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Abstract. In this paper, we are interested in the existence of infinitely many homoclinic

solutions for fourth-order differential equations where the nonlinearity is superquadratic
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the literature.
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1. Introduction

In this paper, we consider the nonperiodic fourth-order differential equation

u(4)(x) + ωu′′(x) + a(x)u(x) = f(x, u(x)), ∀x ∈ R (1)

where ω is a constant, a ∈ C(R) and f ∈ C(R2) are real functions.

It is well-known that the mathematical modeling of important questions in
different fields of research such as mechanical engineering, control systems, eco-
nomics and many others, leads naturally to the consideration of the nonlinear
differential equations. In particular, the fourth order differential equations, like
(1) have been put forward as mathematical model for the study of pattern for-
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mation in physics and mechanics. For example, the well-known extended Fisher-
Kolmogorov equation proposed by Coullet et al. in [5], in the study of phase
transitions, the fourth-order elastic beam equation in describing a large class of
elastic deflection [15], the Swift-Hohenberg equation which is a general model for
pattern-forming process derived in [7] to describe random thermal fluctuations
in the Boussinesque equation and in the propagation of lasers [8].

As usual, we say that a solution u of equation (1) is homoclinic (to 0) if
u(x) → 0 as x −→ ±∞. In addiction, if u 6= 0, then u is called a nontrivial
homoclinic solution.

In recent years, based on critical point theory and variational methods, many
researchers are interested in the existence of homoclinic solutions for the special
case of f(x, u) = c(x)u2 + d(x)u3, where a(x), c(x) and d(x) are independent
of x or periodic in x, see [1,3,4,9,17] and the references cited therein. Li [9]
extended these results to equation (1) in the general case where a(x) and f(x, u)
are periodic in x. Precisely, let F (x, u) =

∫ u

0 f(x, t)dt, and by assuming that
f(x, u) satisfies the well-known Ambrosetti-Rabinowitz condition:

(AR) There is a constant µ > 2 such that

0 < µF (x, u) ≤ f(x, u)u, ∀(x, u) ∈ R
2,

some results on the existence of homoclinic solutions are obtained.

Compared to the periodic case, the nonperiodic case seems to be more diffi-
cult, because of the lack of compactness of the Sobolev embedding. In 2009, Li
[10] dealt with the nonperiodic case of equation (1) and obtained the existence
of nontrivial homoclinic solutions via using a compactness lemma and Mountain
Pass Theorem. Since then, there is a few literature available for the case where
a(x) and f(x, u) are nonperiodic in x, see [10–14, 18–22].

We notice that, for the case that equation (1) is nonperiodic, to obtain the
existence of homoclinic solutions, the following coercive condition on a is often
needed:

(A0) a : R −→ R is a continuous function, and there exists a constant a1 such
that

0 < a1 ≤ a(x) −→ +∞ as |x| −→ ∞;

ω ≤ 2
√
a1.

This is used to establish the corresponding compact embedding lemmas on
suitable functional spaces, see [10, 11, 18, 20]. Moreover, most of the well-known
results were obtained for the case where F (x, u) is superquadratic at infinity in
u satisfying the (AR)−condition.

The purpose of this paper is devoted to proving the existence of infinitely
many homoclinic solutions for equation (1) when the function a may be nega-
tive on a bounded interval and the potential F (x, u) is either superquadratic at
infinity in the second variable and does not need to satisfy the (AR)−condition
or involves a combination of subquadratic and superquadratic terms. To the best
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of our knowledge, it seems that no similar results are obtained in the literature
for fourth-order differential equations. Firstly, we deal with the superquadratic
case and we introduce the following hypotheses on the function a(x) and the
nonlinearity f(x, u):

(A) lim|x|−→∞ a(x) = +∞;

(F1) There exist constants a0, b0 > 0 and p > 2 such that

|f(x, u)| ≤ a0 |u|+ b0 |u|p−1 , ∀(x, u) ∈ R
2;

(F2) lim|u|−→∞
F (x,u)

|u|2
= +∞ uniformly in x ∈ R and F (x, u) is bounded from

below;

(F3) F (x,−u) = F (x, u), ∀(x, u) ∈ R
2;

(F4) There exist constants c0 > 0, r0 ≥ 0 and σ > 1 such that

f(x, u)u− 2F (x, u) ≥ 0, ∀(x, u) ∈ R× R,

|F (x, u)|σ ≤ c0 |u|2σ [f(x, u)u− 2F (x, u)], ∀x ∈ R, |u| ≥ r0;

(F ′
4) There exist constants µ > 2 and γ > 0 such that

µF (x, u) ≤ f(x, u)u+ γu2, ∀(x, u) ∈ R× R.

Our first main results read as follows.

Theorem 1.1. Assume that (A) and (F1) − (F4) hold. Then (1) has infinitely

many nontrivial homoclinic solutions.

Theorem 1.2. Assume that (A), (F1)−(F3) and (F ′
4) hold. Then (1) has infinitely

many nontrivial homoclinic solutions.

Example 1.3. Let

F (x, u) = θ(x)
[
(4 |u|2 − 1)ln(

1

2
+ |u|)− 2(

1

2
+ |u|)2 + 4 |u|+ 1

2
− ln2

]
,

where θ ∈ C(R,R) is such that 0 < infx∈R θ(x) ≤ supx∈R θ(x) < +∞. It is clear
that F (x, u) satisfies (F1)−(F3). It remains to verify (F4). An easy computation
shows that

f(x, u)u− 2F (x, u) = θ(x)
[
(4 |u|2 − 1)

2 |u|
2 |u|+ 1

− 2 |u|+ 2ln(
1

2
+ |u|) + 2ln2

]
.

It is easy to see that f(x, u)u − 2F (x, u) ≥ 0 for all (x, u) ∈ R
2. Moreover, for

all σ > 1, we have

(F (x, u)
|u|2

)σ

[f(x, u)u− 2F (x, u)]−1 ∼=∞ (4θ(x))σ−1

(
ln(12 + |u|)

)σ

|u|2
,
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which converges to 0 as |u| −→ ∞, uniformly in x ∈ R. Hence there exist two
positive constants r0, c0 such that

(F (x, u)
|u|2

)σ

≤ c0[f(x, u)u− 2F (x, u)], ∀x ∈ R, |u| ≥ r0.

Therefore (F4) holds. By Theorem 1.1, the corresponding fourth-order differen-
tial equation (1) possesses infinitely many nontrivial homoclinic solutions.

Next, consider equation (1) involving a combination of superquadratic and
subquadratic terms at infinty. More precisely, we take f(x, u) = g(x, u)+h(x, u),
where g, h : R2 −→ R are continuous functions. Consider the following condi-
tions:

(F5) There exist constants 1 < γ < 2, 1 < σ < 2 and functions c0, a0 ∈
L

2
2−γ (R,R+) and b0 ∈ L

2
2−σ (R,R+) such that

c0(x) |u|γ ≤ g(x, u)u, |g(x, u)| ≤ a0(x) |u|γ−1
+ b0(x) |u|σ−1

, a.e. x ∈ R,

for u ∈ R;

(F6) H(x, u) =
∫ u

0
h(x, s)ds ≥ 0 and there exist µ > 2, c ∈ L2(R,R+) and d ∈

L∞(R,R+) such that |h(x, u)| ≤ c(x) + d(x) |u|µ−1 , a.e. x ∈ R, ∀u ∈ R;

(F7) There exist ρ > 2, 1 < δ < 2 and θ ∈ C(R,R+)
⋂
L

2
2−δ (R,R+) such that

ρH(x, u)− h(x, u)u ≤ θ(x) |u|δ , a.e. x ∈ R, ∀u ∈ R.

Our third result reads as follows.

Theorem 1.4. Assume that (A0), (F3) and (F5) − (F7) are satisfied. Then

equation (1) possesses infinitely many homoclinic solutions.

Remark 1.5. Obviously, Theorem 1.4 generalizes Theorem 1.1 in [14] and The-
orem 2 in [21]. In fact, let g(x, u) = 0. Then Theorem 1.4 generalizes Theorem
1.1 in [14]. Similarly, let h(x, u) = 0. Then Theorem 1.4 generalizes Theorem 2
in [21]. For example, the function F (x, u) = G(x, u) +H(x, u) where

G(x, u) =
( 1

1 + |x|2
) 1

3 |u|
4
3 +

( 1

1 + |x|2
) 1

6 |u|
5
3 ,

H(x, u) =
( 1

1 + |x|2
)
|u|6

satisfies (F3) and (F5) − (F7). Hence the corresponding equation (1) possesses
infinitely many homoclinic solutions.

2. Variational Setting and Preliminaries
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To prove our main result via critical point theory, we need to establish the
variational setting for (1). In the following, we shall use ‖.‖s to denote the norm
of Ls(R) for any s ∈ [2,∞]. Let H2(R) be the Sobolev space with inner product
and norm given respectively by

< u, v >H2 =

∫

R

[u′′(x)v′′(x) + u′(x)v′(x) + u(x)v(x)]dx,

‖u‖H2 = < u, u >
1
2

H2

for all u, v ∈ H2(R).

In this Section, we will assume that the function a satisfies the condition
(A0).

Lemma 2.1. [4, Lemma 8] Assume that a satisfies (A0). Then there exists a

constant b > 0 such that
∫

R

[u
′′

(x)2 − ωu
′

(x)2 + a(x)u(x)2]dx ≥ b ‖u‖2H2 , ∀u ∈ H2(R).

By Lemma 2.1, we define

E =

{
u ∈ H2(R)/

∫

R

[u
′′

(x)2 − ωu
′

(x)2 + a(x)u(x)2]dx <∞
}

with the inner product

< u, v >=

∫

R

[u′′(x)v′′(x) − ωu′(x)v′(x) + a(x)u(x)v(x)]dx

and the corresponding norm

‖u‖ = (

∫

R

[u
′′

(x)2 − ωu
′

(x)2 + a(x)u(x)2]dx)
1
2 .

It is easy to verify that E is a Hilbert space.

In order to prove our results, the following compactness result is necessary.

Lemma 2.2. [18, Lemma 2.2] Assume that a satisfies (A0). Then E is compactly

embedded in Ls(R) for all s ∈ [2,∞]. Moreover, for all s ∈ [2,∞], there exists

ηs > 0 such that

‖u‖Ls(R) ≤ ηs ‖u‖ , ∀u ∈ E. (2)

To study the critical points of the variational functional associated with (1),
we need to recall the following critical point theorems.

Definition 2.3. Let E be a Banach space with the norm ‖.‖. We say that ψ ∈
C1(E,R) satisfies the following conditions:
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(a) (PS)c-condition, c ∈ R, if any sequence (un) ⊂ E satisfying

ψ(un) −→ c and ψ′(un) −→ 0 as n −→ ∞

possesses a convergent subsequence,

(b) (C)c−condition, c ∈ R, if any sequence (un) ⊂ E satisfying

ψ(un) −→ c and ‖ψ′(un)‖ (1 + ‖un‖) −→ 0 as n −→ ∞

possesses a convergent subsequence.

Lemma 2.4. [16, Symmetric Mountain Pass Theorem] Let E be an infinite di-

mensional Banach space, E = Y ⊕ Z, where Y is finite dimensional space.

Suppose that ψ ∈ C1(E,R) satisfies the Palais-Smale condition and

(a) ψ(0) = 0, ψ(−u) = ψ(u), ∀u ∈ E;

(b) There exist constants ρ, α > 0 such that ψ|∂Bρ∩Z ≥ α;

(c) For any finite dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > 0 such

that ψ(u) ≤ 0 on Ẽ \BR, where BR = {u ∈ E/ ‖u‖ < R}.
Then ψ possesses an unbounded sequence of critical values.

Remark 2.5. As shown in [2], a deformation lemma can be proved with (C)c−condition
replacing the (PS)c−condition, and it turns out that Lemma 2.4 still holds true
with the (C)c−condition instead of the (PS)c−condition.

Now, let E be a Banach space with the norm ‖.‖ and E = ⊕j∈NXj , where Xj

is a finite dimensional subspace of E. For each k ∈ N, let Yk = ⊕k
j=0Xj , Zk =

⊕∞
j=kXj . The functional ψ ∈ C1(E,R) is said to satisfy the (PS)∗ condition if

for any sequence (uj) for which (ψ(uj)) is bounded, uj ∈ Ykj
for some kj with

kj −→ ∞ and (ψ|Ykj
)′(uj) −→ 0 as j −→ ∞, has a subsequence converging to a

critical point of ψ.

Lemma 2.6. [6, Dual Fountain Theorem] Suppose that the functional ψ ∈
C1(E,R) is even and satisfies the (PS)∗ condition. Assume that for each suffi-

ciently large integer k, there exist 0 < rk < ρk such that

(a) ak = infu∈Zk,‖u‖=ρk
ψ(u) ≥ 0;

(b) bk = maxu∈Yk,‖u‖=rk ψ(u) < 0;

(c) dk = infu∈Zk,‖u‖≤ρk
ψ(u) −→ 0 as k −→ ∞.

Hence ψ has a sequence of negative critical values converging to zero.

3. Proof of Theorems 1.1 and 1.2
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First, note that (A) implies that there exists a constant a1 > 0 such that ã(x) =

a(x) + 2a1 ≥ a1 for all x ∈ R, ω ≤ 2
√
a1. Let f̃(x, u) = f(x, u) + 2a1u for all

(x, u) ∈ R
2 and consider the following fourth-order differential equation

u(4)(x) + ωu′′(x) + ã(x)u(x) = f̃(x, u(x)), ∀x ∈ R. (3)

Then (3) is equivalent to (1). Moreover, it is easy to check that the hypotheses

(F1)−(F4) and (F ′
4) still hold for f̃(x, u) provided that those hold for f(x, u) and

the function ã satisfies (A0). Hence in what follows, we always assume without
loss of generality that a satisfies (A0).

Consider the variational functional ψ associated to equation (1):

ψ(u) =
1

2

∫

R

[u
′′

(x)2 − ωu
′

(x)2 + a(x)u(x)2]dx −
∫

R

F (x, u(x))dx

=
1

2
‖u‖2 −

∫

R

F (x, u)dx

defined on the Hilbert space E introduced in Section 2. It is well known that,
under assumption (F1), ψ ∈ C1(E,R) and critical point of ψ are solutions of
(1). Moreover, for all u, v ∈ E

ψ′(u)v

∫

R

[u′′v′′ − ωu′v′ + auv]dx−
∫

R

f(x, u)vdx =< u, v > −
∫

R

f(x, u)vdx.

Let (ej)j∈N be an orthonormal basis of E. We set

Ym = span {e1, ..., em} , Zm = span {em+1, ...}, m ∈ N.

Then E = Ym ⊕ Zm.

Lemma 3.1. Assume that (A0) and (F1) are satisfied. Then there exist positive

constants m0, α, ρ such that ψ|∂Bρ∩Zm0
≥ α.

Proof. Note that by (F1), we have

|F (x, u)| ≤ a0
2

|u|2 + b0
p
|u|p , ∀(x, u) ∈ R

2. (4)

For any m ∈ N, let

l2(m) = sup
u∈Zm\{0}

‖u‖2
‖u‖ and lp(m) = sup

u∈Zm\{0}

‖u‖p
‖u‖ . (5)

It is clear that l2(m + 1) ≤ l2(m), so l2(m) −→ l ≥ 0 as m −→ ∞. For any
m ∈ N, there exists um ∈ Zm such that ‖um‖ = 1 and ‖um‖2 ≥ 1

2 l2(m). By the
definition of Zm, um ⇀ 0 in E, then um −→ 0 in L2(R). Hence, we have l = 0,
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that is l2(m) −→ 0 as m −→ ∞. Similarly lp(m) −→ 0 as m −→ ∞. Therefore,
we can choose a larger integer m0 such that

‖u‖22 ≤ 1

2a0
‖u‖2 , ‖u‖pp ≤ p

4b0
‖u‖p , ∀u Zm0 . (6)

Then by (4) and (6), we have

ψ(u) =
1

2
‖u‖2 −

∫

R

F (x, u)dx ≥ 1

2
‖u‖2 −

∫

R

(
a0
2

|u|2 + b0
p
|u|p)dx

≥ 1

2
‖u‖2 − a0

2
‖u‖22 −

b0
p
‖u‖pp ≥ 1

2
‖u‖2 − 1

4
‖u‖2 − 1

4
‖u‖p

=
1

4
(‖u‖2 − ‖u‖p) = 2p−2 − 1

2p+2
= α, ∀u ∈ Zm0 , ‖u‖ =

1

2
= ρ,

which finish the proof.

To apply Lemma 2.4, we will take E = Y ⊕ Z with Y = Ym0 and Z = Zm0 ,
where m0 is introduced in Lemma 3.1.

Lemma 3.2. Assume that (A0), (F1) and (F2) are satisfied. Then for any finite

dimensional subspace Ẽ ⊂ E, there is a constant R = R(Ẽ) > 0 such that

ψ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R. (7)

Proof. In order to prove (7), we only need to prove

ψ(u) −→ −∞ as ‖u‖ −→ ∞, u ∈ Ẽ. (8)

Assume by contradiction that there exists a sequence (un) ⊂ Ẽ with ‖un‖ −→ ∞
as n −→ ∞ and ψ(un) ≥ −M for some constantM > 0, ∀n ∈ N. Let vn = un

‖un‖
.

Then ‖vn‖ = 1. Going to a subsequence if necessary, we can assume that vn ⇀ v
in E. Since Ẽ is finite dimensional, we have vn −→ v in E, and thus ‖v‖ = 1.
Let

Λn(c, d) = {x ∈ R/c ≤ |un(x)| < d} , 0 ≤ c < d,

Λ = {x ∈ R/v(x) 6= 0} .

For any x ∈ Λ, we have limn−→∞ |un(x)| = limn−→∞ ‖un‖ |vn(x)| = +∞. Hence
Λ ⊂ Λn(r,∞) for all integer n large enough. Property (4), Lemma 2.2, assump-
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tion (F2) and Fatou’s lemma imply

0 = lim
n−→∞

−M
‖un‖2

≤ lim
n−→∞

Φ(un)

‖un‖2
= lim

n−→∞
[
1

2
−
∫

R

F (x, un)

|un|2
|vn|2 dx]

= lim
n−→∞

[
1

2
−
∫

Λn(0,r)

F (x, un)

|un|2
|vn|2 dx−

∫

Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx]

≤ lim sup
n−→∞

[
1

2
+ (

a0
2

+
b0
p
rp−2)

∫

R

|vn|2 dx−
∫

Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx]

≤ 1

2
+ (

a0
2

+
b0
p
rp−2)η22 − lim inf

n−→∞

∫

R

F (x, un)

|un|2
χΛn(r,∞) |vn|2 dx

≤ 1

2
+ (

a0
2

+
b0
p
rp−2)η22 −

∫

R

lim inf
n−→∞

F (x, un)

|un|2
χΛn(r,∞) |vn|2 dx = −∞.

(9)

It is a contradiction. Hence (8) is satisfied and the proof is finished.

Lemma 3.3. Assume that (A0), (F1), (F2) and (F4) are satisfied. Then ψ
satisfies the (C)c−condition for any level c > 0.

Proof. Let c be a positive real and (un) ⊂ E be a (C)c−sequence, that is

ψ(un) −→ c and ‖ψ′(un)‖ (1 + ‖un‖) −→ 0 as n −→ ∞.

Assume by contradiction that (un) is not bounded. Then up to a subsequence,
we can assume that ‖un‖ −→ ∞ as n −→ ∞. Let vn = un

‖un‖
. Then ‖vn‖ = 1.

Taking a subsequence if necessary, then vn ⇀ v in E and Lemma 2.2 implies
that vn −→ v in Lq(R) for q = 2, p, 2σ

σ−1 and vn −→ v a.e. on R.
If v 6= 0, we have

0 = lim
n−→∞

ψ(un)

‖un‖2
= lim

n−→∞
[
1

2
−
∫

R

F (x, un)

|un|2
|vn|2 dx] ≤ −∞,

which is a contradiction. So (un) is bounded.

If v = 0, then vn −→ 0 in Lq(R) for q = 2, p, 2σ′ = 2σ
σ−1 . On one hand, since

ψ(un) −→ c and ‖un‖ −→ ∞, it is easy to see that

lim sup
n−→∞

∫

R

F (x, un)

|un|2
|vn|2 dx =

1

2
. (10)

On the other hand, (4) implies

∫

Λn(0,r)

F (x, un)

|un|2
|vn|2 dx ≤ (

a0
2

+
b0
p
rp−2)

∫

Λn

|vn|2 dx

≤ (
a0
2

+
b0
p
rp−2) ‖vn‖22 −→ 0.

(11)
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Now, for all integer n large enough, we have

∫

R

[
1

2
f(x, un)un − F (x, un)]dx = ψ(un)−

1

2
ψ′(un)un ≤ c+ 1

which with Hölder’s inequality and assumption (F4) implies

∫

Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx

≤(

∫

Λn(r,∞)

F (x, un)

|un|2
)σdx)

1
σ (

∫

Λn(r,∞)

|vn|2σ
′

dx)
1
σ′

≤(2c0)
1
σ (

∫

Λn(r,∞)

[
1

2
f(x, un)un − F (x, un)]dx)

1
σ (

∫

Λn(r,∞)

|vn|2σ
′

dx)
1
σ′

≤(2c0(c+ 1))
1
σ ‖vn‖22σ′ −→ 0 as n −→ ∞.

(12)

Combining (11) and (12) yields

∫

R

F (x, un)

|un|2
|vn|2 dx =

∫

Λn(0,r)

F (x, un)

|un|2
|vn|2 dx+

∫

Λn(r,∞)

F (x, un)

|un|2
|vn|2 dx

−→ 0

as n −→ ∞, which contradicts (10). Hence (un) is bounded. Up to a subse-
quence, we can assume that un −→ u in both L2(R) and Lp(R). It follows from
(F1) and Hölder’s inequality that

∣∣∣∣
∫

R

f(x, un)(un − u)dx

∣∣∣∣ ≤
∫

R

(a0 |un|+ b0 |un|p−1
) |un − u| dx

≤ a0

∫

R

|un| |un − u| dx + b0

∫

R

|un|p−1 |un − u| dx

≤ a0 ‖un‖2 ‖un − u‖2 + b0 ‖un‖p−1
p ‖un − u‖p −→ 0,

as n −→ ∞. Therefore, we have

0 = lim
n−→∞

ψ′(un)(un − u)

= lim
n−→∞

< un, un − u > − lim
n−→∞

∫

R

f(x, un)(un − u)dx

= lim
n−→∞

‖un‖2 − ‖u‖2 .

That is limn−→∞ ‖un‖2 = ‖u‖2, which with un ⇀ u in E implies

‖un − u‖2 =< un − u, un − u >−→ 0 as n −→ ∞.

Hence (un) possesses a convergent subsequence in E. Thus ψ satisfies the
(C)c−condition. The proof is completed.
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Proof of Theorem 1.1. By (F3) and Lemmas 3.1–3.3, ψ satisfies the conditions
of Lemma 2.4. It remains to prove the Cerami’s condition.

Consequently, Lemma 2.4 with Remark 2.5 imply that the functional ψ pos-
sesses an unbounded sequence of critical points. Therefore, the fourth-order
differential equation (1) possesses infinitely many homoclinic solutions. The
proof is finished.

Lemma 3.4. Assume that (A0), (F1), (F2) and (F ′
4) are satisfied. Then ψ

satisfies the (C)c−condition for all positive constant c.

Proof. Let c be a positive real and (un) ⊂ E be a (C)c−sequence, that is

ψ(un) −→ c and ‖ψ′(un)‖ (1 + ‖un‖) −→ 0 as n −→ ∞.

Assume by contradiction that (un) is not bounded. Then up to a subsequence,
we can assume that ‖un‖ −→ ∞ as n −→ ∞. Let vn = un

‖un‖
. Then ‖vn‖ = 1.

By (F ′
4), for n large enough, we have

c+ 1 ≥ ψ(un)−
1

µ
ψ′(un)un

=
µ− 2

2µ
‖un‖2 +

∫

R

[
1

µ
f(x, un)un − F (x, un)]dx

≥ µ− 2

2µ
‖un‖2 −

γ

µ
‖un‖22 .

It follows that

lim sup
n−→∞

‖vn‖22 ≥ µ− 2

2γ
. (13)

Since ‖vn‖ = 1, passing to a subsequence, vn ⇀ v in E and Lemma 2.2 implies
that vn −→ v in L2(R), which with (3.11) implies that v 6= 0. Similar to (9), we
get a contradiction. Therefore (un) is bounded. As in the end of the proof of
Lemma 3.3, we conclude that (un) possesses a convergent subsequence. Hence
ψ satisfies the (C)c−condition. The proof is completed.

Proof of Theorem 1.2. We conclude as in the proof of Theorem 1.1 that the
functional ψ possesses an unbounded sequence of critical points and the proof is
finished.

Lemma 3.5. Assume that (A0), (F5) and (F6) are satisfied. If un ⇀ u in E,

then

f(., un) −→ f(., u) in L2(R). (14)

Proof. Arguing indirectly, by Lemma 2.2, we may assume that

unk
−→ u in both L2(R) and L2(µ−1)(R) and unk

−→ u a.e. in R (15)
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as k −→ ∞ and
∫

R

|f(x, unk
(x))− f(x, u(x))|2 dx ≥ ε0, ∀k ∈ N, (16)

for some positive constant ε0. By (15) and up to a subsequence if necessary, we
can assume that

∞∑

k=1

‖unk
− u‖L2 <∞ and

∞∑

k=1

‖unk
− u‖L2(µ−1) <∞.

Let w(x) =
∑∞

k=1 |unk
(x)− u(x)| for all x ∈ R. Then w ∈ L2(R)

⋂
L2(µ−1)(R).

By (F5) and (F6), there holds for all k ∈ N and x ∈ R

|f(x, unk
)− f(x, u)|2

≤
(
|f(x, unk

)|+ |f(x, u)|
)2

≤
[
|g(x, unk

)|+ |h(x, unk
)|+ |g(x, u)|+ |h(x, u)|

]2

≤
[
a0 |unk

|γ−1
+ b0 |unk

|σ−1
+ a0 |u|γ−1

+ b0 |u|σ−1

+2c+ d |unk
|µ−1 + d |u|µ−1

]2

≤
[
a0(|unk

− u|+ |u|)γ−1 + b0(|unk
− u|+ |u|)σ−1

+a0 |u|γ−1 + b0 |u|σ−1 (17)

+2c+ d(|unk
− u|+ |u|)µ−1 + d |u|µ−1

]2

≤
[
a0(w + |u|)γ−1 + b0(w + |u|)σ−1 + a0 |u|γ−1

+ b0 |u|σ−1

+2c+ d(w + |u|)µ−1 + d |u|µ−1
]2

≤ c1

[
a20w

2(γ−1) + a20 |u|2(γ−1)
+ b20w

2(σ−1) + b20 |u|2(σ−1)

+c2 + d2w2(µ−1) + d2 |u|2(µ−1)
]
= k(x)

where c1 is a positive constant. It is easy to see that k ∈ L1(R). Hence,
combining (15) and (17), Lebesgue’s Dominated Convergence Theorem implies

lim
k−→∞

∫

R

|f(x, unk
(x)) − f(x, u(x))|2 dx = 0,

which contradicts with (16). Hence (14) is true.

Lemma 3.6. Suppose that (A0), (F5) and (F6) are satisfied. Then ψ ∈ C1(E,R)
and for all u, v ∈ E

ψ′(u)v =

∫

R

[u′′v′′ − ωu′v′ + auv − f(x, u)v]dx. (18)
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Moreover, ψ′ : E −→ E∗ is compact and any critical point of ψ on E is a

classical solution for equation (1).

Proof. Let

ψ1(u) =

∫

R

F (x, u(x))dx.

By (F5) and (F6), for any s ∈ [0, 1] and u, v ∈ E, we have

|f(x, u+ sv)v|
≤ |g(x, u+ sv)v|+ |h(x, u+ sv)v|
≤a0 |u+ sv|γ−1 |v|+ b0 |u+ sv|σ−1 |v|+ c |v|+ d |u+ sv|µ−1 |v|
≤a0(|u|+ |v|)γ−1 |v|+ b0(|u|+ |v|)σ−1 |v|+ c |v|
+ d(|u|+ |v|)µ−1 |v| = l(x).

(19)

It is easy to check, by Hölder’s inequality that l ∈ L1(R). Hence, by (19), the
Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem, we get
for all u, v ∈ E

lim
s−→0

ψ(u+ sv)− ψ(u)

s
= lim

s−→0

∫

R

f(x, u+ sv)vdx =

∫

R

f(x, u)vdx = J(u, v).

Moreover, it follows from (F5), (F6) and Hölder’s inequality that

|J(u, v)| ≤
∫

R

|f(x, u) || v| dx ≤
∫

R

[
a0 |u|γ−1

+ a0 |u|σ−1
+ c+ d |u|µ−1

]
|v| dx

≤
( ∫

R

a
2

2−γ

0 dx
) 2−γ

2
( ∫

R

(|u|γ−1 |v|) 2
γ dx

) γ
2

+
(∫

R

b
2

2−σ

0 dx
) 2−σ

2
( ∫

R

(|u|σ−1 |v|) 2
σ dx

) σ
2

+
(∫

R

c2dx
) 1

2
(∫

R

|v|2 dx
) 1

2

+ ‖d‖∞
∫

R

|u|µ−1 |v| dx

≤
[
‖a0‖ 2

2−γ
‖u‖γ−1

2 + ‖b0‖ 2
2−σ

‖u‖σ−1
2 + ‖c‖2 + ‖d‖∞ ‖u‖µ−1

2(µ−1

]
‖v‖2

≤
[
‖a0‖ 2

2−γ
ηγ2 ‖u‖γ−1

+ ‖b0‖ 2
2−σ

ησ2 ‖u‖σ−1

+ ‖c‖2 + ‖d‖∞ ηµ−1
2(µ−1)η2 ‖u‖

µ−1
2(µ−1)

]
‖v‖ .

Therefore, J(u, .) is linear and bounded, and J(u, .) is the Gâteaux-derivative
of ψ at u. Next, we prove that J(u, .) is weakly continuous in u. Let un ⇀ u
in E. Then by Lemma 3.5, we have f(., un) −→ f(., u) in L2(R). By Hölder’s
inequality, we have

‖J(un, .)− J(u, .)‖E∗ = sup
‖v‖=1

∫

R

(f(x, un)− f(x, u))vdx

≤ η2

(∫

R

|f(x, un)− f(x, u)|2 dx
) 1

2 −→ 0,
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as n −→ ∞. This means that u 7−→ J(u, .) is weakly continuous and then it is
continuous in E. Therefore ψ1 ∈ C1(E,R) and

ψ′
1(u)v =

∫

R

f(x, u)vdx.

On the other hand, the function ψ2 : u 7−→
∫
R
[u′′2−ωu′2+au2]dx is a continuous

quadratic form. Then ψ2 ∈ C1(E,R) and

ψ′
2(u)v =

∫

R

[u′′v′′ − ωu′v′ + auv]dx

So ψ = ψ1 + ψ2 ∈ C1(E,R) and (18) is verified. Furthermore, ψ′ is compact by
the weak continuity of ψ′ since E is reflexive. Finally, it is a standard argument
that critical points of ψ on E are solutions of equation (1).

In the next, we shall prove our Theorem 1.4 by applying Lemma 2.6. Choose
a completely orthonormal basis (ej) of E and define Xj = Rej . Then Yk and Zk

can be defined as in Section 2. By (F3) and Lemma 3.6, ψ ∈ C1(E,R) is even.
In the following, we will check that all conditions of Lemma 2.6 are satisfied.

Lemma 3.7. Assume that (A0), (F5) and (F7) are satisfied. Then ψ satisfies the

(PS)∗−condition.

Proof. Let (uj) be a (PS)∗−sequence, that is, (ψ(uj)) is bounded, uj ∈ Ykj
for

some kj with kj −→ ∞ and (ψ|Ykj
)′(uj) −→ 0 as j −→ ∞. Now, we show that

(uj) is bounded in E. By virtue of (2), (F5) and (F7), there exists a constant
M > 0 such that

ρM +M ‖uj‖ ≥ ρψ(uj)− ψ′(uj)uj

= (
ρ

2
− 1) ‖uj‖2 +

∫

R

[f(x, uj)uj − ρF (x, uj)]dx

= (
ρ

2
− 1) ‖uj‖2 +

∫

R

[g(x, uj)uj − ρG(x, uj)]dx

+

∫

R

[h(x, uj)uj − ρH(x, uj)]dx

≥ (
ρ

2
− 1) ‖uj‖2 −

∫

R

[a0(x) |uj|γ + b0(x) |uj |σ]dx

−ρ
∫

R

[
a0(x)

γ
|uj|γ +

b0(x)

σ
|uj |σ]dx−

∫

R

θ(x) |uj|δ dx

≥ (
ρ

2
− 1) ‖uj‖2 − (1 +

ρ

γ
) ‖a0‖ 2

2−γ
‖uj‖γ2

−(1 +
ρ

σ
) ‖b0‖ 2

2−σ
‖uj‖σ2 − ‖θ‖ 2

2−δ
‖uj‖δ2

≥ (
ρ

2
− 1) ‖uj‖2 − (1 +

ρ

γ
)ηγ2 ‖a0‖ 2

2−γ
‖uj‖γ

−(1 +
ρ

σ
)ησ2 ‖b0‖ 2

2−σ
‖uj‖σ − ‖θ‖ 2

2−δ
ηδ2 ‖uj‖

δ
.
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Since ρ > 2 and γ, σ, δ < 2, it follows that (uj) is bounded in E.
From the reflexivity of E and up to a subsequence if necessary, we may assume
that uj ⇀ u in E, for some u ∈ E. Now, we have

‖uj − u‖2 = (ψ′(uj)− ψ′(u))(uj − u) +

∫

R

(f(x, uj)− f(x, u))(uj − u)dx. (20)

It is clear that

(ψ′(uj)− ψ′(u))(uj − u) −→ 0 as j −→ ∞. (21)

By Hölder’s inequality, (2) and Lemma 3.5, one has
∣∣∣∣
∫

R

(f(x, uj)− f(x, u))(uj − u)dx

∣∣∣∣

≤‖f(., uj)− f(., u)‖2 ‖uj − u‖2
≤η2 ‖f(., uj)− f(., u)‖2 ‖uj − u‖ −→ 0

(22)

as j −→ ∞. Combining (20)-(22), we deduce that uj −→ u in E and the proof
is completed.

Lemma 3.8. Assume that (A0), (F5) and (F6) are satisfied. Then for any suffi-

ciently large k ∈ N, there exist 0 < rk < ρk such that

ak = inf
u∈Zk,‖u‖=ρk

ψ(u) ≥ 0. (23)

Proof. Let l2(k) be defined as in the proof of Lemma 3.1. By (F5), (F6) and (2),
we have for any u ∈ Zk

ψ(u) =
1

2
‖u‖2 −

∫

R

F (x, u)dx

≥1

2
‖u‖2 −

∫

R

[a0 |u|γ + b0 |u|σ]dx−
∫

R

[c |u|+ d |u|µ]dx

≥1

2
‖u‖2 − ‖a0‖ 2

2−γ
‖u‖γ2 − ‖b0‖ 2

2−σ
‖u‖σ2 − ‖c‖2 ‖u‖2 − ‖d‖∞ ‖u‖µµ

≥1

2
‖u‖2 − lγ2 (k) ‖a0‖ 2

2−γ
‖u‖γ − lσ2 (k) ‖b0‖ 2

2−σ
‖u‖σ

− l2(k) ‖c‖2 ‖u‖ − ηµµ ‖d‖∞ ‖u‖µ .

(24)

In view of (24), µ > 2 and γ, σ > 1, one has

ψ(u) ≥ 1

4
‖u‖2 −

(
lγ2 (k) ‖a0‖ 2

2−γ
+ lσ2 (k) ‖b0‖ 2

2−σ
+ l2(k) ‖c‖2

)
‖u‖ (25)

for ‖u‖ ≤ inf

{
1,
(

‖d‖
∞

ηµ
µ

4

) 1
µ−2

}
. Let ρk = 8

(
lγ2 (k) ‖a0‖ 2

2−γ
+ lσ2 (k) ‖b0‖ 2

2−σ
+

l2(k) ‖c‖2
)
. It is easy to see that ρk −→ 0 as k −→ ∞. Thus, for sufficiently

large integer k, (25) implies ak ≥ 1
8ρ

2
k > 0.
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Lemma 3.9. Assume that (A0), (F5) and (F6) are satisfied. Then

dk = inf
u∈Zk,‖u‖≤ρk

ψ(u) −→ 0 as k −→ ∞. (26)

Proof. By (25), for any u ∈ Zk, we have

ψ(u) ≥ −
(
lγ2 (k) ‖a0‖ 2

2−γ
+ lσ2 (k) ‖b0‖ 2

2−σ
+ l2(k) ‖c‖2

)
‖u‖ . (27)

Therefore, we get with ‖u‖ ≤ ρk

0 ≥ dk ≥ −
(
lγ2 (k) ‖a0‖ 2

2−γ
+ lσ2 (k) ‖b0‖ 2

2−σ
+ l2(k) ‖c‖2

)
ρk. (28)

Since l2(k), ρk −→ 0 as k −→ ∞, one has dk −→ 0 as k −→ ∞.

Lemma 3.10. Assume that (A0), (F5) and (F6) are satisfied. Then

bk = inf
u∈Yk,‖u‖=rk

ψ(u) < 0, ∀k ∈ N. (29)

Proof. Firstly, we claim that there exists ε > 0 such that

meas({x ∈ R/c0(x) |u(x)|γ ≥ ε ‖u‖γ}) ≥ ε, ∀u ∈ Yk \ {0} . (30)

If not, there exists a sequence (un) ⊂ Yk with ‖un‖ = 1 such that

meas(

{
x ∈ R/c0(x) |un(x)|γ ≥ 1

n

}
) ≤ 1

n
. (31)

Since dimYk <∞, it follows from the compactness of the unit sphere of Yk that
there exists a subsequence, say (un) such that (un) converges to some u ∈ Yk.
Hence, we have ‖u‖ = 1. Since all norms are equivalent in the finite-dimensional
space Yk, we have un −→ u in L2(R). By Hölder’s inequality, one has

∫

R

c0(x) |un − u|γ dx ≤ ‖c0‖ 2
2−γ

( ∫

R

|un − u|2 dx
) γ

2 −→ 0 as n −→ ∞. (32)

Thus, there exists ε0 > 0 such that

meas({x ∈ R/c0(x) |u(x)|γ ≥ ε0}) ≥ ε0. (33)

In fact, if not, we have for all n ∈ N

meas(

{
x ∈ R/c0(x) |u(x)|γ ≥ 1

n

}
) ≤ 1

n
.

Let n ∈ N. Then for all integer m ≥ n

meas(

{
x ∈ R/c0(x) |u(x)|γ ≥ 1

n

}
) ≤ meas(

{
x ∈ R/c0(x) |u(x)|γ ≥ 1

m

}
) ≤ 1

m
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which implies

meas(

{
x ∈ R/c0(x) |u(x)|γ ≥ 1

n

}
) = 0.

So ∫

R

c0(x) |u|γ+2 dx =

∫

{x∈R/c0(x)|u(x)|
γ≤ 1

n}
c0(x) |u|γ+2 dx

≤ 1

nγ

∫

R

|u|2 dx ≤ η2
nγ

‖u‖2 =
η2
nγ

−→ 0,

as n −→ ∞. Hence u = 0, which contradicts ‖u‖ = 1. Therefore (33) holds.
Thus, define

Ω0 = {x ∈ R/c0(x) |u(x)|γ ≥ ε0} , Ωn =

{
x ∈ R/c0(x) |un(x)|γ ≤ 1

n

}
.

Combining (31) and (33), we obtain

meas(Ω0

⋂
Ωn) = meas(Ω0 \ (Ωc

n

⋂
Ω0))

≥ meas(Ω0)−meas(Ωc
n

⋂
Ω0) ≥ ε0 −

1

n
, ∀n ∈ N.

Let n be an integer large enough such that ε0 − 1
n ≥ 1

2ε0 and ε0
2γ−1 − 1

n ≥ ε0
2γ .

We get

∫

R

c0(x) |un − u|γ dx ≥
∫

Ω0

⋂
Ωn

c0(x) |un − u|γ dx

≥ (
ε0

2γ−1
− 1

n
)meas(Ω0

⋂
Ωn) ≥

ε20
2γ+1

for all large integer n, which is a contradiction with (32). Therefore (30) holds.

For the ε given in (30), let

Ωu = {x ∈ R/c0(x) |u(x)|γ ≥ ε ‖u‖γ} , ∀u ∈ Yk \ {0} . (34)

By (30), we obtain

meas(Ωu) ≥ ε, ∀u ∈ Yk \ {0} . (35)

For any u ∈ Yk, by (F5), (F6), (34) and (35), one has

ψ(u) =
1

2
‖u‖2 −

∫

R

F (x, u)dx ≤ 1

2
‖u‖2 − 1

γ

∫

R

c0(x) |u|γ dx−
∫

R

H(x, u)dx

≤ 1

2
‖u‖2 − 1

γ

∫

Ωu

c0(x) |u|γ dx ≤ 1

2
‖u‖2 − ε

γ
‖u‖γ meas(Ωu)

≤ 1

2
‖u‖2 − ε2

γ
‖u‖γ .
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Choose 0 < rk < inf
{
ρk, (

ε2

γ )
1

2−γ

}
. Direct computation shows that

bk = inf
u∈Yk,‖u‖=rk

ψ(u) ≤ 1

2
r2k − r2−γ

k rγk = −1

2
r2k < 0.

The proof is completed.

Proof of Theorem 1.4. Consider the functional ψ associated to equation (1)

ψ(u) =
1

2

∫

R

[u
′′

(x)2 − ωu
′

(x)2 + a(x)u(x)2]dx −
∫

R

F (x, u)dx

=
1

2
‖u‖2 −

∫

R

F (x, u)dx

defined on the space E introduced in Section 2.

The functional ψ satisfies all the conditions of Lemma 2.6. Hence ψ has
infinitely many nontrivial critical points, that is, equation (1) possesses infinitely
many homoclinic solutions.
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