and so the result holds.

Corollary 4.10. Let A be a finite residuated lattice and P be a prime filter of A
which is not minimal prime. Then P contains a dense element.

Proof. It follows by Corollary 4.5 and Proposition 4.9.

Cornish [2] studied distributive lattices with 0 in which each prime ideal
contains a unique minimal prime ideal under the name “normal lattices”. Rasouli
and Kondo [27] generalized this notion to residuated lattices.

Definition 4.11. Let A be a residuated lattice and F be a filter of A. A is
called normal with respect to F (or, F -normal) provided that any prime filter
containing F contains a unique F -minimal prime filter.

Remark 4.12. Following by [27, Definition 4.3], a residuated lattice A is normal
if it is normal with respect to {1}.

The following proposition gives some necessary and sufficient conditions for
any residuated lattice to become normal.
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Proposition 4.13. Let A be a residuated lattice and F be a filter of A. The
following assertions are equivalent:

(1) Any two distinct F -minimal prime filters are comaximal;

(2) A is F -normal;

(3) for any prime filter P , DF (P ) is prime;

(4) for any x, y ∈ A, x ∨ y ∈ F implies (F : x) Y (F : y) = A;

(5) for any x, y ∈ A, x ∨ y ∈ F implies that there exist u ∈ (F : x) and
v ∈ (F : y) such that u� v = 0;

(6) γF (A) is a sublattice of F(A);

(7) for any x, y ∈ A, (F : x ∨ y) = A implies (F : x) Y (F : y) = A;

Proof. (1)⇒(2) is trivial and (2)⇒(3) is a direct consequence of Corollary 4.8.

(3)⇒(4): Let x, y ∈ A such that x ∨ y ∈ F . If (F : x) Y (F : y) 6= A, then
there exists a prime filter P containing (F : x) Y (F : y). So by Theorem 4.7
follows that x, y /∈ DF (P ); a contradiction.

(4)⇒(5): Let x, y ∈ A such that x ∨ y ∈ F . Hence (F : x) Y (F : y) = A and
so by Proposition 2.5 there exist u ∈ (F : x) and v ∈ (F : y) such that u�v = 0.

(5)⇒(6): Let a ∈ (F : x ∨ y). This implies that (a ∨ x) ∨ y ∈ F and so
there exist u ∈ (F : a ∨ x) and v ∈ (F : y) such that u � v = 0. By Remark
2.1 (ii) it follows that a = a ∨ (u � v) ≥ (a ∨ u) � (a ∨ v). On the other hand,
a ∨ u ∈ (F : x) and a ∨ v ∈ (F : y). This means that a ∈ (F : x) Y (F : y). The
converse inclusion follows by Proposition 3.19.

(6)⇒(7): It is trivial.

(7)⇒(1): Let x1 ∈ m2 − m1 and x2 ∈ m1 − m2. Applying Theorem 4.7,
there exists y2 /∈ m1 such that x2 ∨ y2 ∈ F . Let x = x1 ∨ y2 and y = x2. So
x ∨ y ∈ F , x /∈ m1 and y /∈ m2. Applying Theorem 4.7 and hypothesis follows
that (F : x) Y (F : y) = A, (F : x) ⊆ m1 and (F : y) ⊆ m2. It holds the result.

Example 4.14. Consider the residuated lattice B6 from Example 2.3 and the
residuated lattice B7 from Example 2.4. By Example 2.8 follows that B6 is a
normal residuated lattice and B7 is not a normal residuated lattice.

The notion of generalized Stone lattice is introduced by Katrinak [13] as
a generalization of Stone lattices. Motivated by this notion, [2, Theorem 5.6]
characterized generalized Stone lattices in terms of normal and quasicomple-
mented distributive lattices with 0. In the following, we generalize this notion
to residuated lattices.

Definition 4.15. Let A be a residuated lattice and F be a filter of A. A is called
generalized Stone with respect to F (or, generalized F -Stone) provided that for
any x ∈ A we have (F : x) Y (F : (F : x)) = A. A is called generalized Stone if
it is generalized Stone with respect to {1}.
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Proposition 4.16. Let A be a residuated lattice and F be a filter of A. If A is
generalized F -Stone, then A is F -quasicomplemented.

Proof. Let x ∈ A. So we have (F : x) ∩ (F : (F : x)) = F = F(F, 1) and
(F : x) Y (F : (F : x)) = A = F(F, 0). Using Lemma 2.6, it follows that there
exists y ∈ A such that (F : x) = F(F, y). By Proposition 3.10, it follows that
(F : (F : x)) = (F : y) and so the result holds.

Proposition 4.17. Let A be a residuated lattice and F be a filter of A. If A is
generalized F -Stone, then A is F -normal.

Proof. Let x, y ∈ A and a ∈ (F : x ∨ y). So a ∨ y ∈ (F : x) and it implies that
F(F, a ∨ y) ∩ (F : (F : x)) = F . It means that (F(F, a) ∩ F(F, y)) ∩ (F : (F :
x)) = F and it states that F(F, a)∩ (F : (F : x)) ⊆ (F : F(F, y)) = (F : y). Now
we have the following sequence of formulas:

(F : x) Y (F : y) ⊇ (F(F, a) ∩ (F : x)) Y (F(F, a) ∩ (F : (F : x)))
= F(F, a) ∩ ((F : x) Y (F : (F : x)))
= F(F, a) ∩ A = F(F, a) 3 a.

The other inclusion follows by Proposition 3.19.

Let A be a residuated lattice and F be a filter of A. A filter G of A is called
a direct F -summand of A, if there exists a filter H such that G ∩ H = F and
G YH = A.

Theorem 4.18. Let A be a residuated lattice and F be a filter of A. Then the
following assertions are equivalent:

(1) A is generalized F -Stone;

(2) any F -coannulet of A is a direct F -summand of A.

Proof. (1)⇒(2): It is evident by Proposition 3.4 and hypothesis.

(2)⇒(1): Let x ∈ A. So there exists a filter H such that (F : x)∩H = F and
(F : x) YH = A. Applying Proposition 3.5, we obtain that H ⊆ (F : (F : x))
and it implies that (F : x) Y (F : (F : x)) = A.

In the following corollary gives the interrelation between the subclasses of
quasicomplemented, normal and generalized stone residuated lattices (See Fig.
3).

Corollary 4.19. Let A be a residuated lattice and F be a filter of A. The following
assertions are equivalent:

(1) A is generalized F -Stone;

(2) A is F -quasicomplemented and F -normal.
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Proof. (1)⇒(2): It is evident by Props. 4.16 and 4.17.

(2)⇒(1): Consider x ∈ A. So there exists y ∈ A such that (F : (F : x)) =
(F : y) and it implies that (F : x) Y (F : (F : x)) = (F : x) Y (F : y) = (F :
x) ∨ΓF (F : y) = (F : x) ∨ΓF (F : (F : x)) = A.

Corollary 4.20. Let A be a residuated lattice and F be a filter of A. If A/F
is a finite residuated lattice, then A is generalized F -Stone if and only if it is
F -normal. In particular, any finite residuated lattice is generalized Stone if and
only if it is normal.

Proof. It follows from Corollaries 4.5 and 4.19.

Example 4.21. Consider the residuated lattice B6 from Example 2.2 and the
residuated lattice B7 from Example 2.3. By Example 4.14 and Corollary 4.20
follows that B6 is a generalized Stone residuated lattice and B7 is not a gener-
alized Stone residuated lattice.

Residuated lattices

Quasicomplemented residuated lattices

generalized Stone residuated lattices

Normal residuated lattices

Figure 3

Corollary 4.22. Let A be a residuated lattice and F be a filter of A. Then the
following assertions are equivalent:

(1) A is generalized F -Stone;

(2) γF (A) is a Boolean sublattice of FF (A).

Proof. It is an immediate consequence of Props 4.3, 4.13 and Corollary 4.19.

Corollary 4.23. Let A be a residuated lattice and F be a filter of A. If A/F is a
finite residuated lattice, then γF (A) is a Boolean sublattice of F(A) if and only
if γF (A) is a sublattice of FF (A). In particular, in any finite residuated lattice
γ(A) is a Boolean sublattice of F(A) if and only if γ(A) is a sublattice of F(A).
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Proof. It is an immediate consequence of Corollaries 4.22 and 4.23.

5. Conclusion

We have investigated the notions of coannihilator and coannulet in residuated
lattices. For a residuated lattice A, we have established a connection between
coannihilators and Galois connection theory (Proposition 3.10). We have shown
that γ(A) and λ(A) are sublattices of Γ(A) (Corollary 3.20). Also, we have
proved a kind of Chinese remainder theorem for the lattice of coannulets (Propo-
sition 3.22). The notions of quasicomplemented, normal, and generalized Stone
for residuated lattices are also generalized. It is observed that for a residuated
lattice A (i) γ(A) is a Boolean sublattice of Γ(A) if and only if A is quasicom-
plemented (Proposition 4.3) (ii) γ(A) is a sublattice of F(A) if and only if A
is normal (Proposition 4.13) (iii) γ(A) is a Boolean sublattice of F(A) if and
only if A is generalized Stone (Corollary 4.22). We have generalized the results
by [2, 4] for residuated lattices as the most common structure among algebras
of logics. It is worth considering that the residuated lattices do not fulfill the
distributivity or modularity properties.
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